CN117142855A - 一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法 - Google Patents

一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法 Download PDF

Info

Publication number
CN117142855A
CN117142855A CN202311062620.3A CN202311062620A CN117142855A CN 117142855 A CN117142855 A CN 117142855A CN 202311062620 A CN202311062620 A CN 202311062620A CN 117142855 A CN117142855 A CN 117142855A
Authority
CN
China
Prior art keywords
electrolyte sheet
solid electrolyte
garnet
doped
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311062620.3A
Other languages
English (en)
Inventor
郑时有
朱宇
庞越鹏
杨俊和
张德沛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202311062620.3A priority Critical patent/CN117142855A/zh
Publication of CN117142855A publication Critical patent/CN117142855A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法,其中将石榴石型氧化物粉体和氮化锂添加剂按照一定的质量百分比进行混合后冷压成型,随后在相对较低的温度下烧结得到固态电解质片。该电解质片的烧结温度远低于传统石榴石电解质片的烧结温度且烧结时间大幅度降低,节约能源且减少了锂的高温损耗;氮化锂可填充在石榴石型氧化物电解质片的空隙内使电解质片获得较高的相对密度;由于氮化锂本身的高离子电导率使材料整体具备较优的电导率性能;由于氮化锂和金属负极具有良好的兼容性,可以进一步提高石榴石型氧化物电解质片对负极的稳定性;另外,该制备方法的工艺成本较低,操作简单,易于重复,适合大规模商业化生产。

Description

一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法
技术领域
本发明涉及新能源材料技术领域,尤其涉及一种可低温烧结的石榴石型氧化物固态电解质及其制备方法。
背景技术
随着新能源发电规模的迅速扩大,大力发展稳定高效的能量转换与存储设备已成为当前研究的重点。锂电池因其具有高能量密度和环境友好等优势而备受关注。传统的锂离子电池采用有机液体作为电解液,虽然具有较高的离子电导率,但存在易燃、易腐蚀等安全问题。采用固态电解质代替有机电解液能有效的避免以上问题。因此,开发高安全性、低成本和高能量密度的固态电池是当前新能源发展的关键。目前主流的固态电解质可分为无机氧化物、无机硫化物以及聚合物三种体系。其中,无机氧化物电解质具有高离子电导率,高机械强度以及高空气稳定性,因而被广泛研究。
传统的固相反应制备无机氧化物电解质,需要通过高压压缩,然后在高温下长时间烧结,然而其内部孔隙的存在是不可避免的,大量的孔隙对电解质片的离子电导率和相对密度都有不利影响。以石榴石型为代表的氧化物固态电解质,为了提高电解质片的致密度,其原料在机械混合后,需要在1200°C的高温下进行烧结。同时,在高温烧结过程中Li2O会出现升华现象导致大量的锂损失,从而促使失锂相的生成,影响离子电导率。为了补偿锂的损失,传统的方法是使用大量母粉来覆盖素胚,这无疑会导致大量母粉的损耗,且高温烧结后母粉与电解质片不易分离,难以处理。另外,处理后的固态电解质具有刚性界面,与锂负极界面接触不良,界面阻抗大,进而导致锂枝晶的成核和生长,限制了石榴石型氧化物在固态电池中的应用。总之,传统的石榴石型氧化物固态电解质片制备工艺有着高耗能、高耗时和高耗料的缺陷,且制备的样品不易应用在固态电池中。
氮化锂是第一个被发现的Li快离子导体,可冷压成型或低温烧结成型,在室温下其电导率高达5.6 × 10-3 S·cm-1,电化学势窗为0 ~ 0.445 V,对锂金属稳定。因此,将氮化锂引入石榴石型氧化物固态电解质,有利于减少烧结温度,降低孔隙率并提升电化学稳定性。现有技术有两种:(1)在石榴石型氧化物固态电解质片上沉积金属锂,随后与氮气反应生成氮化锂,该技术实现了氮化锂在石榴石型氧化物固态电解质片表面的包覆,有利于提升电化学稳定性,但无法实现减少烧结温度和降低孔隙率的作用;(2)石榴石型氧化物与氮化锂混合后使用超快加热方法在1300 °C煅烧并迅速冷却,该技术能够实现氮化锂与石榴石型氧化物的良好复合,但制备工艺复杂且成本高昂,需使用特种超快加热技术,加热和冷却时间都在30秒以内,否则氮化锂会分解。
发明内容
本发明的目的是提供一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法,该方法通过在石榴石型氧化物粉体中引入氮化锂添加剂,大大降低石榴石型氧化物固态电解质的烧结温度、制备成本与时间,其制备的石榴石型固态电解质具有高的相对密度、优异的离子电导率以及高的负极兼容性。
为解决上述技术问题,本发明采用如下技术方案:
本发明提供了一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法,其中所述电解质片的原料包括石榴石型氧化物粉体和氮化锂添加剂;
步骤(1)将所述电解质片的原料进行混合后,在通过冷压成型得到素胚;
步骤(2)将步骤(1)所得素胚置于加热炉中,加热后制备得到固态电解质片。
优选的,所述石榴石型氧化物粉体包括Li7La3Zr2O12及其经掺杂后的衍生物;
或/和,所述Li7La3Zr2O12掺杂后的衍生物包括Ta掺杂Li7La3Zr2O12粉体、Nb掺杂Li7La3Zr2O12粉体、Ta掺杂Li7La3Zr2O12粉体、Ga掺杂Li7La3Zr2O12粉体中。
优选的,所述氮化锂添加剂的质量百分比为3% ~ 20%。
优选的,在步骤(1)中,所述石榴石型氧化物粉体与氮化锂添加剂通过机械球磨进行混合,其中所述机械球磨的转速为200r·min-1~500r·min-1
优选的,在步骤(1)中,冷压成型的压力为50 MPa ~ 500 MPa,其保压时间为1 min~ 10 min。
优选的,在步骤(2)中,加热炉的烧结温度为600 ~ 1000 °C,其加热时间为0.2 h~ 2 h;
加热炉的烧结过程是真空、常压、还是通入保护气。
优选的,其中所述烧结升温的速率为4~5℃/min。
与现有技术相比,本发明的有益技术效果:本申请中该电解质片的烧结温度远低于传统石榴石电解质片的烧结温度(约1200 °C),且烧结时间大幅度降低;烧结温度较低,不会造成锂损失;由于氮化锂可填充在石榴石型氧化物电解质片的空隙内使电解质片获得较高的相对密度;由于氮化锂本身的高离子电导率使材料整体具备较优的电导率性能;由于氮化锂和金属负极具有良好的兼容性,可以进一步提高石榴石型氧化物电解质片对负极的稳定性;另外,该制备方法的工艺成本低,操作简单,易于重复,适合大规模商业化生产。
附图说明
下面结合附图说明对本发明作进一步说明。
图1为实施例1中LLZO+3%Li3N断面SEM图;
图2为实施例2中LLZTaO+5%Li3N组装成锂对称电池的阻抗测试图;
图3为实施例3中LLZNbO+7%Li3N组装成锂对称电池的循环测试图;
图4为实施例4中LLZTaO+10%Li3N组装Li||LiCoO2电池的恒流充放电测试图;
图5为实施例1-5中氮化锂添加的石榴石型氧化物固态电解质在室温下的的阻抗测试图;
图6为对比例1中LLZO的断面SEM图;
图7为对比例1中LLZO在室温下的阻抗测试图;
图8为实施例1-5和对比例1中有/无氮化锂添加的石榴石型氧化物固态电解质的相对密度对比图;
图9为对比例中P-Li3N组装Li||LiCoO2电池的恒流充放电测试图。
具体实施方式
实施例1
本实施例中公开了一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法,将Li7La3Zr2O12粉体和质量百分比为3%的氮化锂添加剂通过机械球磨的方式进行混合。将混合粉体在300 MPa的压力下处理5 min,冷压成型得到素坯。将素胚置于加热炉中,在700 °C的烧结温度下处理1.5 h,冷却至室温得到固态电解质LLZO+3%Li3N。
如图1所示,为实施例1中LLZO+3%Li3N断面SEM图,可以看出片体形貌相对较为致密。
实施例2
将Ta掺杂Li7La3Zr2O12粉体和质量百分比为5%的氮化锂添加剂通过机械球磨的方式进行混合。将混合粉体在100 MPa的压力下处理10 min,冷压成型得到素坯。将素胚置于加热炉中,在600 °C的烧结温度下处理2 h,冷却至室温得到固态电解质LLZTaO+5%Li3N。
如图2所示,为实施例2中LLZTaO+5%Li3N组装成锂对称电池的阻抗测试图,具有较小的体阻抗(80 Ω)和界面阻抗(70 Ω),说明氮化锂添加的Ta掺杂Li7La3Zr2O12固态电解质不仅有较优的电导率,且与金属锂负极有良好的界面接触。
实施例3
将Nb掺杂Li7La3Zr2O12粉体和质量百分比为7%的氮化锂添加剂通过机械球磨的方式进行混合。将混合粉体在200 MPa的压力下处理7 min,冷压成型得到素坯。素胚置于加热炉中,在800 °C的烧结温度下处理0.5 h,冷却至室温得到固态电解质LLZNbO+7%Li3N。
如图3所示,为实施例3中LLZNbO+7%Li3N组装成锂对称电池的循环测试图,在30 °C和电流密度为0.2 mA cm-2下进行恒流充放电测试,经过前期循环的活化后,能稳定循环350 h以上。
实施例4
将Ta掺杂Li7La3Zr2O12粉体和质量百分比为10%的氮化锂添加剂通过机械球磨的方式进行混合。混合粉体在300 MPa的压力下处理5 min,冷压成型得到素坯。将素胚置于加热炉中,在700 °C的烧结温度下处理1.5 h,冷却至室温得到固态电解质LLZTaO+10%Li3N。
如图4所示,为实施例4中LLZTaO+10%Li3N组装Li||LiCoO2电池的恒流充放电测试图,电池在30 °C和0.1 C的倍率下能进行正常的充放电,且性能良好。
实施例5
将Ga掺杂Li7La3Zr2O12粉体和质量百分比为20%的氮化锂添加剂通过机械球磨的方式进行混合。将混合粉体在300 MPa的压力下处理5 min,冷压成型得到素坯。将素胚置于加热炉中,在700 °C的烧结温度下处理1.5 h,冷却至室温得到固态电解质LLZGaO+20%Li3N。
如图5所示,为实施例1-5中氮化锂添加的石榴石型氧化物固态电解质在室温下的的阻抗测试图,其中实施例2的样品LLZTO+5%Li3N的阻抗值最小,为75 Ω,对应的电导率最优,为5.1 × 10-4 S cm-1,其他实施例样品的阻抗都在600 Ω以下,电导率都大于5 × 10-5 S cm-1
对比例1
与实施例1的区别在于,不加入Li3N添加剂。将Li7La3Zr2O12粉体进行机械球磨。将球磨后粉体在300 MPa的压力下处理5 min,冷压成型得到素坯。将素胚置于加热炉中,在700 °C的烧结温度下处理1.5 h,冷却至室温得到固态电解质LLZO。
如图6所示,为对比例1中LLZO的断面SEM图,可以看出片体形貌相对较为疏松。
如图7所示,为对比例1中LLZO在室温下的阻抗测试图,其阻抗达到了8000 Ω以上,电导率小于5 × 10-6 S cm-1
如图8所示,为实施例1-5和对比例1中有/无氮化锂添加的石榴石型氧化物固态电解质的相对密度对比图,可以看出氮化锂的添加明显改善了石榴石型氧化物固态电解质的相对密度,有氮化锂添加的样品其相对密度可保持在95%以上,其中样品LLZTaO+5%Li3N最优,相对密度为98.1%,无氮化锂添加的LLZO仅为不到75%。
对比例2
与实施例1的区别在于,无Li7La3Zr2O12粉体。将Li3N粉体进行机械球磨。将球磨后粉体在300 MPa的压力下处理5 min,冷压成型得到素坯。将素胚置于加热炉中,在700 °C的烧结温度下处理1.5 h,冷却至室温得到固态电解质P-Li3N。
如图9所示,为对比例中P-Li3N组装Li||LiCoO2电池的恒流充放电测试图,电池在30 °C和0.1 C的倍率下无法完成充放电循环。原因是Li3N在0.445 V以上的电压下会发生分解。
以上实施例仅是对本发明创造的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

1.一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法,其特征在于:其中所述电解质片的原料包括石榴石型氧化物粉体和氮化锂添加剂;
步骤(1)将所述电解质片的原料进行混合后,在通过冷压成型得到素胚;
步骤(2)将步骤(1)所得素胚置于加热炉中,加热后制备得到固态电解质片。
2.根据权利要求1所述的Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法,其特征在于:所述石榴石型氧化物粉体包括Li7La3Zr2O12及其经掺杂后的衍生物;
或/和,所述Li7La3Zr2O12掺杂后的衍生物包括Ta掺杂Li7La3Zr2O12粉体、Nb掺杂Li7La3Zr2O12粉体、Ta掺杂Li7La3Zr2O12粉体、Ga掺杂Li7La3Zr2O12粉体中。
3.根据权利要求1所述的Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法,其特征在于:所述氮化锂添加剂的质量百分比为3% ~ 20%。
4.根据权利要求1所述的Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法,其特征在于:在步骤(1)中,所述石榴石型氧化物粉体与氮化锂添加剂通过机械球磨进行混合,其中所述机械球磨的转速为200r·min-1~500r·min-1
5.根据权利要求1所述的Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法,其特征在于:在步骤(1)中,冷压成型的压力为50 MPa ~ 500 MPa,其保压时间为1 min ~ 10min。
6.根据权利要求1所述的Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法,其特征在于:在步骤(2)中,加热炉的烧结温度为600 ~ 1000 °C,其加热时间为0.2 h ~ 2 h;
加热炉的烧结过程是真空、常压、还是通入保护气。
7.根据权利要求6所述的Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法,其特征在于:其中所述烧结升温的速率为4~5℃/min。
8.根据权利要求1~7任一所述的Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法,其特征在于:所述石榴石型氧化物固态电解质的相对密度大于95%。
CN202311062620.3A 2023-08-23 2023-08-23 一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法 Pending CN117142855A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311062620.3A CN117142855A (zh) 2023-08-23 2023-08-23 一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311062620.3A CN117142855A (zh) 2023-08-23 2023-08-23 一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法

Publications (1)

Publication Number Publication Date
CN117142855A true CN117142855A (zh) 2023-12-01

Family

ID=88899921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311062620.3A Pending CN117142855A (zh) 2023-08-23 2023-08-23 一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法

Country Status (1)

Country Link
CN (1) CN117142855A (zh)

Similar Documents

Publication Publication Date Title
CN108394884A (zh) 一种壳聚糖基高比表面积氮/磷共掺杂碳纳米片的制备方法
CN105140560A (zh) 一种对金属锂稳定的锂离子固体导体及其制备方法以及一种全固态锂二次电池
CN107516732B (zh) 一种用作锂电池阳极的SnO&MoS2复合材料的制备方法
CN113381012B (zh) 一种MXene基金属硫化物及其制备方法和应用
CN111170306A (zh) 硼/氮双掺杂多孔碳纳米片及其锂硫电池正极材料
CN109728342B (zh) 一种自修复复合固态电解质、准固态电解质及锂电池
CN108767250B (zh) 一种泡沫金属支撑结构锂负极片的制备方法以及在全固态锂离子电池中的应用
CN112786887A (zh) 一种高温用石墨负极材料及其制备方法
CN107425181B (zh) 一种氧化锰/淀粉基硬碳复合负极材料的制备方法
CN117038849A (zh) 一种高倍率的固态电解质硅一体化电极及制备方法与应用
CN112421049A (zh) 一种球磨制备锂电池硅碳负极材料的方法、硅碳负极材料
CN111313004A (zh) 一种锂离子电池用氧化亚硅-钛酸锂基复合负极材料及其制备方法
CN116646488A (zh) 一种预锂化硬碳复合材料及其制备方法和应用
CN114188521B (zh) 一种双离子电池石墨正极材料表面的轻质包覆层及制备方法
CN105226251A (zh) 一种纯碳复合负极材料及其制备方法
CN117142855A (zh) 一种Li3N掺杂的石榴石型固态电解质片低温烧结的制备方法
CN114843473A (zh) 一种应用于铁锂电池的复合浆料及其制备方法
CN110534681A (zh) 传导离子的管状陶瓷膜及其制备方法
CN109686945B (zh) 一种低温自活化制备碳包覆锡基复合材料的方法
CN110600738A (zh) 一种制备低温锂离子电池硬碳负极材料的方法
CN116705989B (zh) 柔性的聚合物电解质硅一体化电极及其制备方法与应用
CN113381018B (zh) 一种氮氟原子掺杂三维多孔碳的电极材料、制备方法及其应用
CN114933706B (zh) 一种基于席夫斯碱反应的生物质动态凝胶聚合物、锂金属负极及其制备方法与应用
CN115275362B (zh) 含有异质离子凝胶缓冲层的固态电解质及其制备和应用
CN118099403B (zh) 一种全固态复合硅负极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination