CN117324006A - 一种将聚酯类塑料一步转化为氘代芳烃的方法 - Google Patents

一种将聚酯类塑料一步转化为氘代芳烃的方法 Download PDF

Info

Publication number
CN117324006A
CN117324006A CN202311232945.1A CN202311232945A CN117324006A CN 117324006 A CN117324006 A CN 117324006A CN 202311232945 A CN202311232945 A CN 202311232945A CN 117324006 A CN117324006 A CN 117324006A
Authority
CN
China
Prior art keywords
catalyst
reaction
aromatic hydrocarbon
deuterated
nanocluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311232945.1A
Other languages
English (en)
Inventor
袁浩然
刘慧宇
张军
单锐
陈勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN202311232945.1A priority Critical patent/CN117324006A/zh
Publication of CN117324006A publication Critical patent/CN117324006A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/2078Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by a transformation in which at least one -C(=O)-O- moiety is eliminated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/213Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by splitting of esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种将聚酯类塑料一步转化为氘代芳烃的方法。一种高分散纳米团簇水滑石催化剂,由如下步骤制备制备得到:S1、取金属盐、尿素与十六烷基三甲基溴化铵加入水并移至水热反应器中进行水热反应,水热反应后的沉淀过滤、干燥后煅烧,获得催化剂载体;S2、将催化剂载体、活性金属盐与水置于反应容器中,旋转蒸发直至水分完全挥发,干燥粉碎后再次煅烧,获得高分散纳米团簇水滑石催化剂。本发明实现了重水体系下高分散活性金属负载多孔水滑石催化剂催化聚酯类塑料原位解聚还原制备单环芳烃与单环芳烃氢氘交换制备高纯度氘代芳烃的协同耦合,为聚酯类塑料的清洁回收与增值转化提供了新的思路,产生了良好的环境与经济效益。

Description

一种将聚酯类塑料一步转化为氘代芳烃的方法
技术领域
本发明涉及固体废弃物资源综合利用技术领域,尤其涉及一种将聚酯类塑料一步转化为氘代芳烃的方法。
背景技术
近数十年来,各类塑料制品生产量与消耗量的急剧增加为生态环境带来了巨大压力。以聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丙二醇酯(PTT)、聚对苯二甲酸丁二醇酯(PBT)、聚碳酸酯(PC)为代表的聚酯类塑料广泛应用于食品包装、薄膜材料、服装纺织等领域,该类塑料制品使用周期短、丢弃率高,具有更大的回收需求与难度。
聚酯类塑料常规回收方式为通过机械回收或化学解聚进行次级利用与聚合再生。然而,机械回收与化学解聚往往会伴随着塑料力学性能的降低与繁琐的反应与分离步骤。因此,探索一种将聚酯类塑料一步转化为高附加值化学品的方法具有重要意义。
发明内容
本发明的目的是提供一种将聚酯类塑料一步转化为氘代芳烃的方法,本发明采用复合水滑石催化剂,在廉价氘代溶剂中催化酯类塑料加氢脱氧耦合氢氘交换制备氘代芳烃。
本发明是通过以下技术方案予以实现的:
一种高分散纳米团簇水滑石催化剂,由如下步骤制备制备得到:
S1、取金属盐、尿素与模板剂十六烷基三甲基溴化铵(CTAB)加入水并移至水热反应器中进行水热反应,水热反应后的沉淀过滤、干燥后煅烧,获得催化剂载体,催化剂载体命名为MxNy-z,M、N代表金属种类,选自Ni、Al、Mg、Cu、Ca、Zn中的两种,x、y代表对应金属用量,z代表模板剂用量;
S2、将步骤S1获得的催化剂载体、活性金属盐与水置于反应容器中,保持70℃-90℃负压旋转蒸发直至水分完全挥发,干燥粉碎后再次煅烧,获得高分散纳米团簇水滑石催化剂,催化剂命名为aA/MxNy-z,其中a代表活性金属负载量;A代表纳米金属团簇种类,选自Ru、Pt、Ir中的一种。本发明采用水热模板法制备多孔片状水滑石催化剂载体前驱体。
步骤S2中负压指0.04~0.06MPa。
优选地,步骤S1中所述的金属盐、尿素与十六烷基三甲基溴化铵的摩尔比为1:3:0.5~1.5,金属盐由摩尔比为1~3:1的M盐和N盐组成。进一步优选,金属盐、尿素与十六烷基三甲基溴化铵的摩尔比为1:3:0.75~1,金属盐由摩尔比为1~3:1的镍盐和其他金属盐组成,其他金属选自Al、Mg、Cu、Ca、Zn中的一种。
优选地,步骤S1中所述的水热反应条件为:100℃~120℃反应20~28h;煅烧条件为:N2气氛下400℃~500℃煅烧2.5~3.5h。进一步优选,步骤S1中所述的水热反应条件为:110℃反应24h;煅烧条件为:N2气氛下450℃煅烧3h。
优选地,步骤S2中活性金属负载量与催化剂载体质量比为0.02~0.04:1;再次煅烧条件为:N2气氛下400℃~500℃煅烧2.5~3.5h。进一步优选,步骤S2中再次煅烧条件为:N2气氛下450℃煅烧3h。
本发明还保护所述的高分散纳米团簇水滑石催化剂在聚酯类塑料的解聚-脱氧原位耦合制备芳烃中的应用。本发明提出的催化剂用于聚酯类塑料的解聚-脱氧原位耦合制备苯、甲苯、对二甲苯等芳烃。进一步地,通过将反应溶液替换为重水(D2O)、氘代甲醇(CD3OD)等廉价氘代试剂,可以获得附加值更高的氘代芳烃。
本发明还保护一种将聚酯类塑料一步转化为氘代芳烃的方法,包括以下步骤:
(1)对所述的高分散纳米团簇水滑石催化剂进行还原处理;
(2)将步骤(1)还原处理后的催化剂、聚酯类塑料原料、水/重水置于反应容器中,氮气气氛下,反应后得到氘代芳烃。
本发明提出的高分散纳米团簇水滑石催化剂在一锅反应体系中同时促进了酯类塑料解聚、塑料单体加氢脱氧与芳烃氢氘交换,表现出极佳的催化活性与稳定性。该发明为酯类塑料的清洁回收与增值转化提供了一个新的途径,兼具环境效益与经济效益。
优选地,步骤(1)中所述的还原处理的条件为:H2气氛下200℃~300℃还原2.5~3.5h。进一步优选,步骤(1)中所述的还原处理的条件为:H2气氛下250℃还原3h。
优选地,步骤(2)中所述的聚酯类塑料原料选自聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丙二醇酯(PTT)、聚对苯二甲酸丁二醇酯(PBT)、聚碳酸酯(PC)中的一种。
优选地,步骤(2)中所述的还原处理后的催化剂与聚酯类塑料原料的质量比为0.2~2:1,聚酯类塑料原料与水/重水的质量体积比为1:40~50g/mL,反应温度为180℃~250℃,反应时间为1~12h。进一步优选,步骤(2)中所述的还原处理后的催化剂与聚酯类塑料原料的质量比为1~2:1,反应温度为220℃~240℃,反应时间为6~12h。
优选地,步骤(2)中所述的氘代芳烃包括氘代苯和氘代甲苯。
与现有技术相比,本发明的有益效果是:
1)本发明设计了一种全新的聚酯类塑料增值回收反应体系,以环境污染物聚酯类塑料与重水这一廉价氘代试剂为原料,将其转化成附加值更高的高纯度氘代芳烃;
2)本发明提出的将聚酯类塑料一步转化为氘代芳烃的方法为一步反应,且反应结束后氘代芳烃会与重水分层,避免了多步反应与产物分离带来的额外成本;
3)本发明设计了一种高分散活性金属负载多孔水滑石催化剂,在同一个反应体系中同时促进了聚酯类塑料的水解、水解单体原位加氢与芳烃的氢氘交换,极大地提高了转化效率。
总之,本发明设计了一种在重水中将聚酯类塑料一步转化为高纯度氘代芳烃的反应体系,采用高分散活性金属负载多孔水滑石催化剂,通过优化反应条件和催化剂设计等方式实现了高转化率、高纯度氘代芳烃的生成,为聚酯类塑料的清洁回收与增值转化提供了新的思路,产生了良好的环境与经济效益。
附图说明
图1为实施例1得到的产物气相色谱图。
图2为实施例1得到的2Ru/Ni6Al8催化剂XRD表征谱图。
图3为实施例1得到的2Ru/Ni6Al8催化剂SEM与TEM表征谱图。
具体实施方式
下面结合实施例对本发明做进一步详细的描述。这些实施例仅用于说明本发明而不用于限制本发明的范围。以下实施例中未注明具体条件的实验方法,通常按照本领域常规条件或按照制造厂商建议的条件;所使用的原料、试剂等,如无特殊说明,视为可以通过常规市场等商业途径得到的原料和试剂。
实施例1
取6mmol Ni(NO3)2·6H2O、2mmol Al(NO3)3·9H2O、24mmol尿素与8mmol十六烷基三甲基溴化铵(CTAB)模板剂加入50mL去离子水中,110℃翻转水热反应24h。将水热反应完毕后的沉淀过滤、干燥、研磨后送入管式炉中,450℃氮气气氛中煅烧3h,获得催化剂载体Ni6Al2-8。随后,取1g催化剂载体Ni6Al2-8,适量RuCl3·3H2O(Ru质量为0.02g)于圆底锥形瓶中,加入30mL去离子水,在超声水浴锅中80℃微负压旋转蒸发直至水分完全挥发,将固体研磨后送入管式炉中,450℃氮气气氛中再次煅烧3h,获得催化剂2Ru/Ni6Al2-8,该催化剂的XRD、SEM及TEM表征如图2、图3所示,呈片状结构,Ru物种高度分散。
反应前,将2Ru/Ni6Al2-8在H2气氛下450℃还原3h,得到还原处理后的2Ru/Ni6Al2-8。将0.5g PET粉末、0.5g还原处理后的2Ru/Ni6Al2-8、25mL重水置于反应釜中,排净空气后通入1MPa N2,220℃反应4h,得到产物。产物中氘代苯产率为65.58%(氘代率99.99%),氘代甲苯产率为31.43%(氘代率93.46%),详见表1,实施例1产物气相色谱图如图1所示。
对比例1:
与实施例1相同,不同之处在于:将重水替代为去离子水,产物中苯产率为66.02%,甲苯产率为31.27%。
对比例2:
与实施例1相同,不同之处在于:反应未添加催化剂,产物中氘代苯产率为8.77%(氘代率36.92%),甲苯产率为2.65%(氘代率52.13%)。
通过实施例1、对比例1、对比例2可知,本发明设计的高分散活性金属负载多孔水滑石催化剂对于聚酯类塑料原位加氢制备单环芳烃与芳烃氢氘交换反应均起到优异的催化活性。
实施例2:
取6mmol Ni(NO3)2·6H2O、2mmol Al(NO3)3·9H2O、24mmol尿素与8mmol十六烷基三甲基溴化铵(CTAB)模板剂加入50mL去离子水中,110℃翻转水热反应24h。将水热反应完毕后的沉淀过滤、干燥、研磨后送入管式炉中,450℃氮气气氛中煅烧3h,获得催化剂载体Ni6Al2-8。随后,取1g催化剂载体Ni6Al2-8,适量RuCl3·3H2O(Ru质量为0.02g)于圆底锥形瓶中,加入30mL去离子水,在超声水浴锅中80℃微负压旋转蒸发直至水分完全挥发,将固体研磨后送入管式炉中,450℃氮气气氛中再次煅烧3h,获得催化剂2Ru/Ni6Al2-8。
反应前,催化剂2Ru/Ni6Al2-8在H2气氛下450℃还原3h,得到还原处理后的2Ru/Ni6Al2-8。将0.5g PTT粉末、0.5g还原处理后的2Ru/Ni6Al2-8、25mL重水置于反应釜中,排净空气后通入1MPa N2,220℃反应4h。产物中氘代苯产率为62.46%(氘代率99.99%),氘代甲苯产率为32.33%(氘代率94.55%),详见表1。
实施例3:
取6mmol Ni(NO3)2·6H2O、2mmol Al(NO3)3·9H2O、24mmol尿素与8mmol十六烷基三甲基溴化铵(CTAB)模板剂加入50mL去离子水中,110℃翻转水热反应24h。将水热反应完毕后的沉淀过滤、干燥、研磨后送入管式炉中,450℃氮气气氛中煅烧3h,获得催化剂载体Ni6Al2-8。随后,取1g催化剂载体Ni6Al2-8,适量RuCl3·3H2O(Ru质量为0.02g)于圆底锥形瓶中,加入30mL去离子水,在超声水浴锅中80℃微负压旋转蒸发直至水分完全挥发,将固体研磨后送入管式炉中,450℃氮气气氛中再次煅烧3h,获得催化剂2Ru/Ni6Al2-8。
反应前,催化剂2Ru/Ni6Al2-8在H2气氛下450℃还原3h,得到还原处理后的催化剂2Ru/Ni6Al2-8。将0.5g PBT粉末、0.5g还原处理后的2Ru/Ni6Al2-8、25mL重水置于反应釜中,排净空气后通入1MPa N2,220℃反应4h。产物中氘代苯产率为60.37%(氘代率99.99%),氘代甲苯产率为28.26%(氘代率92.72%),详见表1。
实施例4:
取6mmol Ni(NO3)2·6H2O、2mmol Al(NO3)3·9H2O、24mmol尿素与8mmol十六烷基三甲基溴化铵(CTAB)模板剂加入50mL去离子水中,110℃翻转水热24h。将水热完毕后的沉淀过滤、干燥、研磨后送入管式炉中,450℃氮气气氛中煅烧3h,获得催化剂载体Ni6Al2-8。随后,取1g催化剂载体Ni6Al2-8,适量RuCl3·3H2O(Ru质量为0.02g)于圆底锥形瓶中,加入30mL去离子水,在超声水浴锅中80℃微负压旋转蒸发直至水分完全挥发,将固体研磨后送入管式炉中,450℃氮气气氛中再次煅烧3h,获得催化剂2Ru/Ni6Al2-8。
反应前,催化剂2Ru/Ni6Al2-8在H2气氛下450℃还原3h,得到还原处理后的催化剂2Ru/Ni6Al2-8。将0.5g PC粉末、0.5g还原处理后的2Ru/Ni6Al2-8、25mL重水置于反应釜中,排净空气后通入1MPa N2,220℃反应4h。产物中氘代苯产率为42.19%(氘代率99.99%),氘代甲苯产率为46.53%(氘代率98.73%),详见表1。
实施例5:
取6mmol Ni(NO3)2·6H2O、2mmol Al(NO3)3·9H2O、24mmol尿素与8mmol十六烷基三甲基溴化铵(CTAB)模板剂加入50mL去离子水中,110℃翻转水热反应24h。将水热反应完毕后的沉淀过滤、干燥、研磨后送入管式炉中,450℃氮气气氛中煅烧3h,获得催化剂载体Ni6Al2-8。随后,取1g催化剂载体Ni6Al2-8,适量RuCl3·3H2O(Ru质量为0.02g)于圆底锥形瓶中,加入30mL去离子水,在超声水浴锅中80℃微负压旋转蒸发直至水分完全挥发,将固体研磨后送入管式炉中,450℃氮气气氛中再次煅烧3h,获得催化剂2Ru/Ni6Al2-8。
反应前,催化剂2Ru/Ni6Al2-8在H2气氛下450℃还原3h,得到得到还原处理后的催化剂2Ru/Ni6Al2-8。将0.5g PET粉末、1.0g还原处理后的2Ru/Ni6Al2-8、25mL重水置于反应釜中,排净空气后通入1MPa N2,240℃反应8h。产物中氘代苯产率为68.08%(氘代率99.99%),氘代甲苯产率为31.52%(氘代率98.42%),详见表1。
实施例6:
取5mmol Cu(NO3)2·6H2O、3mmol Al(NO3)3·9H2O、24mmol尿素与6mmol十六烷基三甲基溴化铵(CTAB)模板剂加入50mL去离子水中,110℃翻转水热反应24h。将水热反应完毕后的沉淀过滤、干燥、研磨后送入管式炉中,450℃氮气气氛中煅烧3h,获得催化剂载体Cu5Al3-6。随后,取1g催化剂载体Cu5Al3-6,适量Pt(NO3)2(Pt质量为0.04g)于圆底锥形瓶中,加入30mL去离子水,在超声水浴锅中80℃微负压旋转蒸发直至水分完全挥发,将固体研磨后送入管式炉中,450℃氮气气氛中再次煅烧3h,获得催化剂4Pt/Cu5Al3-6。
反应前,催化剂4Pt/Cu5Al3-6在H2气氛下450℃还原3h,得到还原处理后的催化剂4Pt/Cu5Al3-6。将0.5g PET粉末、0.5g还原处理后的4Pt/Cu5Al3-6、25mL重水置于反应釜中,排净空气后通入1MPa N2,240℃反应12h。产物中氘代苯产率为61.29%(氘代率99.99%),氘代甲苯产率为19.88%(氘代率90.71%),详见表1。
实施例7:
取4mmol Ni(NO3)2·6H2O、4mmol Al(NO3)3·9H2O、24mmol尿素与6mmol十六烷基三甲基溴化铵(CTAB)模板剂加入50mL去离子水中,110℃翻转水热反应24h。将水热反应完毕后的沉淀过滤、干燥、研磨后送入管式炉中,450℃氮气气氛中煅烧3h,获得催化剂载体Ni4Al4-6。随后,取1g催化剂载体Ni4Al4-6,适量IrCl3·3H2O(Ir质量为0.04g)于圆底锥形瓶中,加入30mL去离子水,在超声水浴锅中80℃微负压旋转蒸发直至水分完全挥发,将固体研磨后送入管式炉中,450℃氮气气氛中再次煅烧3h,获得催化剂4Ir/Ni4Al4-6。
反应前,催化剂4Ir/Ni4Al4-6在H2气氛下450℃还原3h,得到还原处理后的催化剂4Ir/Ni4Al4-6。将0.5g PET粉末、还原处理后的4Ir/Ni4Al4-6、25mL重水置于反应釜中,排净空气后通入1MPa N2,220℃反应6h。产物中氘代苯产率为62.16%(氘代率99.99%),氘代甲苯产率为33.90%(氘代率92.40%),详见表1。
实施例8:
与实施例1相同,不同之处在于:催化剂为使用三次后的2Ru/Ni6Al2-8,命名为2Ru/Ni6Al2-8-u3。
将0.5g PET粉末、0.5g 2Ru/Ni6Al2-8-u3催化剂、25mL重水置于反应釜中,排净空气后通入1MPa N2,220℃反应4h。产物中氘代苯产率为60.58%(氘代率99.99%),氘代甲苯产率为31.31%(氘代率92.27%),详见表1。
实施例9:
与实施例1相同,不同之处在于:水热反应条件为100℃反应28h;煅烧条件为N2气氛下400℃煅烧3.5h;再次煅烧条件为N2气氛下400℃煅烧3.5h;催化剂H2气氛下200℃还原3.5h;还原处理后的催化剂与聚酯类塑料原料的质量比为0.2:1,聚酯类塑料原料与重水的质量体积比为1:40g/mL,反应温度为180℃,反应时间为12h。
实施例10:
与实施例1相同,不同之处在于:水热反应条件为120℃反应20h;煅烧条件为N2气氛下500℃煅烧2.5h;再次煅烧条件为N2气氛下500℃煅烧2.5h;催化剂H2气氛下300℃还原2.5h;还原处理后的催化剂与聚酯类塑料原料的质量比为2:1,聚酯类塑料原料与重水的质量体积比为1:50g/mL,反应温度为250℃,反应时间为1h。
实施例1-10反应条件及产物的产率如表1所示。
表1
本发明提出的将聚酯类塑料一步转化为氘代芳烃的方法,实现了重水体系下高分散活性金属负载多孔水滑石催化剂催化聚酯类塑料原位解聚还原制备单环芳烃与单环芳烃氢氘交换制备高纯度氘代芳烃的协同耦合,通过优化反应条件和催化剂设计等方式实现了高转化率、高纯度氘代芳烃的生成,为聚酯类塑料的清洁回收与增值转化提供了新的思路,产生了良好的环境与经济效益。
以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想,应当指出,对于本技术领域的技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

1.一种高分散纳米团簇水滑石催化剂,其特征在于,由如下步骤制备得到:
S1、取金属盐、尿素与十六烷基三甲基溴化铵加入水并移至水热反应器中进行水热反应,水热反应后的沉淀过滤、干燥后煅烧,获得催化剂载体,催化剂载体命名为MxNy-z,M、N代表金属种类,选自Ni、Al、Mg、Cu、Ca、Zn中的两种,x、y代表对应金属用量,z代表模板剂用量;
S2、将步骤S1获得的催化剂载体、活性金属盐与水置于反应容器中,保持70℃-90℃负压旋转蒸发直至水分完全挥发,干燥粉碎后再次煅烧,获得高分散纳米团簇水滑石催化剂,催化剂命名为aA/MxNy-z,其中a代表活性金属负载量;A代表纳米金属团簇种类,选自Ru、Pt、Ir中的一种。
2.根据权利要求1所述的高分散纳米团簇水滑石催化剂,其特征在于,步骤S1中所述的金属盐、尿素与十六烷基三甲基溴化铵的摩尔比为1:3:0.5~1.5,金属盐由摩尔比为1~3:1的M盐和N盐组成。
3.根据权利要求1或2所述的高分散纳米团簇水滑石催化剂,其特征在于,步骤S1中所述的水热反应条件为:100℃~120℃反应20~28h;煅烧条件为:N2气氛下400℃~500℃煅烧2.5~3.5h。
4.根据权利要求1或2所述的高分散纳米团簇水滑石催化剂,其特征在于,步骤S2中活性金属负载量与催化剂载体质量比为0.02~0.04:1;再次煅烧条件为:N2气氛下400℃~500℃煅烧2.5~3.5h。
5.一种高分散纳米团簇水滑石催化剂在聚酯类塑料的解聚-脱氧原位耦合制备芳烃中的应用。
6.一种将聚酯类塑料一步转化为氘代芳烃的方法,其特征在于,该方法包括以下步骤:
(1)对权利要求1所述的高分散纳米团簇水滑石催化剂进行还原处理;
(2)将步骤(1)还原处理后的催化剂、聚酯类塑料原料、水/重水置于反应容器中,氮气气氛下,反应后得到氘代芳烃。
7.根据权利要求6所述的方法,其特征在于,步骤(1)中所述的还原处理的条件为:H2气氛下200℃~300℃还原2.5~3.5h。
8.根据权利要求6所述的方法,其特征在于,步骤(2)中所述的聚酯类塑料原料选自聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酸丁二醇酯、聚碳酸酯中的一种。
9.根据权利要求6所述的方法,其特征在于,步骤(2)中所述的还原处理后的催化剂与聚酯类塑料原料的质量比为0.2~2:1,聚酯类塑料原料与水/重水的质量体积比为1:40~50g/mL,反应温度为180℃~250℃,反应时间为1~12h。
10.根据权利要求6所述的方法,其特征在于,步骤(2)中所述的氘代芳烃包括氘代苯和氘代甲苯。
CN202311232945.1A 2023-09-22 2023-09-22 一种将聚酯类塑料一步转化为氘代芳烃的方法 Pending CN117324006A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311232945.1A CN117324006A (zh) 2023-09-22 2023-09-22 一种将聚酯类塑料一步转化为氘代芳烃的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311232945.1A CN117324006A (zh) 2023-09-22 2023-09-22 一种将聚酯类塑料一步转化为氘代芳烃的方法

Publications (1)

Publication Number Publication Date
CN117324006A true CN117324006A (zh) 2024-01-02

Family

ID=89289548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311232945.1A Pending CN117324006A (zh) 2023-09-22 2023-09-22 一种将聚酯类塑料一步转化为氘代芳烃的方法

Country Status (1)

Country Link
CN (1) CN117324006A (zh)

Similar Documents

Publication Publication Date Title
Li et al. MXenes as noble-metal-alternative co-catalysts in photocatalysis
CN106622324A (zh) 一种石墨相碳化氮纳米片/四氧化三钴纳米片鱼鳞状结构复合纳米材料及制备方法和应用
WO2015091173A1 (en) Process for producing methyl methacrylate
CN103691480B (zh) 一种硼氢化钠水解制氢用催化剂的制备工艺
CN102389795A (zh) 用于甲酸分解制氢的纳米金催化剂及其制备方法
CN112844476A (zh) 一种生物质基碳材料负载纳米镍催化剂及其制备方法和应用
Lonkar et al. Applications of graphene in catalysis
CN114835551A (zh) 一种pet类废塑料选择性催化制备单环芳烃的方法
CN108654618B (zh) 金属氧化物催化剂、其制备方法及使用其的醇的制备方法
CN113385171A (zh) 一种寡层碳保护的金属基催化剂及其在环氧乙烷羰基化中的应用
CN110813281B (zh) 纳米碳负载团簇态钯基催化剂在腈类化合物催化加氢制备伯胺中的应用
CN111151275B (zh) MoS2/Mo2C复合物、MoS2/Mo2C/CdS复合材料及其制备方法和应用
CN113083351B (zh) 一种高活性钌分子筛催化剂Ru/Ga-SH5在催化加氢脱氧方面的应用
CN117324006A (zh) 一种将聚酯类塑料一步转化为氘代芳烃的方法
CN107376936A (zh) 一种铂‑钴/凹凸棒石催化剂及其制备方法和应用
CN1911883A (zh) 一种α-苯乙醇的合成方法
CN115990501A (zh) 一种高负载量单原子催化剂及其制备方法与应用
CN114471624B (zh) 一种NiSe2/Mn0.3Cd0.7S异质结光催化剂及其原位合成方法与应用
CN109847777A (zh) 一种固载型Cu基催化剂及其制备方法和应用
CN113398912B (zh) 一种用于氨基甲酸甲酯醇解合成碳酸二甲酯的催化剂
CN110773194B (zh) 一种co2加氢制甲烷催化剂及其制备方法
CN114749179A (zh) 用于费托合成的Co/BN催化剂及其制备方法与应用
Osman et al. Coordination-driven innovations in low-energy catalytic processes: advancing sustainability in chemical production
CN102070405B (zh) 一种光催化合成频哪醇的方法
CN115106085B (zh) 一种复合光催化剂在光催化氧化芳香醇偶联产氢中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication