CN117070936B - 一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层 - Google Patents

一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层 Download PDF

Info

Publication number
CN117070936B
CN117070936B CN202311069169.8A CN202311069169A CN117070936B CN 117070936 B CN117070936 B CN 117070936B CN 202311069169 A CN202311069169 A CN 202311069169A CN 117070936 B CN117070936 B CN 117070936B
Authority
CN
China
Prior art keywords
coating
laser
cladding
copper
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311069169.8A
Other languages
English (en)
Other versions
CN117070936A (zh
Inventor
张晖
卢玉云
陶冶
李维火
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN202311069169.8A priority Critical patent/CN117070936B/zh
Publication of CN117070936A publication Critical patent/CN117070936A/zh
Application granted granted Critical
Publication of CN117070936B publication Critical patent/CN117070936B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层,属于材料表面改性技术领域,所设计的涂层成分原子百分比为Cux(NiFeCrAlSi)90‑xSn10,其中x=70~80。通过在铜基体中添加近等摩尔的Ni、Cr、Fe、Al、Si元素来增加合金的熵值,提高固溶强化效果。同时,添加Sn元素不仅使涂层凝固后在富Cu的FCC基体上弥散分布大量原位自生的Cu6.5Sn增强相,进一步提高铜合金涂层的硬度,而且有利于提高涂层润湿性。所制备的涂层凝固硬度达到357HV,在380℃下时效后最高硬度达到392HV。有效的改善了目前市场已有铜合金涂层硬度低、耐磨性差、铜基涂层与铁基板结合性能差等缺点。

Description

一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层
技术领域
本发明属于材料表面改性技术领域,具体涉及一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层及其制备方法。
背景技术
铜基涂层具有优异的导电性和导热性,在电力、电工、机械等表面改性工业领域得到广泛应用。但是,铁基体表面激光熔覆制备铜合金涂层,由于铜和铁的热物理性质差异较大,并且铜具有很高的激光反射率,造成激光熔覆铜涂层能量吸收率低,难以获得高的熔覆质量并与铁基体形成有效的冶金结合。为此,中国专利ZL 201510166869.8提出在铜粉中添加纳米稀土氧化物达到提高涂层润湿性和熔覆质量目的。但纯铜涂层的强度、硬度和耐磨性仍较低,无法满足高强耐磨的表面服役工况。
第二相颗粒增强是铜合金强化的主要方式之一,常见的析出强化型铜合金有Cu-Cr、Cu-Cr-Zr、Cu-Ni-Si、Cu-Ni-P、CuFe-P等。一般而言,这类合金为保证其导电导热性,Cu元素含量大多高于70%,硬度处于150~300HV。中熵和高熵合金是近年来新型合金的研究热点,合金体系的熵值增加可显著提高固溶强化效果。其中,中熵合金体系的混合熵值一般在1.0R和1.5R之间,已有报道研究了中熵钢、中熵铝等多元合金,并获得了较好的性能,为了显著提高铁表面激光熔覆铜基涂层的熔覆质量,并大幅度提高涂层的硬度与耐磨性能,本发明提供了以下技术方案。
发明内容
本发明的目的在于提供一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层及其制备方法,且Cu含量不低于70%。解决现有技术中铁表面激光熔覆铜基涂层存在熔覆质量差,与铁基体的结合性能差,以及铜基涂层硬度和耐磨性差等问题。
本发明的目的可以通过以下技术方案实现:
一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层,所述的铜基耐磨中熵合金涂层成分的原子百分比为Cux(NiFeCrAlSi)90-xSn10,其中x取值为70~80。
作为本发明的进一步方案,所述的铜基耐磨中熵合金涂层成分的原子百分比为Cu70(NiFeCrAlSi)20Sn10
作为本发明的进一步方案,所述中熵合金涂层的制备方法为:
粉末制备:按比例称取粒度分布为100~150μm的Cu、Ni、Fe、Cr、Al、Si和Sn气雾化球形单质粉末,然后将粉末进行机械混合均匀后放入烘干炉进行干燥;
激光熔覆:将混合后粉末激光熔覆在经打磨的光亮铁基体表面;
时效热处理:将激光熔覆后的涂层置于箱式电阻炉中时效。
作为本发明的进一步方案,粉末制备中的干燥条件为150℃干燥1h。
作为本发明的进一步方案,单质粉末的纯度≥99.9%。
作为本发明的进一步方案,激光熔覆的条件为:光功率1400W,扫描速度840mm/min,激光光斑大小为直径4mm的圆形光斑,多道激光熔覆的搭接率为50%,熔覆后涂层厚度为1mm。
作为本发明的进一步方案,时效条件为时效温度380℃,保温时间20分钟。
本发明的有益效果:
1、本发明有效的改善了铜基涂层硬度低、摩擦性差等缺点,实现了富铜中熵合金涂层与铁基体的良好冶金结合,形成的涂层具有结构致密、熔覆质量好、组织均匀、硬度高、耐磨性好和无裂纹等优点;
2、本发明设计的原位颗粒增强铜基耐磨中熵合金涂层成分中由于添加元素较多,各元素之间的相互作用而具有热力学上的高熵效应、动力学上的缓慢扩散效应、结构上的晶格畸变效应、性能上的“鸡尾酒”效应和组织上的高稳定性等特点,使其具有过饱和固溶强化效果和较高的硬度;
3、本发明设计的原位颗粒增强铜基耐磨中熵合金涂层成分,添加的Sn不仅是提高涂层润湿性,改善涂层熔覆质量的重要元素。而且,Sn原子半径高达有利于增强固溶体的晶格畸变强化效果,并且Sn含量在10at.%时原位自生的弥散分布Cu6.5Sn增强相,进一步提高了涂层的硬度。
附图说明
下面结合附图对本发明作进一步的说明。
图1为本发明实施例中激光熔覆Cu70(NiFeCrAlSi)20Sn10单道及多道搭接涂层的宏观表面形貌图;
图2为本发明实施例中激光熔覆Cu70(NiFeCrAlSi)20Sn10涂层横截面的金相组织图;
图3为本发明实施例中激光熔覆Cu70(NiFeCrAlSi)20Sn10涂层XRD图;
图4为本发明实施例中激光熔覆Cu80(NiFeCrAlSi)10Sn10涂层横截面的金相组织图;
图5为本发明实施例中激光熔覆Cu75(NiFeCrAlSi)15Sn10涂层横截面的金相组织图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层,所述的铜基耐磨中熵合金涂层成分的原子百分比为Cu70(NiFeCrAlSi)20Sn10
图1所示为本实施例Cu70(NiFeCrAlSi)20Sn10涂层的单道及多道搭接宏观表面形貌,涂层熔覆质量良好,无裂纹且具有良好的平整度;
图2为激光熔覆后Cu70(NiFeCrAlSi)20Sn10涂层的横截面金相组织图,可以看出试样金相组织分布均匀且无裂纹和气孔,组织中弥散分布着大量原位自生颗粒增强相;
图3是Cu70(NiFeCrAlSi)20Sn10涂层XRD分析,结果显示该析出相为Cu6.5Sn,基体相为富铜的FCC固溶体;
采用维氏硬度计在4.9N载荷下测量Cu70(NiFeCrAlSi)20Sn10涂层的显微硬度为360HV,远高于纯铜涂层低于100HV的硬度;
对Cu70(NiFeCrAlSi)20Sn10涂层进行380℃时效处理20min,涂层的时效硬度为392HV,明显高于目前工业上多数耐磨铜合金150~300HV的硬度范围。
实施例2
一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层,所述的铜基耐磨中熵合金涂层成分的原子百分比为Cu80(NiFeCrAlSi)10Sn10
图4为激光熔覆后Cu80(NiFeCrAlSi)10Sn10涂层的横截面金相组织图,可以看出试样金相组织分布均匀且无裂纹和气孔,组织中弥散分布着大量原位自生颗粒增强相;
采用维氏硬度计在4.9N载荷下测量Cu80(NiFeCrAlSi)10Sn10涂层的显微硬度为314HV,远高于纯铜涂层低于100HV的硬度;
对Cu80(NiFeCrAlSi)10Sn10涂层进行380℃时效处理20min,涂层的时效硬度提高到338HV,明显高于目前工业上多数耐磨铜合金150~300HV的硬度范围。
实施例3
一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层,所述的铜基耐磨中熵合金涂层成分的原子百分比为Cu75(NiFeCrAlSi)15Sn10
图5为激光熔覆后Cu75(NiFeCrAlSi)15Sn10涂层的横截面金相组织图,可以看出试样金相组织分布均匀且无裂纹和气孔,组织中同样弥散分布着大量原位自生颗粒增强相;
采用维氏硬度计在4.9N载荷下测量Cu75(NiFeCrAlSi)15Sn10涂层的显微硬度为325HV,远高于纯铜涂层低于100HV的硬度;
对Cu75(NiFeCrAlSi)15Sn10涂层进行380℃时效处理20min,涂层的时效硬度提高到354HV,明显高于目前工业上多数耐磨铜合金150~300HV的硬度范围。
需要注意的是,在实施例1与实施例2中,所述铜基耐磨中熵合金涂层所用到的单质Cu、Ni、Fe、Cr、Al、Si、Sn均为气雾化球形粉末,粒度分布为100~150um,纯度≥99.9%;
该铜基耐磨中熵合金涂层的制备方法为:
将铜基耐磨中熵合金涂层各成分的原子百分比换算成相应的质量百分比,然后按质量百分比使用高精度电子秤称量;
随后,采用激光熔覆技术在经打磨去除表面氧化层的铁基体表面熔覆,激光工艺参数分别设定为:激光功率为1400W,扫描速度为840mm/min,激光光斑大小为直径为4mm的圆形光斑,多道搭接率为50%,熔覆后涂层厚度1mm;
熔覆后涂层置于箱式电阻炉中进行时效,时效温度380℃,保温时间20分钟。
在说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上内容仅仅是对本发明所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (5)

1.一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层,其特征在于:所述的铜基耐磨中熵合金涂层成分的原子百分比为Cu70(NiFeCrAlSi)20Sn10
所述中熵合金涂层的制备方法为:
粉末制备:按比例称取粒度分布为100~150 μm的Cu、Ni、Fe、Cr、Al、Si和Sn气雾化球形单质粉末,然后将粉末进行机械混合均匀后放入烘干炉进行干燥;
激光熔覆:将混合后粉末激光熔覆在经打磨的光亮铁基体表面;
时效热处理:将激光熔覆后的涂层置于箱式电阻炉中时效;
所述单质粉末的纯度≥99.9%;
所述激光熔覆的条件为:激光功率1400 W,扫描速度840 mm/min,激光光斑大小为直径4 mm的圆形光斑,多道激光熔覆的搭接率为50%,熔覆后涂层厚度为1 mm;
所述时效条件为时效温度380℃,保温时间20分钟。
2.根据权利要求1所述的一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层的制备方法,其特征在于,包括:
粉末制备:按比例称取粒度分布为100~150 μm的Cu、Ni、Fe、Cr、Al、Si和Sn气雾化球形单质粉末,然后将粉末进行机械混合均匀后放入烘干炉进行干燥;
激光熔覆:将混合后粉末激光熔覆在经打磨的光亮铁基体表面;
时效热处理:将激光熔覆后的涂层置于箱式电阻炉中时效。
3.根据权利要求2所述的制备方法,其特征在于,单质粉末的纯度≥99.9%。
4.根据权利要求2所述的制备方法,其特征在于,激光熔覆的条件为:激光功率1400 W,扫描速度840 mm/min,激光光斑大小为直径4 mm的圆形光斑,多道激光熔覆的搭接率为50%,熔覆后涂层厚度为1 mm。
5.根据权利要求2所述的制备方法,其特征在于,时效条件为时效温度380℃,保温时间20分钟。
CN202311069169.8A 2023-08-23 2023-08-23 一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层 Active CN117070936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311069169.8A CN117070936B (zh) 2023-08-23 2023-08-23 一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311069169.8A CN117070936B (zh) 2023-08-23 2023-08-23 一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层

Publications (2)

Publication Number Publication Date
CN117070936A CN117070936A (zh) 2023-11-17
CN117070936B true CN117070936B (zh) 2024-03-26

Family

ID=88705713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311069169.8A Active CN117070936B (zh) 2023-08-23 2023-08-23 一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层

Country Status (1)

Country Link
CN (1) CN117070936B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725708A (en) * 1985-07-17 1988-02-16 Toyota Jidosha Kabushiki Kaisha Method for padding a copper type alloy material upon a base of aluminum type metal using laser beam oscillating transversely to its tracking direction
AU2008200847A1 (en) * 2001-05-31 2008-05-29 Miravant Pharmaceuticals, Inc. Metallotetrapyrrolic photosensitizing agents for use in photodynamic therapy
CN102528025A (zh) * 2012-01-31 2012-07-04 南昌航空大学 一种抗高温氧化的核-壳型铜基合金粉末的制备方法
KR20170124441A (ko) * 2016-05-02 2017-11-10 한국과학기술원 고강도 초내열 고엔트로피 합금기지 복합소재 및 이의 제조방법
CN114644851A (zh) * 2020-12-21 2022-06-21 武汉苏泊尔炊具有限公司 复合不粘涂料及烹饪器具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170314097A1 (en) * 2016-05-02 2017-11-02 Korea Advanced Institute Of Science And Technology High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same
CN114393341B (zh) * 2022-01-11 2023-08-15 西安理工大学 高熵合金增强铜基耐磨耐蚀涂层及其制备方法
CN116145130A (zh) * 2023-01-09 2023-05-23 北京科技大学 一种采用激光熔覆制备纯铜涂层的方法、基材及贮藏罐

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725708A (en) * 1985-07-17 1988-02-16 Toyota Jidosha Kabushiki Kaisha Method for padding a copper type alloy material upon a base of aluminum type metal using laser beam oscillating transversely to its tracking direction
AU2008200847A1 (en) * 2001-05-31 2008-05-29 Miravant Pharmaceuticals, Inc. Metallotetrapyrrolic photosensitizing agents for use in photodynamic therapy
CN102528025A (zh) * 2012-01-31 2012-07-04 南昌航空大学 一种抗高温氧化的核-壳型铜基合金粉末的制备方法
KR20170124441A (ko) * 2016-05-02 2017-11-10 한국과학기술원 고강도 초내열 고엔트로피 합금기지 복합소재 및 이의 제조방법
CN114644851A (zh) * 2020-12-21 2022-06-21 武汉苏泊尔炊具有限公司 复合不粘涂料及烹饪器具

Also Published As

Publication number Publication date
CN117070936A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
US11850659B2 (en) High entropy alloy powder for laser cladding and application method thereof
CN110344047B (zh) 一种原位合成低压冷喷涂CuNiCoFeCrAl2.8高熵合金涂层的制备方法
CN109763125B (zh) 一种耐高温磨损的高熵合金涂层及其制备工艺、应用
CN108315733B (zh) 一种激光熔覆铝青铜合金梯度涂层所用粉料及制备方法
CN108103494A (zh) 一种新型高熵合金涂层及其制备方法
CN110273092A (zh) 一种CoCrNi颗粒增强镁基复合材料及其制备方法
WO2011079553A1 (zh) 含Al-Zn-Si-Mg-RE-Ti-Ni的热浸镀铸铝合金及其制备方法
CN102383021A (zh) Ni3Al强化粘结相的WC-Co硬质合金及其制备方法
CN111979451B (zh) 一种复合涂层材料、不锈钢表面复合涂层及其制备方法
CN109868392A (zh) 一种铁基非晶合金增强的铝基复合材料及其制备方法
CN107604299B (zh) 一种隔热涂层用的复合材料及其涂层制备方法
CN101786166A (zh) 一种基于粉末冶金的电场原位制备Fe-Cu基复合材料方法
Bhuvaneswari et al. Synthesis and characterization of bioceramics reinforced aluminium matrix composites
CN117070936B (zh) 一种激光熔覆原位颗粒增强铜基耐磨中熵合金涂层
CN114393341A (zh) 高熵合金增强铜基耐磨耐蚀涂层及其制备方法
CN111763904B (zh) 一种高熵合金粉末、高电阻涂层及其制备方法和应用
Singh et al. A comprehensive review of aluminium matrix composite reinforcement and fabrication methodologies
CN101974703A (zh) 一种铜合金及铜合金制品
CN101177771A (zh) 一种多组元热喷涂柔性线材及其制备方法
Zhou et al. Fretting behavior of nano-Al2O3 reinforced copper-matrix composites prepared by coprecipitation
CN110453123A (zh) 制备铝锂合金的方法
CN113199024B (zh) 三元层状化合物、金属基复合材料及其制作方法和原料
CN104372335B (zh) 一种反应等离子熔覆原位合成TiN涂层
CN111455376A (zh) 一种增强45#钢耐腐蚀性的Cr7C3-Mo2NiB2复相陶瓷涂层的制备方法
CN110936680A (zh) 一种用于钛/碳钢双金属复合的中间合金及复合工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant