CN116854793A - AtWRKY45基因在调控植物螯合素的合成与植物镉胁迫耐受性中的应用 - Google Patents

AtWRKY45基因在调控植物螯合素的合成与植物镉胁迫耐受性中的应用 Download PDF

Info

Publication number
CN116854793A
CN116854793A CN202310707042.8A CN202310707042A CN116854793A CN 116854793 A CN116854793 A CN 116854793A CN 202310707042 A CN202310707042 A CN 202310707042A CN 116854793 A CN116854793 A CN 116854793A
Authority
CN
China
Prior art keywords
atwrky45
gene
cadmium
plants
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310707042.8A
Other languages
English (en)
Other versions
CN116854793B (zh
Inventor
王金祥
李方剑
柳燕
邓雅茹
吴丽霞
吕辉雄
李铁梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN202310707042.8A priority Critical patent/CN116854793B/zh
Publication of CN116854793A publication Critical patent/CN116854793A/zh
Application granted granted Critical
Publication of CN116854793B publication Critical patent/CN116854793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8251Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了AtWRKY45基因在调控植物螯合素的合成与植物镉胁迫耐受性中的应用。本发明研究发现了受镉胁迫诱导表达的AtWRKY45基因,拟南芥转录因子AtWRKY45通过正向调控植物螯合素合成来增加植物对镉胁迫的耐受性。研究显示AtWRKY45基因可快速响应镉胁迫,3小时就被诱导,在拟南芥中过量表达,能增加拟南芥对于镉胁迫的耐受性;而敲除AtWRKY45基因的突变体wrky45对镉胁迫更敏感。此外,超量表达AtWRKY45能提高植物GSH、PCs含量,参与GSH‑PCs介导的重金属Cd解毒途径,表明WRKY45通过PCs合成途径正向调节Cd耐受性,能应用于耐镉农作物的培育和镉污染环境的治理。

Description

AtWRKY45基因在调控植物螯合素的合成与植物镉胁迫耐受性 中的应用
技术领域
本发明属于基因工程技术领域。更具体地,涉及AtWRKY45基因在调控植物螯合素的合成与植物镉胁迫耐受性中的应用。
背景技术
土壤镉(Cd)污染是一个全球性的环境问题,其毒性高,容易通过食物链传播。在过量的Cd暴露下,植物表现出生长受限、光合作用减慢、呼吸作用降低、叶片黄化、抑制根生长、增加活性氧(ROS)的合成,甚至死亡。植物已经进化出各种策略来抵抗Cd胁迫,这些策略包括减少对Cd的吸收、积累、运输,改变镉在地上地下部的分配,以及增加合成谷光甘肽(GSH)和植物螯合素(PC)钝化镉。其主要有两种策略来缓解镉胁迫,进行“解毒”:第一种为排除策略,即减少从土壤中吸收Cd,避免Cd进入植物或排出多余的Cd(Mills et al.,2005;Morel et al.,2009);第二种为耐受策略,该策略将Cd螯合在细胞质中,并将Cd隔离在液泡中(Verbroggen et al.,2009)。而植物螯合素(PC)的络合作用是这些机制中的重要组成部分。植物螯合素合成酶1(PCS1)和植物螯合素合成酶2(PCS2)催化PC的合成,通过GSH-PCs途径介导重金属解毒。
WRKY转录因子是植物所特有的基因家族之一,调控其适应生物和非生物逆境。WRKY家族成员几乎参与了植物独特的各种生理机制的调节,包括病原体防御、衰老、生长和发育等。尽管WRKY蛋白的DNA结合域具有很强的保守性,但是WRKY蛋白的整体结构高度分歧,可以分为不同的组,从而反映了它们的不同生理功能。在拟南芥基因组中有100多个成员代表,其对应的功能应用完全不同。如有研究显示发现,WRKY13基因作用于PDR8(特异性Cd离子外排泵)的上游正调控Cd耐受性;WRKY33基因调控PAD3与ATL31基因,可能参与调控拟南芥对外源Cd吸收的抑制,或参与调控Cd的排出,以调节拟南芥对Cd胁迫的耐受,是不参与GSH-PCs介导的重金属解毒途径的调控,同时也不依赖Pb解毒途径和Fe平衡调解途径的。可见,现有技术中主要依赖第一种缓解镉胁迫策略,目前还未见有参与GSH-PCs介导的重金属解毒途径的来调节植物对镉胁迫的耐受性。
发明内容
本发明要解决的技术问题是克服现有植物对镉胁迫的耐受性调节的不足,提供拟南芥AtWRKY45基因在调控植物螯合素的合成与植物镉胁迫耐受性中的应用。
本发明的目的是提供AtWRKY45基因在正调控植物镉耐受性中的应用。
本发明另一目的是提供一种在镉胁迫下提高植物谷光甘肽和植物螯合素含量的方法。
本发明又一目的是提供一种改变植物镉胁迫耐受性的方法。
本发明再一目的是提供一种提高植物镉胁迫耐受性的制剂。
本发明上述目的通过以下技术方案实现:
本发明研究发现一个受镉胁迫诱导表达的AtWRKY45基因,拟南芥转录因子AtWRKY45通过正向调控植物螯合素合成来增加植物对镉胁迫的耐受性。本发明利用转基因技术创制过量表达AtWRKY45基因的拟南芥材料,发现过量表达AtWRKY45基因的拟南芥材料WRKY45-OX-15与哥伦比亚野生型拟南芥(Col-0)相比,在镉毒胁迫下,主根显著增加,并且鲜重和叶绿素含量显著增加,能够促进植株生长。相反在镉毒胁迫下,T-DNA插入突变体wrky45相对于野生型主根显著变短,并且鲜重和叶绿素含量显著降低。进一步研究发现在镉胁迫下,相比于野生型,超量表达WRKY45可以显著增加拟南芥中的谷光甘肽(GSH)和植物螯合素(PCs)含量,而在突变体wrky45中PCS含量显著降低。综上,显示转录因子WRKY45通过正向调控植物螯合素合成来增加植物对镉胁迫的耐受性。
因此,本发明保护AtWRKY45基因的以下应用:
AtWRKY45基因在正调控植物镉耐受性的应用。
AtWRKY45基因在正向调控植物螯合素的合成并提高植物对镉胁迫的耐受性的中应用。
AtWRKY45基因在镉胁迫下促进植物生长中的应用。
AtWRKY45基因在制备镉胁迫下促进植物生长的产品中的应用。
AtWRKY45基因在构建耐镉胁迫的转基因材料中的应用。
AtWRKY45基因在植物耐镉胁迫育种中的应用。
AtWRKY45基因在镉胁迫下提高植物谷光甘肽和植物螯合素含量中的应用。
AtWRKY45基因在制备在镉胁迫下提高植物谷光甘肽和植物螯合素含量的产品中的应用。
进一步地,所述AtWRKY45基因的CDS序列如SEQ ID NO:1所示,AtWRKY45基因的编码蛋白氨基酸序列如SEQ ID NO:2所示,AtWRKY45基因组核苷酸序列如SEQ ID NO.3所示,AtWRKY45转录本核苷酸序列如SEQ ID NO.4所示。
本发明还提供促进AtWRKY45基因表达的制剂在镉胁迫下促进植物生长或在制备促进植物生长的产品、在镉胁迫下提高GSH、PCs含量或在制备提高GSH、PCs含量的产品中的应用。
优选地,此处所述促进AtWRKY45基因表达的制剂包括但不限于酶激活剂、化合物促进剂、质粒等。
本发明还提供一种在镉胁迫下提高植物GSH、PCs含量的方法,通过在植物中过表达AtWRKY45基因或将促进AtWRKY45基因表达的制剂转入植物体内,以此提高植物GSH、PCs含量。
本发明还提供一种改变植物镉胁迫耐受性的方法,通过在植物中过表达或抑制表达AtWRKY45基因,以此改变植物镉胁迫耐受性。
优选地,通过过表达植物AtWRKY45基因提高植物镉胁迫耐受性;通过抑制表达植物AtWRKY45基因,增加植物对于镉胁迫的敏感性。
优选地,所述植物为拟南芥,由于拟南芥属于模式植物,同时也可以应用于大豆、玉米、水稻以及蔬菜等植物中。
本发明还提供一种提高植物镉胁迫耐受性的制剂,含AtWRKY45基因的表达促进剂或表达激活剂。
本发明具有以下有益效果:
本发明公开了一种与镉胁迫相关的WRKY家族基因AtWRKY45在植物适应镉胁迫中的应用。AtWRKY45基因的核苷酸序列如SEQ ID NO.1所示,AtWRKY45基因可快速响应镉胁迫,3小时就被诱导;在拟南芥中过量表达AtWRKY45,增加了拟南芥对于镉胁迫的耐受性;在Cd胁迫下,超量表达植株表现出更强的镉耐受性,且植株的初生根长、鲜重(FW)和叶绿素Ⅱ含量显著增加,能够在镉胁迫下促进植物生长;而基因敲除突变体wrky45对镉胁迫的敏感性增加。此外,与野生型相比,wrky45突变体的NPT和PCs含量在Cd胁迫下显著降低,而wrky45-OX-15突变体的NPT和PCs含量则显著高于野生型。表明WRKY45通过PCs合成途径正向调节Cd耐受性,可进一步应用耐镉农作物的培育和镉污染环境的治理。
附图说明
图1为WRKY45在拟南芥中的表达模式(A为拟南芥叶片;B为拟南芥根系,数据表示平均值±标准误(n=4),四个独立的实验结果,误差线表示标准误)。
图2为过表达和基因突变WRKY45对拟南芥转基因植株的的影响(A为WRKY45功能突变缺失导致对Cd胁迫敏感的表型,图中标尺为1厘米;B为不同植株的主根长度;C为鲜重;D为叶绿素Ⅱ含量;Col-0为哥伦比亚野生型拟南芥,WRKY45-OX-15为WRKY45超量表达株系,wrky45为WRKY45突变体株系;数据为平均值±SE(n=4);不同小写字母的柱状图差异显著,P<0.05(Tukey检验))。
图3为WRKY45促进NPT和PCs的产生(A为WT(Col-0)、wrky45突变体和WRKY45-OX-15植株中非蛋白硫醇肽(NPT)含量;B为总谷胱甘肽(GSH/GSSG)含量;C为植物螯合素(PCs)含量;数据表示均数±标准误(n=4),不同小写字母的柱形差异显著,P<0.05(Tukey检验))。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1AtWRKY45在镉胁迫下的表达模式
(1)定量PCR引物设计
从网站下载AtWRKY45基因组序列(核苷酸序列如SEQ ID NO.3所示)、AtWRKY45转录本序列(核苷酸序列如SEQ ID NO.4所示)、AtWRKY45 CDS序列(核苷酸序列如SEQ ID NO:1所示)、AtWRKY45的编码蛋白(氨基酸序列如SEQ ID NO:2所示);并根据DNA序列设计并合成其特异的定量扩增引物:
AtWRKY45_qF:TGCACAGAAGAAGGATGCAG;
AtWRKY45_qR:TGGTATGTCGTCACCACCAC。
(2)拟南芥材料的种植和镉处理
a、种子消毒:将成熟、饱满、干燥的拟南芥野生型(Col-0)种子放在1.5mL离心管中,加入75%的酒精,旋转涡旋消毒5分钟,离心去除酒精;然后继续加入95%酒精上下颠倒,充分浸润种子,离心去除酒精,在超净工作台干燥。
b、层积催芽:将消毒后的种子撒入1/2MS培养基,四摄氏度层积处理两天,然后放入在22℃条件下,光强为100μmol-2s-1,光照周期为16h/8h光照培养中培养。
c、移苗:5天后选择正常、长势一致的幼苗移栽至水培系统生长,周换一次营养液,每3天调一次pH。
d、处理:两周后进行处理:镉胁迫(Cd2+:20μM)、正常(CK:d2+:0μM)。
e、采样:对处理0、1、3、6、12、24小时的根、叶采样,液氮冷冻,-80℃保存。
(3)总RNA的提取
参照TRIzo1一步法分离总RNA。取0.2g样品放入预冷的研钵中磨成粉末状,转至1.5mL离心管,加入1mL TRIzo1提取液,剧烈震荡混匀,室温静止5分钟;加入0.2mL氯仿,大力摇动,室温静止2~5分钟,4℃下12000rpm离心15分钟;取上清转入新管,加入0.5mL异丙醇,室温放置10分钟,4℃下12000rpm离心5分钟,倒掉乙醇,风干沉淀,加入DEPC水溶液;最后测其OD值,来确定RNA的纯度和浓度。
(4)实时荧光定量PCR样品的制备及分析
用DNaseI处理总RNA以移除基因组DNA的污染,按逆转录酶说明书将RNA反转成第一条链。将所得第一链稀释10倍作为定量PCR反应模板。将适量cDNA原液做梯度稀释为标准曲线的模板。反应体系及反应条件分别见表1和表2。
表1定量PCR反应体系(总体积20μL)
表2定量PCR反应条件
以拟南芥看家基因ACTIN2(AT3G18780)为参照基因。用Rotor-Gene的Real-TimeAnalysis Software 6.0计算每个样品的表达量。相对表达量为目的基因的表达量与看家基因(ACTIN2)叶片和根中表达量的比值。
(4)实验结果
AtWRKY45在镉胁迫下的表达模式如图1所示,表明AtWRKY45基因不管在拟南芥叶部(图1A),还是在根部(图1B),在镉处理下被诱导表达。
实施例2AtWRKY45功能分析实验
(1)实验方法
a、转基因材料:本实施例采用的wrky45突变体和过表达材料WRKY45-OX-15,由西双版纳热带植物园热带植物资源与可持续利用重点实验室陈利钢研究员提供(Chen etal.,2017)。
b、种子消毒:将成熟、饱满、干燥的拟南芥野生型(Col-0),wrky45突变体,WRKY45超量表达株系WRKY45-OX-15的种子放在1.5mL离心管中,加入75%的酒精,旋转涡旋消毒5分钟,离心去除酒精;然后继续加入95%酒精上下颠倒,充分浸润种子,离心去除酒精,在超净工作台干燥。
c、层积催芽:将消毒后的种子撒入1/2MS培养基,四摄氏度层积处理两天,然后放入在22℃条件下,光强为100μmol-2s-1,光照周期为16h/8h光照培养中培养。
d、移苗、处理:2天后选择正常、长势一致的幼苗移栽到含0、50、75μM氯化镉的1/2MS培养基中。然后放入在22℃条件下,光强为100μmol-2s-1,光照周期为16h/8h光照培养中培养。
e、采样、测量:对处理10天后的样品进行拍照,采样,测量叶绿素含量和鲜重。使用ImageJ软件测量样品的主根长。
(2)实验结果
镉胁迫对超量表达WRKY45-OX-15和突变体wrky45转基因拟南芥株系的根系、鲜重和叶绿素含量的影响结果如图2所示,显示在对照1/2MS培养基上,WT、突变体和过表达植株的生长无显著差异。然而,在Cd胁迫下,超量表达植株比WT表现出更强的镉耐受性,而突变植株比WT对镉更敏感(图2A)。与WT植株相比,过表达植株的初生根长、鲜重(FW)和叶绿素Ⅱ含量显著增加,而突变体则显著降低(图2B-D)。综上,表明WRKY45功能缺失会导致拟南芥对镉的耐受性降低,而WRKY45过表达会增强对镉的耐受性。这些结果表明WRKY45正调控镉耐受性。
实施例3AtWRKY45对植物螯合素(PCs)合成的影响
(1)拟南芥材料的种植和镉处理
a、转基因材料:本实施例采用的wrky45突变体和过表达材料WRKY45-OX-15,由西双版纳热带植物园热带植物资源与可持续利用重点实验室提供。
b、种子消毒:将成熟、饱满、干燥的拟南芥野生型(Col-0),wrky45突变体,WRKY45超量表达株系WRKY45-OX-15种子放在1.5mL离心管中,加入75%的酒精,旋转涡旋消毒5分钟,离心去除酒精;然后继续加入95%酒精上下颠倒,充分浸润种子,离心去除酒精,在超净工作台干燥。
c、层积催芽:将消毒后的种子撒入1/2MS培养基,四摄氏度层积处理两天,然后放入在22℃条件下,光强为100μmol-2s-1,光照周期为16h/8h光照培养中培养。
c、移苗:5天后选择正常、长势一致的幼苗移栽至水培系统生长,周换一次营养液,每3天调一次pH。
d、处理:两周后进行处理:镉胁迫(Cd2+:20μM)、正常(CK:Cd2+:0μM)。
e、采样:对处理24小时的根和叶采样,液氮冷冻,-80℃保存。
(2)NPT、GSH和PCs的测定
所有提取步骤均在4℃或以下进行,提取介质与鲜重的比例为1mL:100mg的样品在液氮中研磨,并在1毫升0.2N盐酸中提取。将匀浆转移到离心试管中,在4℃下16000g离心10分钟。上清液(0.5mL)在0.2M NaHPO4(pH 5.6)的存在下,用约0.4mL0.2M NaOH中和,中和酸萃取物的最终pH<5.0,最终得到各样品提取物备用。
谷胱甘肽(GSH)的测定采用Tietze(1969)和Noctor&Foyer(1998)提出的循环法进行。具体为:依赖于5,5-二硫代(2-硝基-苯甲酸)(DTNB,Ellman试剂)的GR还原,在412nm处监测。每次新鲜制备谷胱甘肽还原酶(GR),将(NH4)2SO4悬浮液离心后,再悬浮至20U/mL,加入0.2M磷酸二氢钠(pH 7.5)和10mM EDTA。
为了测定总谷胱甘肽浓度,将三份等量的10μL中和提取物(即为各样品提取物)加入平板孔中,其中含有0.1mL0.2M磷酸二氢钠(pH 7.5),10mM EDTA,10μL 10mM NADPH,10μL12mM DTNB和60μL水。反应开始前加入10μLGR。摇动自动混合后5min,测量A412的数值。
将0.2mL中和提取物与1μL,2-乙烯基吡啶(VPD)在室温下孵育30min后,用同样的原理测定氧化谷胱甘肽(GSSG)。衍生化后的溶液经两次离心除去多余的VPD。以GSH为标准,将中和酸提取物中的总非蛋白硫醇测定为DTNB反应性硫醇。
总GSH分析,每孔包含0.1毫升0.2M磷酸二氢钠(pH 7.5),10mM EDTA,10μL 12mMDTNB和90μL提取物。标准品为0、10、20、50nmol GSH(总体积:0.2mL)。最后将非蛋白硫醇肽(NPT)化合物的量减去GSH的量即可计算出PCs的浓度。
(3)实验结果
测定如图3所示,未经过Cd处理条件下,野生型、wrky45突变体和WRKY45-15-OX株系之间的NPT和PCs含量没有显著差异。但在Cd胁迫下,与野生型相比,wrky45突变体的NPT和PCs含量显著降低,而WRKY45-OX-15的NPT和PCs含量与WT株相比显著增加(图3A、3C)。于野生型相比,wrky45突变体的GSH含量显著降低,而WRKY45-OX-15植株的GSH含量升高(图3B)。这些结果表明,WRKY45通过PCs合成途径正向调控Cd耐受性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.如SEQ ID NO.1所示AtWRKY45基因在正向调控植物螯合素的合成并提高植物对镉胁迫耐受性中的应用。
2.如SEQ ID NO.1所示AtWRKY45基因在镉胁迫下促进植物生长或在制备镉胁迫下促进植物生长的产品中的应用。
3.如SEQ ID NO.1所示AtWRKY45基因在构建耐镉胁迫的转基因材料中的应用。
4.如SEQ ID NO.1所示AtWRKY45基因在植物耐镉胁迫育种中的应用。
5.如SEQ ID NO.1所示AtWRKY45基因在镉胁迫下提高植物谷光甘肽和植物螯合素含量或在制备在镉胁迫下提高植物谷光甘肽和植物螯合素含量的产品中的应用。
6.促进AtWRKY45基因表达的制剂在镉胁迫下促进植物生长或在制备促进植物生长的产品中的应用。
7.促进AtWRKY45基因表达的制剂在镉胁迫下提高谷光甘肽和植物螯合素含量或在制备提高谷光甘肽和植物螯合素含量的产品中的应用。
8.一种在镉胁迫下提高植物谷光甘肽和植物螯合素含量的方法,其特征在于,通过在植物中过表达AtWRKY45基因或将促进AtWRKY45基因表达的制剂转入植物体内,以此提高植物谷光甘肽和植物螯合素含量。
9.一种改变植物镉胁迫耐受性的方法,其特征在于,通过在植物中过表达或抑制表达AtWRKY45基因,以此改变植物镉胁迫耐受性。
10.一种提高植物镉胁迫耐受性的制剂,其特征在于,含AtWRKY45基因的表达促进剂或表达激活剂。
CN202310707042.8A 2023-06-14 2023-06-14 AtWRKY45基因在调控植物螯合素的合成与植物镉胁迫耐受性中的应用 Active CN116854793B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310707042.8A CN116854793B (zh) 2023-06-14 2023-06-14 AtWRKY45基因在调控植物螯合素的合成与植物镉胁迫耐受性中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310707042.8A CN116854793B (zh) 2023-06-14 2023-06-14 AtWRKY45基因在调控植物螯合素的合成与植物镉胁迫耐受性中的应用

Publications (2)

Publication Number Publication Date
CN116854793A true CN116854793A (zh) 2023-10-10
CN116854793B CN116854793B (zh) 2024-08-23

Family

ID=88225915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310707042.8A Active CN116854793B (zh) 2023-06-14 2023-06-14 AtWRKY45基因在调控植物螯合素的合成与植物镉胁迫耐受性中的应用

Country Status (1)

Country Link
CN (1) CN116854793B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030046723A1 (en) * 1999-03-23 2003-03-06 Jacqueline Heard Transgenic plants comprising polynucleotides encoding transcription factors that confer disease tolerance
US20120137382A1 (en) * 1998-09-22 2012-05-31 Mendel Biotechnology, Inc. Stress tolerance in plants
CN102558321A (zh) * 2010-12-28 2012-07-11 中国农业大学 植物耐低磷胁迫相关的蛋白AtLPT4及其编码基因与应用
AR100805A2 (es) * 2005-03-30 2016-11-02 Toyo Boseki Método para aumentar la expresión de los genes de defensa contra el estrés
CN107177599A (zh) * 2017-05-26 2017-09-19 合肥工业大学 一种增强植物对镉毒害的耐受性并降低植物镉含量的编码基因与应用
CA2975486A1 (en) * 2017-08-04 2019-02-04 Rutgers, The State University Of New Jersey Compositions and methods comprising endophytic bacterium for application to target plants to increase plant growth, and increase resistance to abiotic and biotic stressors
CN110205332A (zh) * 2019-06-26 2019-09-06 合肥工业大学 一种增强植物对镉毒害的耐受性并降低植物镉含量的编码基因及应用
US20200340006A1 (en) * 2019-03-26 2020-10-29 University Of North Texas Recombinant wrky polynucleotides, wrky modified plants and uses thereof
CN112646010A (zh) * 2020-12-31 2021-04-13 浙江大学 OsWRKY12及其在水稻磷高效育种中的应用
CN113046362A (zh) * 2021-03-17 2021-06-29 浙江中医药大学 提高镉抗性镉含量减轻镉胁迫dna损伤的基因及其用途
CN113502292A (zh) * 2021-06-05 2021-10-15 温州大学 一种紫花苜蓿MsWRKY19基因及其在铬胁迫环境中的应用
CN116515856A (zh) * 2023-04-26 2023-08-01 华南农业大学 GmRALF2蛋白及其编码基因在缓解重金属镉对植物毒害中的应用
US20230276801A1 (en) * 2020-07-27 2023-09-07 Universidad Politecnica De Madrid Methods and compositions to improve plant health and protection

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120137382A1 (en) * 1998-09-22 2012-05-31 Mendel Biotechnology, Inc. Stress tolerance in plants
US20030046723A1 (en) * 1999-03-23 2003-03-06 Jacqueline Heard Transgenic plants comprising polynucleotides encoding transcription factors that confer disease tolerance
AR100805A2 (es) * 2005-03-30 2016-11-02 Toyo Boseki Método para aumentar la expresión de los genes de defensa contra el estrés
CN102558321A (zh) * 2010-12-28 2012-07-11 中国农业大学 植物耐低磷胁迫相关的蛋白AtLPT4及其编码基因与应用
CN107177599A (zh) * 2017-05-26 2017-09-19 合肥工业大学 一种增强植物对镉毒害的耐受性并降低植物镉含量的编码基因与应用
CA2975486A1 (en) * 2017-08-04 2019-02-04 Rutgers, The State University Of New Jersey Compositions and methods comprising endophytic bacterium for application to target plants to increase plant growth, and increase resistance to abiotic and biotic stressors
US20200340006A1 (en) * 2019-03-26 2020-10-29 University Of North Texas Recombinant wrky polynucleotides, wrky modified plants and uses thereof
CN110205332A (zh) * 2019-06-26 2019-09-06 合肥工业大学 一种增强植物对镉毒害的耐受性并降低植物镉含量的编码基因及应用
US20230276801A1 (en) * 2020-07-27 2023-09-07 Universidad Politecnica De Madrid Methods and compositions to improve plant health and protection
CN112646010A (zh) * 2020-12-31 2021-04-13 浙江大学 OsWRKY12及其在水稻磷高效育种中的应用
CN113046362A (zh) * 2021-03-17 2021-06-29 浙江中医药大学 提高镉抗性镉含量减轻镉胁迫dna损伤的基因及其用途
CN113502292A (zh) * 2021-06-05 2021-10-15 温州大学 一种紫花苜蓿MsWRKY19基因及其在铬胁迫环境中的应用
CN116515856A (zh) * 2023-04-26 2023-08-01 华南农业大学 GmRALF2蛋白及其编码基因在缓解重金属镉对植物毒害中的应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FANGJIAN LI 等: "Arabidopsis transcription factor WRKY45 confers cadmium tolerance via activating PCS1 and PCS2 expression", 《JOURNAL OF HAZARDOUS MATERIALS》, vol. 15, no. 460, 6 September 2023 (2023-09-06) *
关亚丽等编著: "《植物基因克隆的方法与应用实践》", 30 June 2009, 中国科学技术出版社, pages: 139 *
李春俭主编: "《高级植物营养学》", 31 January 2015, 中国农业大学出版社, pages: 311 *
王慧: "拟南芥WRKY45转录因子参与响应低磷胁迫的实验证据", 《中国博士学位论文全文数据库基础科学辑》, no. 8, 15 August 2014 (2014-08-15), pages 006 - 63 *
王金祥等: "WRKY转录因子调控植物养分吸收利用及重金属解毒的研究进展", 《植物营养与肥料学报》, vol. 29, no. 10, 31 October 2023 (2023-10-31), pages 1932 - 1943 *
贺琳: "《NAC转录因子调控植物抗逆反应的分子机理》", 30 November 2021, 哈尔滨工业大学出版社, pages: 4 *

Also Published As

Publication number Publication date
CN116854793B (zh) 2024-08-23

Similar Documents

Publication Publication Date Title
Zhu et al. Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants
Pei et al. Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize
Wang et al. FvMYB24, a strawberry R2R3-MYB transcription factor, improved salt stress tolerance in transgenic Arabidopsis
Paolacci et al. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings
CN106591322A (zh) 调控植物开花的银杏MADS‑box类转录因子基因GbMADS9及其编码蛋白与应用
CN105838726B (zh) 一种紫花苜蓿耐盐基因MsCDPK及其编码蛋白与应用
Martins et al. The grapevine VvCAX3 is a cation/H+ exchanger involved in vacuolar Ca 2+ homeostasis
CN110872598A (zh) 一种棉花抗旱相关基因GhDT1及其应用
Islam et al. OsLPXC negatively regulates tolerance to cold stress via modulating oxidative stress, antioxidant defense and JA accumulation in rice
Shi et al. OsHIPP17 is involved in regulating the tolerance of rice to copper stress
CN106674337A (zh) 一种植物磷转运蛋白ZmPHT1;7及其编码基因和应用
CN108676804A (zh) 拟南芥at5g49330基因在盐胁迫反应方面的应用
Delgado et al. Cluster roots of Embothrium coccineum modify their metabolism and show differential gene expression in response to phosphorus supply
CN110117597B (zh) 一种苹果4-香豆酸:辅酶a连接酶4基因及其编码蛋白和应用
CN107354162A (zh) 水稻基因ORYsa;SIZ2的基因工程应用
CN116854793B (zh) AtWRKY45基因在调控植物螯合素的合成与植物镉胁迫耐受性中的应用
Qiao et al. Heterologous expression of TuCAX1a and TuCAX1b enhances Ca 2+ and Zn 2+ translocation in Arabidopsis
CN113046375B (zh) SpCPK33基因及其编码蛋白在调控番茄耐旱性中的应用
CN112029778B (zh) 马铃薯花青素合成调控基因StWRKY13及其应用
CN115197951A (zh) 茶树黄酮醇类合成候选基因CsNAC086及其应用
CN104109192A (zh) 一种小麦抗旱基因及其应用
CN110128517B (zh) 小报春花香相关基因PfLIS/NES及其用途
CN109486838B (zh) 一种调控植物类黄酮合成的转录因子基因及其用途
Cheng et al. Homolog of Human placenta-specific gene 8, PcPLAC8-10, enhances cadmium uptake by Populus roots
Guo et al. Functional characterization of a potassium transporter gene NrHAK1 in Nicotiana rustica

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant