CN116978778A - 用于3d nand存储器器件的基于cvd的氧化物-金属多结构 - Google Patents

用于3d nand存储器器件的基于cvd的氧化物-金属多结构 Download PDF

Info

Publication number
CN116978778A
CN116978778A CN202310971928.3A CN202310971928A CN116978778A CN 116978778 A CN116978778 A CN 116978778A CN 202310971928 A CN202310971928 A CN 202310971928A CN 116978778 A CN116978778 A CN 116978778A
Authority
CN
China
Prior art keywords
metal layer
oxygen
layer
metal
species
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310971928.3A
Other languages
English (en)
Inventor
S·辛哈罗伊
K·陈
H·M·李
S·卡玛斯
A·B·玛里克
S·冈迪科塔
K·嘉纳基拉曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN116978778A publication Critical patent/CN116978778A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02697Forming conducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels

Abstract

本文描述的实现大体涉及一种用于形成金属层的方法和一种用于在金属层上形成氧化物层的方法,在一个实现中,在种晶层上形成所述金属层,并且所述种晶层有助于所述金属层中的金属以小粒度成核而不影响所述金属层的导电性。可以使用等离子体增强化学气相沉积(PECVD)形成所述金属层,并且氮气可以与前驱物气体一起流入处理腔室中,在另一个实现中,在所述金属层上形成阻挡层,以便防止所述金属层在随后的氧化物层沉积工艺期间氧化,在另一个实现中,在沉积所述氧化物层之前处理所述金属层,以防止所述金属层氧化。

Description

用于3D NAND存储器器件的基于CVD的氧化物-金属多结构
本申请是申请日为2017年6月26日、申请号为“201780040172.3”、发明名称为“用于3D NAND存储器器件的基于CVD的氧化物-金属多结构”的发明专利申请的分案申请。
技术领域
本文描述的实现大体涉及用于形成金属层的方法和用于在金属层上形成氧化物层的方法。本文描述的实现还涉及用于形成氧化物-金属多层结构的方法。
背景技术
计算机存储器器件的设计者一直寻求更小的几何形状和增加的容量而成本较低。为此,现在将存储器单元的部件堆叠在彼此之上以形成三维(3D)单元。一种这样的技术是NAND快闪存储器,NAND快闪存储器可以在存储卡、USB快闪驱动器、固态驱动器和类似的产品中找到,以用于数据存储和传输。在NAND快闪存储器中,由晶体管制成的存储器单元串联地连接,并且可以堆叠成竖直层以形成密集地封装的高容量器件。由于没有移动零件,快闪驱动器使用较少功率,并且比普通的硬盘驱动器更耐用。因此,人们对在增加快闪驱动器的容量的同时减小其大小和成本有极大的兴趣。
为了形成用于存储器单元的3D结构,电荷捕集晶体管可以堆叠到竖直层中。竖直层可以是交替的氧化物层和金属。然而,已知通过化学气相沉积(CVD)工艺沉积的金属层具有大的粒度、高的表面粗糙度和高的拉伸应力,并且在随后的氧化物沉积工艺期间易于氧化。
因此,需要一种形成金属层的改进的方法。
发明内容
本文描述的实现大体涉及用于形成金属层的方法和用于在金属层上形成氧化物层的方法,本文描述的实现还涉及用于形成氧化物-金属多层结构的方法。在一个实现中,方法包括:将基板放入处理腔室中;和在所述基板上形成含金属层。所述在所述基板上形成含金属层包括:将基板温度增加到处理温度;使含金属的前驱物和氮气流入所述处理腔室中,其中所述含金属的前驱物的流率与所述氮气的流率的比率的范围是从10:1至1:3;和通过以高频射频功率和低频射频功率点燃所述含金属的前驱物和所述氮气来在所述处理腔室内形成等离子体。
在另一个实现中,方法包括:将基板放入处理腔室中;在所述基板上形成金属层;用含氮等离子体处理所述金属层的表面;和在所述金属层的处理过的表面上形成氧化物层。
在另一个实现中,方法包括:将基板放入处理腔室中;在所述基板上形成金属层;和在所述金属层上形成氧化物层。所述形成氧化物层包括:使不含氧的前驱物流入处理腔室中,其中由等离子体激发所述不含氧的前驱物以形成不含氧的物种;使含氧气体流入所述处理腔室中,其中由所述等离子体激发所述含氧气体以形成含氧物种;和将所述不含氧的物种结合到所述含氧物种。
附图说明
为了能够详细地理解本公开的上述特征所用方式,上文简要地概述的本公开的更具体的描述可以参考实现进行,实现中的一些在附图中示出。然而,应注意,附图仅示出了本公开的所选择的实现,并且因此不应视为限制本公开的范围,因为本公开可允许其它等效实现。
图1A-1C是根据本文公开的实现的多层结构的示意性横截面图。
图2A-2C示意性地示出了根据本文公开的实现的种晶层和在种晶层上的金属层的形成。
图3示出了根据本文公开的一个实现的用于形成金属层的工艺。
图4示出了根据本文公开的另一个实现的用于形成金属层的工艺。
图5是示出根据本文公开的实现的在金属层形成期间使氮气与含金属的前驱物共流动的效果的图。
图6A-6C示意性地示出了根据本文公开的实现的在金属层上的阻挡层和在阻挡层上的氧化物层的形成。
图7示出了根据本文公开的一个实现的用于处理金属层的表面的工艺。
图8示出了根据本文公开的一个实现的用于形成氧化物层的工艺。
图9A-9E示意性地示出了根据本文公开的实现的图1A中所示的多层结构的形成。
为了促进理解,已尽可能使用相同的附图标记指示各图共有的相同元件。另外,一个实现中的要素可有利地适于在本文所述的其它实现中进行利用。
具体实施方式
本文描述的实现大体涉及一种用于形成金属层的方法和一种用于在金属层上形成氧化物层的方法。在一个实现中,在种晶层上形成金属层,并且种晶层有助于金属层中的金属以小粒度成核而不影响金属层的导电性。可以使用等离子体增强化学气相沉积(PECVD)形成金属层,并且氮气可以与前驱物气体一起流入处理腔室中。在另一个实现中,在金属层上形成阻挡层,以便防止金属层在随后的氧化物层沉积工艺期间氧化。在另一个实现中,在沉积氧化物层之前处理金属层,以防止金属层氧化。
图1A-1C是根据本文公开的实现的多层结构100的示意性横截面图。如图1A所示,多层结构100包括交替的金属层102和氧化物层104。氧化物层104可以是氧化硅层或任何其它合适的氧化物层。金属层102可以是钨层或任何其它合适的金属层。金属层102可以包含以下元素中的一种或多种:钴、钼、钨、钽、钛、钌、铑、铜、铁、锰、钒、铌、铪、锆、钇、铝、锡、铬或镧。在该说明性示例中,沉积第一或底部金属层102,接着是氧化物层104,然后是另一个金属层102,接着是另一个氧化物层104,接着是另一个金属层102,并且然后是另一个氧化物层104。应理解,在实践中还将提供附加层。在一个实现中,多层结构100包括100层交替的金属层102和氧化物层104。此外,底部层可以是氧化物层104(未示出)。或者,底部层可以是金属层102,如图1A所示。
接着,在多层结构100中形成多个通道106(示出两个),如图1B所示。多个通道106可以通过任何合适的方法形成,诸如干法蚀刻。接着,材料108沉积在多个通道106中的每一个中,如图1C所示。材料108可以是任何合适的材料,诸如多晶硅。
通常,使用CVD将金属层沉积在氧化物层上,并且基于CVD的金属层已知具有大粒度、高表面粗糙度、高拉伸应力并在随后的氧化物沉积工艺期间易于氧化。一种减小金属层中的粒度的方法是将金属层沉积在种晶层上。
图2A-2C示意性地示出了根据本文公开的实现的种晶层202和在种晶层202上的金属层204的形成。图2A是基板200的示意性横截面图。基板200可以是任何合适的基板,并且可以包括已经形成在其上的一个或多个层。接着,如图2B所示,在基板200上形成种晶层202。种晶层202可以是氮化钛、氮化钼、氮化钨、非晶硼或非晶硅。在一个实现中,种晶层202为非晶硼层。种晶层202可以通过任何合适的方法沉积,诸如CVD或PECVD。
接着,如图2C所示,在种晶层202上沉积金属层204。金属层204可以是图1A中所示的金属层102。金属层204可以是在合适的电子器件中的金属层。在一个实现中,金属层204是钨。种晶层202使金属层204以最小粒度成核而不影响金属层204的导电性。种晶层202还用作用于将金属层204粘合到基板200或氧化物层(诸如图1A中所示的氧化物层104)的粘合层。在一个实现中,金属层204具有约200埃的厚度并具有小于约30μohm*cm的电阻率。图1A中所示的每个金属层102可以沉积在种晶层(诸如种晶层202)上。为了进一步减小金属层204的粒度,使用图3和4中所示的方法来沉积金属层204。在一些实现中,金属层102或金属层204是含金属层,其可以是金属氮化物、金属硅化物或金属硅氮化物。在一个实现中,金属层102或金属层204是氮化钛或氮化钨。
图3示出了根据本文公开的实现的用于形成金属层的工艺300。工艺300在框302处开始,该框302是将基板放入处理腔室中。基板可以是图2A中所示的基板200。处理腔室可以是任何合适的处理腔室,诸如PECVD处理腔室。将基板加热到约350摄氏度至约450摄氏度的处理温度,诸如约400摄氏度,如框304处所示。可以通过任何合适的加热方法加热基板,诸如通过加热嵌入用于在处理腔室内支撑基板的基板支撑件中的元件。接着,在框306处,将含金属的前驱物和氮气(N2)引入处理腔室中。可以使诸如氢气和/或氩气的附加气体与金属前驱物和氮气一起流入处理腔室中。含金属的前驱物可以是任何合适的含金属的前驱物,诸如六氟化钨。控制氮气的流率以使得在基板上形成的金属层是纯金属(99.9%)而不是金属氮化物。含金属的前驱物的流率与氮气的流率的比率的范围为约10:1至约1:2。在一个实现中,含金属的前驱物的流率与氮气的流率的比率为约3:1。
接着,在框308处,通过以高频射频(HFRF)功率和低频射频(LFRF)功率点燃含金属的前驱物和氮气来在处理腔室内形成等离子体。HFRF功率可以具有约13.56MHz的频率和约0.707W/cm2的功率密度。LFRF功率可以具有范围为从约200kHz至约500kHz的频率(诸如约350kHz)和范围为从约0.071W/cm2至约0.283W/cm2的功率密度。接着,在框310处,在基板上形成金属层。金属层可以是图1A中所示的金属层102或图2C中所示的金属层204。金属层可以是任何合适的金属,诸如钨。具有种晶层(诸如图2C中所示的种晶层202)、使用PECVD形成金属层、使氮气与含金属的前驱物一起在特定的比率范围下共流动、以及使用HFRF功率和LFRF功率两者来形成等离子体的组合使金属层具有平滑表面、最小粒度和最低电阻率。金属层具有小于约30μohm*cm的电阻率,并且金属层的表面粗糙度小于约1nm。在形成金属层的工艺中添加氮气不会产生金属氮化物层。金属层中的氮自由基和/或离子不化学结合到金属,并且氮自由基和/或离子更像金属层中的掺杂剂,这有助于减小金属层的粒度。另外,可以调节氮气流率以控制金属层的应力。
图4示出了根据本文公开的实现的用于形成金属层的工艺400。工艺400在框402处开始,该框402是将基板放置到处理腔室中。基板可以是图2A中所示的基板200。处理腔室可以是任何合适的处理腔室,诸如PECVD处理腔室。将基板加热到约500摄氏度至约600摄氏度的处理温度,诸如约550摄氏度,如框404处所示。可以通过任何合适的加热方法加热基板,诸如通过加热嵌入用于在处理腔室内支撑基板的基板支撑件中的元件。将基板加热到约550摄氏度的益处在于,可以在约550摄氏度下沉积形成在金属层上的后续层,诸如氧化物层。因此,可以省略在沉积金属层和沉积氧化物层之间将基板从约400摄氏度加热到约550摄氏度所用时间。
接着,在框406处,将含金属的前驱物和氮气(N2)引入处理腔室中。可以使诸如氢气和/或氩气的附加气体与金属前驱物和氮气一起流入处理腔室中。含金属的前驱物可以是任何合适的含金属的前驱物,诸如六氟化钨。控制氮气的流率以使得在基板上形成的金属层是纯金属(99.9%)而不是金属氮化物。与在较低温度(诸如约400摄氏度)下沉积金属层相比,在较高温度(诸如约550摄氏度)下,利用较高流率的氮气。含金属的前驱物的流率与氮气的流率的比率的范围为从约5:1至约1:3。在一个实现中,含金属的前驱物的流率与氮气的流率的比率为约2:1。
接着,在框408处,通过以高频射频(HFRF)功率和低频射频(LFRF)功率点燃含金属的前驱物和氮气来在处理腔室内形成等离子体。HFRF功率可以具有约13.56MHz的频率和约0.707W/cm2的功率密度。LFRF功率可以具有范围为从约200kHz至约500kHz的频率(诸如约350kHz)和范围为从约0.071W/cm2至约0.566W/cm2的功率密度。接着,在框410处,在基板上形成金属层。金属层可以是图1A中所示的金属层102或图2C中所示的金属层204。金属层可以是任何合适的金属,诸如钨。具有种晶层(诸如图2C中所示的种晶层202)、使用PECVD形成金属层、使氮气与含金属的前驱物一起在特定的比率范围下共流动、以及使用HFRF功率和LFRF功率两者来形成等离子体的组合使金属层具有平滑表面、最小粒度和最低电阻率。金属层具有小于约30μohm*cm的电阻率,并且金属层的表面粗糙度小于约1nm。在形成金属层的工艺中添加氮气不会产生金属氮化物层。金属层中的氮自由基和/或离子不化学结合到金属,并且氮自由基和/或离子更像金属层中的掺杂剂,这有助于减小金属层的粒度。另外,可以调节氮气流率以控制金属层的应力。在形成金属层期间使氮气与含金属的前驱物共流动对金属层的应力和电阻率的影响如图5所示。
图5是示出根据本文公开的实现的在金属层形成期间使氮气与含金属前驱物共流动的效果的图500。如图5所示,氮气流率的范围为从100标准立方厘米/分钟(sccm)至500sccm,金属层的应力的范围为从压缩(负值)到拉伸(正值),并且金属层的电阻率的范围为从约14μohm*cm至约39μohm*cm。当氮气流率在100sccm与300sccm之间时,金属层的电阻率小于20μohm*cm,并且金属层的应力可以在约-400MPa与约200MPa之间进行调节。
图6A-6C示意性地示出了根据本文公开的实现的在金属层600上的阻挡层602和在阻挡层602上的氧化物层604的形成。如图6A所示,金属层600可以是图1A中所示的金属层102或图2C中所示的金属层204。金属层600可以是在任何合适的电子器件中的金属层。在一个实现中,金属层600是钨并具有范围为从约100埃至约300埃的厚度。
接着,如图6B所示,在金属层600上沉积阻挡层602。阻挡层602可以是氧化物,诸如金属氧化物或高k氧化物。阻挡层602可以是氮化物,诸如金属氮化物或任何过渡金属氮化物。在一个实现中,阻挡层602是氮化钛。在另一个实现中,阻挡层602是氮化硅。阻挡层602可以通过任何合适的方法沉积,诸如原子层沉积(ALD)、CVD或PECVD。阻挡层602可以具有范围为从约5埃至约100埃的厚度,诸如从约20埃至约70埃,例如约50埃。
接着,如图6C所示,在阻挡层602上沉积氧化物层604。氧化物层604可以是图1C中所示的氧化物层104。由于阻挡层602形成在金属层600与氧化物层604之间,金属层600不会被形成在阻挡层602上的氧化物层604氧化。
在另一个实现方式中,在没有在金属层与氧化物层之间形成阻挡层的情况下避免金属层的氧化。图7示出了根据本文公开的一个实现的用于处理金属层的表面的工艺700。工艺700在框702处开始,该框702是将基板放置到处理腔室中。基板可以是图2A中所示的基板200。金属层(诸如图1C中所示的金属层102或图2C中所示的金属层204)可以在处理腔室中或不同腔室中沉积在基板上。处理腔室可以是任何合适的处理腔室,诸如PECVD处理腔室。接着,在框704处,使含氮气体流入处理腔室中,并且点燃含氮气体以形成含氮等离子体。含氮气体可以是任何合适的含氮气体,诸如氮气或氨。
如框706处所示,由含氮等离子体处理金属层的表面。含氮等离子体包括氮物种,诸如氮自由基或离子,并且氮物种可以结合到在金属层的表面上的金属,以将金属层的表面转化成金属氮化物。用于点燃含氮气体的功率和由含氮等离子体处理表面的时间受到控制,因此在金属层的表面从金属转化成金属氮化物的同时,在金属层上没有形成氮化物层。在一个实现中,金属层是钨,并且金属层的表面是氮化钨。
接着,在框708处,在金属层的处理过的表面上形成氧化物层。可以在处理金属层的表面与在金属层的处理过的表面上形成氧化物层之间进行净化工艺。氧化物层可以在处理腔室中或不同腔室中在金属层的处理过的表面上形成。氧化物层可以是图1C中所示的氧化物层104。由于金属层的处理过的表面,金属层不会被形成在其上的氧化物层氧化。
在另一个实现中,修改用于形成氧化物层的方法,以便在金属层上形成氧化物层而不氧化金属层。在这种实现中,在没有在金属层与氧化物层之间形成阻挡层的情况下或在没有处理金属层的表面的情况下避免金属层的氧化。
图8示出了根据本文公开的一个实现的用于形成氧化物层的工艺800。工艺800在框802处开始,该框802是将基板放置到处理腔室中。基板可以是图2A中所示的基板200。金属层(诸如图1C中所示的金属层102或图2C中所示的金属层204)可以在处理腔室中或不同腔室中沉积在基板上。处理腔室可以是任何合适的处理腔室,诸如PECVD处理腔室。接着,在框804处,使一种或多种非反应气体流入处理腔室中。一种或多种非反应气体可以是任何合适的气体,诸如氩气。氢气也可以被认为是非反应的。在一个实现中,使氢气和氩气流入处理腔室中。接着,在框806处,点燃一种或多种非反应气体以形成等离子体。等离子体可以用于去除在金属层上形成的任何原生的氧化物。接着,在框808处,使不含氧的前驱物流入处理腔室中,并且由处理腔室中形成的等离子体来激发不含氧的前驱物。不含氧的前驱物可以是任何合适的不含氧的前驱物,诸如含硅前驱物,例如硅烷。对不含氧的前驱物的激发形成不含氧的物种,诸如自由基或离子,并且不含氧的物种可以漂浮在处理腔室中,在喷头与金属层的表面之间。一些不含氧的物种可以落在金属层的表面上。在一个实现中,可以在金属层的表面上形成单层非晶硅。
接着,在框810处,使含氧气体流入处理腔室中,并且由处理腔室内形成的等离子体来激发含氧气体。在一个实现中,在使不含氧的前驱物流入处理腔室中与使含氧气体流入处理腔室中之间不进行净化工艺。含氧气体可以是任何合适的含氧气体,诸如氧气。对含氧气体的激发形成氧物种,诸如自由基或离子,并且氧物种与漂浮在处理腔室中和/或金属层的表面上的不含氧的物种结合,如框812处所示。将氧物种结合到不含氧的物种在基板上的金属层的表面上形成氧化物层,如框814处所示。氧化物层可以是任何合适的氧化物层,诸如氧化硅层。由于在使含氧气体流入处理腔室中之前使不含氧的前驱物流入处理腔室中,因此含氧气体或物种结合到不含氧的前驱物或物种。因此,金属层不氧化。用于形成氧化物层的改进的方法可以通过PECVD、CVD、ALD或物理气相沉积(PVD)来执行。等离子体(不含氧的前驱物和/或含氧气体)可以原位形成或在远程位置处形成,诸如在远程等离子体源中形成。
图9A-9E示意性地示出了根据本文公开的实现的图1A中所示的多层结构100的形成。图9A是基板900的示意性横截面图。基板900可以是任何合适的基板,并且可以包括已经形成在其上的一个或多个层。接着,如图9B所示,在基板200上形成种晶层902。种晶层902可以是氮化钛、氮化钼、氮化钨、非晶硼或非晶硅。在一个实现中,种晶层902为非晶硼层。种晶层902可以通过任何合适的方法沉积,诸如CVD或PECVD。
接着,如图9C所示,在种晶层902上沉积金属层904。金属层904可以是图1A中所示的金属层102。在一个实现中,金属层904是钨。种晶层902使金属层904以最小粒度成核而不影响金属层904的导电性。种晶层902还用作用于将金属层904粘合到基板900或氧化物层(诸如图1A中所示的氧化物层104)的粘合层。在一个实现中,金属层904具有约200埃的厚度并具有小于约30μohm*cm的电阻率。为了进一步减小金属层904的粒度,使用图3和图4中所示的方法来沉积金属层904。具有种晶层(诸如种晶层902)、使用PECVD形成金属层904、使氮气与含金属的前驱物一起在特定的比率范围下共流动、以及使用HFRF功率和LFRF功率两者来形成等离子体的组合使金属层904具有平滑表面、最小粒度和最低电阻率。
接着,在金属层904上沉积氧化物层906,如图9D所示。在金属层904上沉积氧化物层906之前,可以处理金属层904的表面,以便防止金属层904被氧化物层906氧化。金属层904的表面的处理可以包括使含氮气体流入处理腔室中,并且点燃含氮气体以形成含氮等离子体。含氮气体可以是任何合适的含氮气体,诸如氮气或氨。由含氮等离子体处理金属层904的表面。含氮等离子体包括氮物种,诸如氮自由基或离子,并且氮物种可以结合到在金属层904的表面上的金属,以将金属层904的表面转化成金属氮化物。用于点燃含氮气体的功率和由含氮等离子体处理表面的时间受到控制,因此在金属层904的表面从金属转化成金属氮化物的同时,在金属层904上没有形成氮化物层。在一个实现中,金属层904是钨,并且金属层的表面是氮化钨。
或者,可以在沉积氧化物层906之前在金属层904上形成阻挡层(未示出),以便防止金属层904被氧化物层906氧化。阻挡层可以是氧化物,诸如金属氧化物或高k氧化物。阻挡层可以是氮化物,诸如金属氮化物或任何过渡金属氮化物。在一个实现中,阻挡层是氮化钛。在另一个实现中,阻挡层是氮化硅。阻挡层可以通过任何合适的方法沉积,诸如原子层沉积(ALD)、CVD或PECVD。阻挡层可以具有范围为从约5埃至约100埃的厚度,诸如从约20埃至约70埃,例如约50埃。
在另一个实现中,氧化物层906沉积在金属层904的未处理的表面上,而在金属层904与氧化物层906之间没有形成阻挡层,并且金属层904不被氧化物层906氧化。可以通过首先使一种或多种非反应气体流入处理腔室中来形成氧化物层906。一种或多种非反应气体可以是任何合适的气体,诸如氩气。氢气也可以被认为是非反应的。在一个实现中,使氢气和氩气流入处理腔室中。接着,点燃一种或多种非反应气体以形成等离子体。等离子体可以用于去除在金属层上形成的任何原生的氧化物。接着,使不含氧的前驱物流入处理腔室中,并且由处理腔室中形成的等离子体来激发不含氧的前驱物。不含氧的前驱物可以是任何合适的不含氧的前驱物,诸如含硅前驱物,例如硅烷。对不含氧的前驱物的激发形成不含氧的物种,诸如自由基或离子,并且不含氧的物种可以漂浮在处理腔室中,在喷头与金属层的表面之间。一些不含氧的物种可以落在金属层904的表面上。在一个实现中,可以在金属层904的表面上形成单层非晶硅。
接着,使含氧气体流入处理腔室中,并且由处理腔室内形成的等离子体来激发含氧气体。在一个实现中,在使不含氧的前驱物流入处理腔室中与使含氧气体流入处理腔室中之间不进行净化工艺。含氧气体可以是任何合适的含氧气体,诸如氧气。对含氧气体的激发形成氧物种,诸如自由基或离子,并且氧物种与漂浮在处理腔室中和/或金属层904的表面上的不含氧的物种结合。将氧物种结合到不含氧的物种在基板上的金属层的表面上形成氧化物层906。由于在使含氧气体流入处理腔室中之前使不含氧的前驱物流入处理腔室中,因此使含氧气体或物种结合到不含氧的前驱物或物种。因此,金属层904不氧化。用于在不氧化金属层904的情况下形成氧化物层906的改进的方法可以通过PECVD、CVD、ALD或物理气相沉积(PVD)来执行。等离子体(不含氧的前驱物和/或含氧气体)可以原位形成或在远程位置处形成,诸如在远程等离子体源中形成。
接着,如图9E所示,在氧化物层906上形成另一个种晶层908,并且种晶层908可以与种晶层902相同。在种晶层908上形成另一个金属层910,并且金属层910可以与金属层904相同。金属层910可以通过与形成金属层904相同的方法形成。在金属层910上形成另一个氧化物层912,并且氧化物层912可以与金属层906相同。氧化物层912可以通过与形成氧化物层906相同的方法形成。通过重复图9A-9E中所示的工艺,可以形成包括多对交替的氧化物层和金属层的多层结构。
虽然前述内容针对本公开内容的实现,但是也可在不脱离本公开内容的基本范围的情况下设计本公开内容的其它和进一步实现,并且本公开内容的范围是由随附的权利要求书确定。

Claims (20)

1.一种方法,包括:
将基板放入处理腔室中;以及
在设置在所述基板上的金属层的表面上形成氧化物层,所述形成氧化物层包括:
使不含氧的前驱物流入所述处理腔室中,由等离子体激发所述不含氧的前驱物以形成不含氧的物质;
在形成所述不含氧的物质之后,使含氧气体流入所述处理腔室中,由所述等离子体激发所述含氧气体以形成氧物质;以及
在所述氧物质的形成期间将所述不含氧的物质结合到所述氧物质。
2.如权利要求1所述的方法,进一步包括在使不含氧的前驱物流入所述处理腔室中之前使一种或多种非反应气体流入所述处理腔室中。
3.如权利要求2所述的方法,其中所述一种或多种非反应气体包括氩气或氢气。
4.如权利要求1所述的方法,其中所述不含氧的前驱物是含硅前驱物。
5.如权利要求4所述的方法,其中所述不含氧的前驱物是硅烷。
6.如权利要求1所述的方法,其中所述含氧气体是氧气。
7.如权利要求1所述的方法,其中所述金属层是钨。
8.如权利要求1所述的方法,其中所述氧化物层是氧化硅。
9.一种方法,包括:
将基板放入处理腔室中;以及
在设置在所述基板上的金属层的表面上形成氧化物层,所述形成氧化物层包括:
在所述金属层上形成单层的不含氧的物质;然后
在所述处理腔室中形成氧物质;然后
将所述不含氧的物质结合到所述氧物质。
10.如权利要求9所述的方法,其中所述氧化物层包括氧化硅。
11.如权利要求10所述的方法,其中所述金属层是钨。
12.如权利要求11所述的方法,其中所述单层的不含氧的物质包括单层的非晶硅。
13.如权利要求12所述的方法,其中所述氧物质包括氧自由基或离子。
14.一种方法,包括:
将基板放入处理腔室中,所述基板包括金属层;
从所述金属层去除原生的氧化物;以及
在所述金属层上形成氧化物层,其中所述形成氧化物层包括:
使不含氧的前驱物流入所述处理腔室中,其中由等离子体激发所述不含氧的前驱物以形成不含氧的物质;
在形成所述不含氧的物质之后,使含氧气体流入所述处理腔室中,其中由所述等离子体激发所述含氧气体以形成氧物质;以及
在所述氧物质的形成期间将所述不含氧的物质结合到所述氧物质。
15.如权利要求14所述的方法,其中从所述金属层去除原生的氧化物包括使一种或多种非反应气体流入所述处理腔室中。
16.如权利要求15所述的方法,其中所述一种或多种非反应气体包括氩气或氢气。
17.如权利要求14所述的方法,其中所述不含氧的前驱物是含硅前驱物。
18.如权利要求17所述的方法,其中所述不含氧的前驱物是硅烷。
19.如权利要求17所述的方法,其中所述含氧气体是氧气。
20.如权利要求19所述的方法,其中所述金属层是钨。
CN202310971928.3A 2016-06-28 2017-06-26 用于3d nand存储器器件的基于cvd的氧化物-金属多结构 Pending CN116978778A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662355611P 2016-06-28 2016-06-28
US62/355,611 2016-06-28
CN201780040172.3A CN109417022B (zh) 2016-06-28 2017-06-26 用于3d nand存储器器件的基于cvd的氧化物-金属多结构
PCT/US2017/039317 WO2018005376A1 (en) 2016-06-28 2017-06-26 Cvd based oxide-metal multi structure for 3d nand memory devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780040172.3A Division CN109417022B (zh) 2016-06-28 2017-06-26 用于3d nand存储器器件的基于cvd的氧化物-金属多结构

Publications (1)

Publication Number Publication Date
CN116978778A true CN116978778A (zh) 2023-10-31

Family

ID=60677786

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310971928.3A Pending CN116978778A (zh) 2016-06-28 2017-06-26 用于3d nand存储器器件的基于cvd的氧化物-金属多结构
CN201780040172.3A Active CN109417022B (zh) 2016-06-28 2017-06-26 用于3d nand存储器器件的基于cvd的氧化物-金属多结构

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201780040172.3A Active CN109417022B (zh) 2016-06-28 2017-06-26 用于3d nand存储器器件的基于cvd的氧化物-金属多结构

Country Status (4)

Country Link
US (2) US10410869B2 (zh)
KR (2) KR102207764B1 (zh)
CN (2) CN116978778A (zh)
WO (1) WO2018005376A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132904A (ja) * 2019-02-13 2020-08-31 東京エレクトロン株式会社 基板処理方法及び基板処理装置
US11189635B2 (en) 2019-04-01 2021-11-30 Applied Materials, Inc. 3D-NAND mold
US11638377B2 (en) 2019-09-13 2023-04-25 Applied Materials, Inc. Self-aligned select gate cut for 3D NAND
US11587796B2 (en) 2020-01-23 2023-02-21 Applied Materials, Inc. 3D-NAND memory cell structure
US11930637B2 (en) 2020-06-19 2024-03-12 Applied Materials, Inc. Confined charge trap layer

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122087A (ja) * 1998-10-13 2000-04-28 Sony Corp 電気光学装置の製造方法及び電気光学装置用の駆動基板の製造方法
JP2001284467A (ja) * 2000-03-30 2001-10-12 Mitsubishi Electric Corp 半導体装置およびその製造方法
US7005372B2 (en) * 2003-01-21 2006-02-28 Novellus Systems, Inc. Deposition of tungsten nitride
KR100431744B1 (ko) * 2001-12-29 2004-05-17 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조방법
US20050221000A1 (en) * 2004-03-31 2005-10-06 Tokyo Electron Limited Method of forming a metal layer
JP4595702B2 (ja) * 2004-07-15 2010-12-08 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
JP2006261434A (ja) 2005-03-17 2006-09-28 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude シリコン酸化膜の形成方法
JP2007129119A (ja) * 2005-11-07 2007-05-24 Seiko Epson Corp プラズマcvd法によるシリコン酸化膜の形成方法
JP4896041B2 (ja) * 2006-01-17 2012-03-14 株式会社日立国際電気 半導体装置の製造方法
US8372697B2 (en) * 2006-05-08 2013-02-12 University Of South Carolina Digital oxide deposition of SiO2 layers on wafers
US7824743B2 (en) * 2007-09-28 2010-11-02 Applied Materials, Inc. Deposition processes for titanium nitride barrier and aluminum
US8304284B2 (en) * 2008-04-11 2012-11-06 Sandisk 3D Llc Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element, and methods of forming the same
CA2730229C (en) * 2008-07-07 2017-02-14 John D. Whitaker Property modulated materials and methods of making the same
JP2010147267A (ja) * 2008-12-19 2010-07-01 Renesas Technology Corp 半導体集積回路装置および半導体集積回路装置の製造方法
JP5813303B2 (ja) * 2009-11-20 2015-11-17 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
US20110256734A1 (en) * 2010-04-15 2011-10-20 Hausmann Dennis M Silicon nitride films and methods
US9466476B2 (en) * 2010-12-27 2016-10-11 Tokyo Electron Limited Film-forming method for forming silicon oxide film on tungsten film or tungsten oxide film
JP2012138500A (ja) * 2010-12-27 2012-07-19 Tokyo Electron Ltd タングステン膜又は酸化タングステン膜上への酸化シリコン膜の成膜方法及び成膜装置
JP6800015B2 (ja) * 2014-01-21 2020-12-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 3dフラッシュメモリ応用のための誘電体金属スタック
US10354860B2 (en) * 2015-01-29 2019-07-16 Versum Materials Us, Llc Method and precursors for manufacturing 3D devices
CN106206447A (zh) 2015-05-05 2016-12-07 中芯国际集成电路制造(上海)有限公司 3d nand器件的形成方法
US10868033B2 (en) 2017-11-16 2020-12-15 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and fabricating methods thereof
JP7328344B2 (ja) 2019-04-30 2023-08-16 長江存儲科技有限責任公司 三次元メモリデバイス

Also Published As

Publication number Publication date
CN109417022B (zh) 2023-08-11
KR102207764B1 (ko) 2021-01-26
CN109417022A (zh) 2019-03-01
WO2018005376A1 (en) 2018-01-04
KR20190011833A (ko) 2019-02-07
US20170372953A1 (en) 2017-12-28
US20190393042A1 (en) 2019-12-26
KR20210010650A (ko) 2021-01-27
KR102337153B1 (ko) 2021-12-07
US11817320B2 (en) 2023-11-14
US10410869B2 (en) 2019-09-10

Similar Documents

Publication Publication Date Title
CN109417022B (zh) 用于3d nand存储器器件的基于cvd的氧化物-金属多结构
KR102565626B1 (ko) 루테늄 도핑에 의한 증진된 코발트 내응집성 및 갭 충전 성능
CN103681285B (zh) 包括无氟钨阻挡层的半导体器件及其制造方法
US9111749B2 (en) Silane or borane treatment of metal thin films
JP5210482B2 (ja) 化学吸着技術を用いるホウ化物バリア層の形成
TWI333234B (en) Integration of ald/cvd barriers with porous low k materials
TWI488990B (zh) 使用鋁烴化合物之金屬碳化物膜的原子層沈積
JP7326475B2 (ja) 非金属表面への選択的堆積
KR101019875B1 (ko) 나노결정 형성
US10727119B2 (en) Process integration approach of selective tungsten via fill
CN103329259A (zh) 氮化硅与氮氧化硅的等离子体处理
US9981286B2 (en) Selective formation of metal silicides
US7253108B2 (en) Process for forming a thin film of TiSiN, in particular for phase change memory devices
TW201036065A (en) Method of forming multi metal layers thin film on wafer
KR100449782B1 (ko) 원자층 적층 방법과 이를 이용한 박막 적층 방법 및금속층 적층 방법
TW201117295A (en) Method and apparatus for manufacturing semiconductor apparatus
TWI373809B (en) Integrated substrate processing in a vacuum processing tool
JP7211969B2 (ja) 3d nandに適用するための低誘電率酸化物および低抵抗のopスタック
CN104766792A (zh) 具有改善粘附性能和填充性能的钨层沉积方法
US10879177B2 (en) PVD deposition and anneal of multi-layer metal-dielectric film
Park et al. The properties of Ru films deposited by remote plasma atomic layer deposition on Ar plasma‐treated SiO2
CN116917534A (zh) 选择性沉积的表面处理
JP2006169575A (ja) 半導体装置の製造方法
JP5372075B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination