CN107354162A - 水稻基因ORYsa;SIZ2的基因工程应用 - Google Patents

水稻基因ORYsa;SIZ2的基因工程应用 Download PDF

Info

Publication number
CN107354162A
CN107354162A CN201710585386.0A CN201710585386A CN107354162A CN 107354162 A CN107354162 A CN 107354162A CN 201710585386 A CN201710585386 A CN 201710585386A CN 107354162 A CN107354162 A CN 107354162A
Authority
CN
China
Prior art keywords
ossiz2
rice
orysa
genes
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710585386.0A
Other languages
English (en)
Other versions
CN107354162B (zh
Inventor
孙淑斌
徐国华
裴文霞
孙瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201710585386.0A priority Critical patent/CN107354162B/zh
Publication of CN107354162A publication Critical patent/CN107354162A/zh
Application granted granted Critical
Publication of CN107354162B publication Critical patent/CN107354162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Physiology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了水稻基因ORYsa;SIZ2的基因工程应用。水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2在改变水稻种子形态的基因工程育种中应用,该基因还能在促进水稻花药开裂和/或提高水稻花粉育性的基因工程育种中应用。所述的水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2基因在Genbank的登录号为Os03g0719100,其编码的氨基酸序列为SEQ ID NO.1。本发明为培育适用于磷贫瘠土壤的水稻新品种提供了依据。

Description

水稻基因ORYsa;SIZ2的基因工程应用
技术领域
本发明涉及植物基因工程技术领域,涉及水稻基因ORYsa;SIZ2的基因工程应用。
背景技术
水稻是全球最重要的粮食作物之一,其种植面积占世界谷类作物的1/3,全球约有一半的人口以稻米为主食。中国是世界上水稻种植面积最大的国家,约占世界总量的20%,水稻产量占全国粮食总产的50%,是保证我国粮食安全的重要作物(胡培松等,2002;彭少兵等,2002)。
氮和磷是植物生长发育所必需的大量营养元素,分别占植物体干重的2-5%和0.05-0.5%(Vance,C.P.Phosphorus acquisition and use:critical adaptations byplants for securing a nonrenewable resource.New Phytol,2003,157:423-447;Robertson,G.P.Nitrogen in agriculture:balancing the cost of an essentialresource.Annu Rev Environ Resour,2009,34:97-125)。氮是核酸、蛋白质等的主要组分,广泛参与植物体内多种生命代谢活动,其的供给水平直接影响作物产量和品质(Xu,G.H.Plant nitrogen assimilation and use efficiency.Annu Rev Plant Biol,2012,63:153-182)。磷是生物膜,核酸、脂类及一些含磷蛋白酶的结构组分,广泛参与植物体内能量转移,信号转导、光合作用、呼吸作用等代谢过程。然而,由于各种因素的存在,土壤中可以直接被植物吸收利用的氮和磷的浓度远低于植物正常生长发育所需,使它们成为植物生长发育的主要的限制因子。因此,植物能否高效利用土壤中少有的可被直接吸收利用的氮和磷,对其生长发育有着至关重要的影响。
SUMO(Small Ubiquitin biquitin biquitin-related related relatedModifier difier)修饰是近年来被生物学家发现的一种新蛋白质翻译后形式,其作用机制与泛素化修饰相似,也是通过E1激活、E2结合、E3连接一系列的酶促反应最终将SUMO底物与靶蛋白结合。
之前研究表明,拟南芥SUMO E3连接酶基因SIZ1参与调控植物生长发育及养分信号转导及代谢过程(Miura,K.The Arabidopsis SUMO E3ligase SIZ1controls phosphatedeficiencyresponses.Proc Natl Acad Sci U S A,2005,102:7760-7765;SIZ1regulation of phosphate starvation-induced root architecture remodelinginvolves the control of auxin accumulation.Plant Physiol,2011,155:1000-1012;Park,B.S.Arabidopsis nitrate reductaseactivity is stimulated by the E3SUMOligase AtSIZ1.Nat Commun,2011,2:400.)。此外,研究表明,水稻SUMO E3连接酶基因OsSIZ1参与调控水稻生长发育及氮磷吸收利用(Wang,H.D.OsSIZ1Regulates theVegetative Growth and Reproductive Development in Rice.Plant Mol Biol Report,2010,29:411-417;OsSIZ1,a SUMO E3Ligase Gene,is Involved in the Regulation ofthe Responses to Phosphate and Nitrogen in Rice.Plant Cell Physiol,2015,56:2381-2395;Thangasamy,S.Rice SIZ1,a SUMO E3ligase,controls spikelet fertilitythrough regulation of anther dehiscence.New Phytol,2011,189:869-882)。
发明内容
本发明的目的在于提供水稻SUMO E3连接酶OsSIZ2的基因工程应用,水稻中该基因的突变调控了水稻的生长发育及氮磷的吸收利用。
本发明的目的可通过以下技术方案实现:
水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2在改变水稻种子形态的基因工程育种中的应用,所述的水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2基因在Genbank的登录号为Os03g0719100,其编码的氨基酸序列为SEQ ID NO.1。OsSIZ2基因共含有16个外显子,15个内含子,编码区全长2442bp,编码813个氨基酸。
水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2在促进水稻花药开裂和/或提高水稻花粉育性的基因工程育种中的应用,所述的水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2基因在Genbank的登录号为Os03g0719100,其编码的氨基酸序列为SEQ ID NO.1。
水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2在调控水稻磷素及氮素吸收和转运中的应用,所述的SUMO化修饰E3连接酶基因ORYsa;OsSIZ2基因在Genbank的登录号为Os03g0719100,其编码的氨基酸序列为SEQ ID NO.1。
水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2在水稻生长发育中的应用,所述的水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2基因在Genbank的登录号为Os03g0719100,其编码的氨基酸序列为SEQ ID NO.1。
有益效果
本发明通过PCR的手段克隆获得了水稻中另一个SUMO E3连接酶基因OsSIZ2的编码区完整序列。构建了OsSIZ2-RNAi的载体,通过RNAi干扰的方法,部分沉默OsSIZ2的表达,此外,我们通过突变体库购买了OsSIZ2的T-DNA插入突变体,并通过鉴定获得了单拷贝纯合突变体。通过一系列生理实验的鉴定发现:OsSIZ2基因的突变抑制了花药的开裂和花粉育性,增长了种子的长度。可见,SUMO E3连接酶基因OsSIZ2可在改变种子形态、促进水稻花药开裂和/或提高水稻花粉育性的基因工程育种方面的应用。
OsSIZ2的突变提高了营养生长阶段水稻根和叶片细胞中可提取性磷浓度,根中总氮浓度,成熟期叶片、叶鞘、茎秆、穗柄和种子中总氮和总磷浓度。因此水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2在调控水稻磷素及氮素吸收和转运以及调控水稻生长发育中应用。
附图说明
图1:水稻基因ORYsa;OsSIZ2在不同生长阶段的不同组织部位的表达模式。
图2:水稻基因ORYsa;OsSIZ2在不同供磷及供氮条件下的表达模式。
图3:水培实验中,正常供磷/缺磷条件下,ORYsa;OsSIZ2RNAi沉默材料根系和叶片中的可提取磷浓度。
图4:水培实验中,正常供磷/缺磷条件下,ORYsa;OsSIZ2RNAi沉默材料中32P同位素的吸收分布。
图5:盆栽实验中,ORYsa;OsSIZ2突变体和Ri材料木质部伤流液中可的提取磷浓度
图6:盆栽实验中,ORYsa;OsSIZ2突变体和Ri材料成熟期各器官总磷浓度。
图7:水培实验中,正常供磷/缺磷条件下,ORYsa;OsSIZ2突变体和Ri材料根系中磷相关基因的表达。
图8:水培实验中,正常供氮/缺氮条件下,ORYsa;OsSIZ2突变体和Ri材料根和叶片中总氮浓度。
图9:水培实验中,缺氮条件下ORYsa;OsSIZ2突变体和Ri材料中15NH4 +同位素的吸收分布。
图10:盆栽实验中,ORYsa;OsSIZ2突变体和Ri材料成熟期各器官总氮浓度。
图11:水培实验中,正常供氮/缺氮条件下,ORYsa;OsSIZ2突变体和Ri材料根系中氮相关基因的表达。
图12:盆栽实验中,ORYsa;OsSIZ2突变体材料扬花期花药开裂和花粉育性的观测。
图13:ORYsa;OsSIZ2突变体材料种子大小的观测。
图14:pTCK303质粒图谱。
具体实施方式
实施例1、ORYsa;OsSIZ2基因的表达模式鉴定
1.1总RNA的提取和转录合成cDNA第一链
选用长势均匀一致苗龄三周品种为日本晴的水稻野生型移栽至盆砵中,于南京农业大学牌楼基地进行盆栽实验,分别于苗期(6周)、分蘖期(9周)、孕穗期(12周)和灌浆期(16周)采取样品进行表达分析。营养生长阶段所采样品包括:根、根茎结合部、叶鞘和叶片;生殖生长阶段所采样品为:根、根茎结合部、其它叶鞘、其它叶、旗叶鞘、旗叶、未熟圆锥花序、节1-3、穗柄、穗轴和米壳。所采样品分别采用TriZol试剂抽提总RNA,用琼脂糖凝胶电泳鉴定总RNA质量,然后在分光光度计上测定RNA含量。以获得的总RNA为模版,经过逆转录获得水稻cDNA第一链,供后续的实验使用。cDNA第一链的合成步骤:用DEPC水处理过的PCR管(300μl),加入总RNA 2μg,oligodT 1μL(25ng/μL),dNTP(10mmoL/L)2μL,65℃水浴5min,迅速置于冰上冷却,加5×反应缓冲液4μL,M-MLV逆转录酶(200U/μL)1μL,RNase抑制剂0.5μL,DEPC水至总体积为20μL(以上均在冰上操作)。稍离心后置于42℃水浴1h,70℃水浴10min,然后置于冰上迅速冷却。所得产物即为cDNAs,置于-20℃保存。
1.2ORYsa;OsSIZ2基因的组织特异性表达模式鉴定
以步骤1.1获得的“日本晴”cDNA为模板,根据水稻OsSIZ2基因的3’UTR部分的序列,设计以下OsSIZ2基因特异引物F1、R2扩增长度为67bp片段长度鉴定ORYsa;OsSIZ2基因的表达模式。
F1ATGGCACGGCAGGTTTAGAC(SEQ ID NO.2)
R2TGGTGGCATCTCTCCTCTCAA(SEQ ID NO.3)
PCR具体步骤为:以步骤1获得的cDNA为模板,使用ABI StepOnePlus(购自ABI生物公司)和SYBR green master mix(购自Vazyme公司)进行基因定量PCR分析。根据Vazyme试剂说明,定量PCR的反应体系为20μl:SYBR green master mix 10μl,正反向引物各0.4μl,cDNA模板1μl,ROX Reference Dye(50x)0.4μl,ddH2O 7.8μl。反应条件为:95℃5min,95℃10s,60℃30s,95℃15s,60℃1min;循环数为40。定量结果根据2-ΔCt方法计算分析OsSIZ2基因的时空表达模式,结果见图1。委托南京金斯瑞生物技术公司测序确定序列为ORYsa;OsSIZ2片段。
由图1可以看出,ORYsa;OsSIZ2基因在不同生长阶段的各个组织均有表达,总体来说,生长发育后期高于前期。叶片中OsSIZ2的相对表达丰度在每个生育期均较高,而根中则较低。此外,OsSIZ2的相对表达丰度在灌浆期的颖壳中也较高。
1.3ORYsa;OsSIZ2基因的响应缺磷和缺氮的表达模式鉴定
为研究水稻中OsSIZ2在磷和氮缺乏下的表达水平,使用苗龄为10天日本晴品种的野生型水稻进行缺磷/正常培养和缺氮/正常培养的水培实验,分别在处理14和10天后进行采样。用荧光定量PCR方法对OsSIZ2的相对表达量进行分析。结果表明OsSIZ2的表达在转录水平上不受不同供磷条件的影响。虽然OsSIZ2在根中的表达不受不同供氮水平的影响,但其在缺氮条件下叶片中的表达则显著升高(图2)。
实施例2、ORYsa;OsSIZ2基因的RNAi和T-DNA插入突变体材料的获得
2.1ORYsa;OsSIZ2-RNAi载体的构建
选用本实验室常用载体pTCK303作为RNAi载体,按照(Wang,Z.A practicalvector for efficient knockdown of gene expression in rice.Plant MolecularBiology Reporter.2004,22:409-417图8)文献方法,根据OsSIZ2基因开放阅读框(ORF)序列,截取目标基因的部分ORF片段,进行RNAi表达载体引物的设计。正向引物5’端均添加BamH I和Kpn I两个酶切位点外加两个保护碱基;反向引物5’端均添加Sac I和Spe I两个酶切位点外加三个保护碱基。引物序列如下:
正向序列:F:GGATCCTTAAGACGGCCACCTGTTTC(SEQ ID NO.4)
R:GTGGTACCGAGGCAGATAATGCTGACAG(SEQ ID NO.5)
反向序列:F:ATTGAGCTCTTAAGACGGCCACCTGTTTC(SEQ ID NO.6)
R:GGTACTAGTGAGGCAGATAATGCTGACAG(SEQ ID NO.7)
以日本晴品种的水稻野生型cDNA为模板,用高保真酶(PrimeSTAR)进行PCR扩增得到两端加入酶切位点的OsSIZ2的RNAi目的片段。凝胶电泳确认目的条带单一且大小正确后,将扩增产物纯化回收,与克隆载体pEASY-Blunt(北京全式金公司,货号CB101)连接。转化大肠杆菌,提取质粒酶切验证后,将正确的克隆送金斯瑞公司进行测序,确定目的序列没有发生碱基错配。然后将测序正确的质粒分别以BamH I/Kpn I,Sac I/Spe I两组酶进行双酶切,同时酶切pTCK303表达载体,最后经电泳、回收和纯化后用T4连接酶正反向连接到表达载体pTCK303中rice intron的两端。验证正确后转化大肠杆菌DH5α感受态细胞。挑取阳性克隆,将通过酶切、测序的单克隆保存菌液备用。将通过验证的连有OsSIZ2-RNAi的pTCK303载体,转化农杆菌EHA105(天恩泽基因科技有限公司)。转化后提取农杆菌阳性克隆质粒回转大肠,验证正确后保菌备用。
2.2ORYsa;OsSIZ2-RNAi转基因植株的获得
将步骤1获得的转有表达载体的农杆菌,进一步转化至水稻中(采用根癌农杆菌介导方法将构建的表达载体转入水稻日本晴品种)。诱导水稻成熟胚愈伤,继代后挑取长势良好,大小适中的水稻愈伤组织,放入农杆菌悬浮液中侵染5分钟(愈伤量没过50ml离心管锥形部位即可,不停的摇动);将愈伤组织取出,置于无菌的滤纸上沥干30-40分钟,沥干菌液;将愈伤组织置于含有一层无菌滤纸的共培养基上,28℃暗培养2.5天。然后将共同培养后的愈伤组织取出置于无菌的50ml离心管中,无菌水清洗5-6次,最后一次用含有500mg/L羧苄青霉素(Car)的无菌水浸泡30min,沥干后转入含250mg/L羧苄青霉素(Car)和50mg/L潮霉素的选择培养基上进行筛选。挑取颜色鲜黄的抗性愈伤移入装有分化培养基的培养皿或分化罐中,放入恒温培养室分化成苗。再放入生根培养基中壮苗一到两周,即获得转基因植株。整个过程均在无菌超净台中操作,所涉及物品均已灭菌。
2.3ORYsa;OsSIZ2基因的T-DNA插入突变体的获得
将从韩国突变体网站SIGnAL Salk(http://signal.salk.edu/)购买获得的OsSIZ2突变体和东粳品种野生型进行全营养液水培培养,待长至四叶一心时采取0.1g左右的新鲜叶片,提取其DNA,然后根据突变体库提供的T-DNA插入相关信息,设计引物P,F2和R2,采用两轮PCR扩增法鉴定得到突变体纯合体。
P AACGCTGATCAATTCCACAG(SEQ ID NO.8)
F2 TCACCAAAGGTTAGCAGCAAC(SEQ ID NO.9)
R2 TCTCTCAATTTTGGCCAAGC(SEQ ID NO.10)
实施例3、ORYsa;OsSIZ2基因在磷素营养中的功能鉴定
3.1OsSIZ2部分沉默对水稻营养生长阶段磷吸收和转运的影响
为了分析OsSIZ2在水稻磷素营养吸收和转运机制中的作用,我们对经过分子鉴定的OsSIZ2-RNAi沉默材料进行水培实验。将苗龄为3天且长势均匀一致的OsSIZ2-RNAi沉默材料及其野生型移栽到正常供磷和缺磷营养液中,21天后,将植株分为叶片和根系两个部分,分别测定其可提取性磷浓度。结果发现,正常供磷条件下,OsSIZ2-RNAi沉默材料的叶片和根中可提取性磷的浓度分别显著升高36-65%和34-48%(图3A);缺磷条件下,OsSIZ2-RNAi沉默材料的叶片和根中可提取性磷的浓度分别显著降低10-15%和升高29-51%(图3B)。说明OsSIZ2可能在水稻磷素吸收和转运过程中起着非常重要的作用。为了进一步验证水稻OsSIZ2参与水稻磷素的吸收和转运,我们对已经过分子鉴定的OsSIZ2-RNAi沉默材料进行了32P同位素示踪实验,并分析OsSIZ2-RNAi沉默材料的磷素吸收和转运情况。结果发现,OsSIZ2-RNAi沉默材料的磷素吸收速率在正常供磷和缺磷条件下分别显著提高36-47%和下降8-11%(图4A),进一步说明了OsSIZ2参与水稻磷素的吸收。此外,正常供磷条件下OsSIZ2-RNAi沉默材料中的磷在地上部和根系中的分配比与野生型相比并无差异,而缺磷条件下OsSIZ2-RNAi沉默材料中的磷在地上部和根系中的分配比则较野生型显著降低24-27%(图4B),说明OsSIZ2不仅参与调控了水稻磷素的吸收,还可能影响了水稻中磷素由根部向地上部的转运。有研究表明,磷由根系向地上部的转运与木质部伤流液中的可提取性磷呈正相关关系(Zhang,F.Involvement of OsPht1;4in phosphate acquisition andmobilization facilitates embryo development in rice.Plant J,2015,82:556-569)。因此我们测定了灌浆期突变体ossiz2和OsSIZ2-RNAi沉默材料木质部伤流液中可提取性磷浓度,结果显示,OsSIZ2-Ri材料和突变体ossiz2中木质部伤流液中的无机磷浓度分别比相应的野生型的浓度上升21-83%和35%(图5)。即OsSIZ2基因缺失后显著性增强了水稻磷素由根系往地上部运输能力,这与32P同位素分析结果相一致。
3.2OsSIZ2对水稻生育后期磷素的转运和分配的影响
OsSIZ2的影响了苗期磷的吸收和转运,为检测OsSIZ2在成熟期对磷吸收转运的影响,我们分别检测了成熟期水稻各个部位(叶片、叶鞘、茎秆、穗柄和籽粒)总磷含量。结果显示,与野生型相比,突变体ossiz2在水稻各部位中的总磷浓度有显著的升高,分别升高55%、42%、140%、43%和25%(图6)。OsSIZ2–Ri1与突变体结果一致,各部位总磷含量分别升高72%、200%、44%、27%和24%(图6),OsSIZ2–Ri2和3在叶片、叶鞘和籽粒中总磷含量相对低于R1。但较高于野生型有明显上升。以上结果说OsSIZ2影响了水稻在成熟期的吸收和转运。
3.3OsSIZ2影响了磷信号通路相关基因的表达
为研究OsSIZ2参与磷素吸收和转运的分子机制,我们检测了OsSIZ2突变体和-RNAi沉默材料根系中部分磷相关基因的表达。结果显示,正常供磷条件下,OsPT1和OsPHO1;2在Ri1和ossiz2根系中的表达显著升高,OsPHR2和OsPAP10a在突变体根系中的表达显著降低。缺磷条件下,除OsPT8和OsPHO1;2在Ri1和ossiz2根系中的表达显著升高外,其余大部分所检测基因在突变体或沉默材料中均有所不同程度的下调(图7)。
实施例4、ORYsa;OsSIZ2基因在氮素营养中的功能鉴定
4.1OsSIZ2部分沉默对水稻营养生长阶段氮吸收和转运的影响
OsSIZ2在缺氮条件下叶片中的表达显著升高,显示OsSIZ2可能参与水稻氮素营养。为了分析OsSIZ2在水稻氮素营养吸收和转运机制中的作用,我们对经过分子鉴定的OsSIZ2-RNAi沉默材料进行水培实验。将苗龄为10天且长势均匀一致的OsSIZ2-RNAi沉默材料及其野生型移栽到正常供氮和缺氮营养液中,10天后,将植株分为地上部和根系两个部分,分别测定其总氮浓度。结果显示,与野生型相比,正常供氮时,突变体和沉默材料地上部和根系总氮的浓度无明显变化(图8)。缺氮时,突变体和沉默转基因材料根系中总氮浓度分别上升~10%和~15-17%,地上部总氮浓度则无显著变化(图8)。说明OsSIZ2可能参与了不同供氮条件下氮素的吸收。为了更进一步探讨OsSIZ2在水稻氮素营养利用中的作用,我们设计15N-NH4 +同位素试验来测定OsSIZ2对氮素吸收的影响。挑取长势一致的正常水稻营养液培养2-3周的野生型、突变体和沉默转基因水稻苗,氮饥饿4天后将其均分为两组:分别将水稻苗根系浸泡在0.1mM CaSO4溶液中一分钟后,然后转移至含有1.25mM 15N-NH4 +和1.25mM N-NO3 -的营养液中,一组于五分钟后,将水稻苗根系完全浸泡在到含有0.1mM CaSO4的溶液中一分钟,立即将水稻地上部和根部分开,放置70℃烘箱烘干至恒重后称重,另一组于24小时后进行同样的操作。最后用球磨仪将样品磨碎。用MAT253同位素比率质谱仪(Thermo Fisher Scientific,Inc.,USA)测定组织中的15N的含量。结果显示:与野生型相比,OsSIZ2突变体和沉默转基因材料根系中15N的吸收速率均显著升高,测定吸收24小时后突变体、沉默转基因植株和野生型地上部和根中15N总量发现,与野生型相比,突变体和沉默转基因植株地上部和根中15N的分配比则显著降低(图9),说明OsSIZ2突变或沉默促进了根系对15N的吸收,抑制了氮素由根部向地上部的转运。
4.2OsSIZ2参与水稻生育后期氮素转运与分配
为了研究OsSIZ2突变或沉默对水稻生长发育后期植株体内氮素浓度的影响,我们测定了野生型、ossiz2和OsSIZ2沉默转基因材料成熟期各部位(叶片、叶鞘、茎秆、穗柄和籽粒)总氮浓度。结果显示:与野生型相比,突变体的叶片、叶鞘和穗柄中全氮浓度分别升高19%、28%和36%,茎秆和种子中全氮浓度则无变化。不同的是沉默材料各部位全氮浓度均显著高于自身野生型,与野生型相比,叶片、叶鞘、茎秆、穗柄和种子中的全氮浓度分别升高22-32%、110-187%、15-34%、18-38%和21-32%(图10)。这些结果说明OsSIZ2参与调控生长发育后期氮素在营养器官中的转运和向繁育器官的再分配。
4.3OsSIZ2影响了氮吸收转运相关基因的表达
为探索OsSIZ2参与水稻氮素吸收和转运的分子生物学机制,我们检测了OsSIZ2突变体和-RNAi沉默材料根系中部分氮相关基因的表达。结果显示,与野生型相比,正常供氮条件下,除OsNRT2.1外,大部分已知的氮素吸收相关基因的表达均无显著变化;缺氮条件下,仅OsAMT1;3和OsNAR2.1在Ri1和ossiz2根系中表达的显著升高,而OsNAR2.1则主要是OsNRTs等硝酸盐转运蛋白的辅助蛋白,其单独表达不影响硝酸盐的吸收(图11)。所以缺氮条件下,Ri1和ossiz2根系中总氮浓度的增加可能是由OsAMT1;3表达的上调引起的。
实施例5、ORYsa;OsSIZ2基因对水稻花器官和花粉育性的影响
早期研究表明:OsSIZ1参与了水稻花的发育和花药壁的开裂,但不影响花粉活性(Wang,H.D.OsSIZ1Regulates the Vegetative Growth and Reproductive Developmentin Rice.Plant Mol Biol Report,2010,29:411-417;Thangasamy,S.Rice SIZ1,a SUMOE3ligase,controls spikelet fertility through regulation of antherdehiscence.New Phytol,2011,189:869-882)。为了探索OsSIZ2在水稻花器官发育中的功能,我们在扬花期对野生型和突变体的花器官及花粉活性进行了观测。结果发现:ossiz2呈现花药卷曲,花药壁开裂受损的现象,其开裂率比野生型下降了60%(图12A和B)。随后利用I2-KI检测花粉育性发现:与野生型相比,在开花前ossiz2花粉育性有所降低,其花粉染色呈棕色,而野生型呈紫黑色(图12C)。而开花后检测粉育性发现,ossiz2花药中残留的花粉育性很低,但与野生型相比,其花药中的花粉更多(图12C),这也说明了OsSIZ2影响花药壁的开裂。突变体花药壁的不开裂和花粉育性的下降导致了成熟期突变体结实率的下降(图12D)
实施例6、ORYsa;OsSIZ2基因对水稻水稻种子大小的影响
种子大小是水稻重要的农艺性状之一,对水稻产量有着至关重要的影响。研究过程中我们发现突变体ossiz1和ossiz2种子的形状与野生型相比发生了显著的变化。游标卡尺测量统计野生型和突变体种子的长度、宽度和厚度的结果显示:与野生型相比,ossiz1的种子明显变短、变薄,而ossiz2的种子则明显变长、变薄,二者的厚度则均无显著变化(图13)。说明OsSIZ1和OsSIZ2虽然位于同一个家族,也有很多相同的功能,但是两者在对花粉育性和种子形状的影响上有所不同。
综上所述,本发明人提供的ORYsa;OsSIZ2的工程应用为水稻中首次报道。ORYsa;OsSIZ2的T-DNA插入和RNAi干扰基因导入植物,不但影响了水稻磷素和氮素的利用效率和吸收速率,还参与调控了水稻的生长发育、花器官形成和种子大小。为培育磷和氮高效利用的水稻新品种提供了理论依据。
为了简单起见,本发明中ORYsa;OsSIZ2有时标注为OsSIZ2。
<110> 南京农业大学
<120> 水稻基因ORYsa;SIZ2的基因工程应用
<160> 10
<210> 1
<211> 813
<212> PRT
<213> Oryza sativa(水稻)
<220>
<223>基因ORYsa; OsSIZ2编码的氨基酸序列
<400> 1
Met Ala Leu Asp Pro Ala Asp Asp Pro Leu Leu Ala Asp Cys Lys Tyr
1 5 10 15
Lys Leu Asn His Phe Arg Ile Lys Glu Leu Lys Asp Val Leu His Gln
20 25 30
Leu Gly Leu Pro Lys Gln Gly Arg Lys Gln Glu Leu Val Asp Lys Ile
35 40 45
Ile Ala Val Leu Ser Asp Gln Gln Glu Gln Asp Ser Arg Leu Asn Gly
50 55 60
Leu Pro Asn Lys Lys Met Val Gly Lys Glu Thr Val Ala Lys Ile Val
65 70 75 80
Asp Asp Thr Phe Ala Lys Met Asn Gly Ser Thr Asn Ala Val Pro Ala
85 90 95
Ser Arg Asn Gln Thr Asp Ser Gly His Ile Val Lys Pro Lys Arg Lys
100 105 110
Ser Asp Asp Ser Ala Gln Leu Asp Val Lys Val Arg Cys Pro Cys Gly
115 120 125
Tyr Ser Met Ala Asn Asp Ser Met Ile Lys Cys Glu Gly Pro Gln Cys
130 135 140
Asn Thr Gln Gln His Val Gly Cys Val Ile Ile Ser Glu Lys Pro Ala
145 150 155 160
Asp Ser Val Pro Pro Glu Leu Pro Pro His Phe Tyr Cys Asp Met Cys
165 170 175
Arg Ile Thr Arg Ala Asp Pro Phe Trp Val Thr Val Asn His Pro Val
180 185 190
Leu Pro Val Ser Ile Thr Pro Cys Lys Val Ala Ser Asp Gly Ser Tyr
195 200 205
Ala Val Gln Tyr Phe Glu Lys Thr Phe Pro Leu Ser Arg Ala Asn Trp
210 215 220
Glu Met Leu Gln Lys Asp Glu Tyr Asp Leu Gln Val Trp Cys Ile Leu
225 230 235 240
Phe Asn Asp Ser Val Pro Phe Arg Met Gln Trp Pro Leu His Ser Asp
245 250 255
Ile Gln Ile Asn Gly Ile Pro Ile Arg Val Val Asn Arg Gln Pro Thr
260 265 270
Gln Gln Leu Gly Val Asn Gly Arg Asp Asp Gly Pro Val Leu Thr Ala
275 280 285
Tyr Val Arg Glu Gly Ser Asn Lys Ile Val Leu Ser Arg Ser Asp Ser
290 295 300
Arg Thr Phe Cys Leu Gly Val Arg Ile Ala Lys Arg Arg Ser Val Glu
305 310 315 320
Gln Val Leu Ser Leu Val Pro Lys Glu Gln Asp Gly Glu Asn Phe Asp
325 330 335
Asn Ala Leu Ala Arg Val Arg Arg Cys Val Gly Gly Gly Thr Glu Ala
340 345 350
Asp Asn Ala Asp Ser Asp Ser Asp Ile Glu Val Val Ala Asp Ser Val
355 360 365
Ser Val Asn Leu Arg Cys Pro Met Thr Gly Ser Arg Ile Lys Ile Ala
370 375 380
Gly Arg Phe Lys Pro Cys Val His Met Gly Cys Phe Asp Leu Glu Ala
385 390 395 400
Phe Val Glu Leu Asn Gln Arg Ser Arg Lys Trp Gln Cys Pro Ile Cys
405 410 415
Leu Lys Asn Tyr Ser Leu Asp Asn Ile Ile Ile Asp Pro Tyr Phe Asn
420 425 430
Arg Ile Thr Ala Leu Val Gln Ser Cys Gly Asp Asp Val Ser Glu Ile
435 440 445
Asp Val Lys Pro Asp Gly Ser Trp Arg Val Lys Gly Gly Ala Glu Leu
450 455 460
Lys Gly Leu Ala Gln Trp His Leu Pro Asp Gly Thr Leu Cys Met Pro
465 470 475 480
Thr Asp Thr Arg Ser Lys Pro Asn Ile Arg Ile Val Lys Gln Glu Ile
485 490 495
Lys Glu Glu Pro Leu Ser Glu Glu Thr Gly Gly Arg Leu Lys Leu Gly
500 505 510
Ile Arg Arg Asn Asn Asn Gly Gln Trp Glu Ile Asn Lys Arg Leu Asp
515 520 525
Ser Asn Asn Gly Gln Asn Gly Tyr Ile Glu Asp Glu Asn Cys Val Val
530 535 540
Ser Ala Ser Asn Thr Asp Asp Glu Asn Ser Lys Asn Gly Ile Tyr Asn
545 550 555 560
Pro Glu Pro Gly Gln Phe Asp Gln Leu Thr Ser Asn Ile Tyr Asp Leu
565 570 575
Asp Ser Ser Pro Met Asp Ala His Phe Pro Pro Ala Pro Thr Glu Gln
580 585 590
Asp Val Ile Val Leu Ser Asp Ser Asp Asp Asp Asn Val Met Val Leu
595 600 605
Ser Pro Gly Asp Val Asn Phe Ser Ser Ala His Asp Asn Gly Asn Ala
610 615 620
Phe Pro Pro Asn Pro Pro Glu Ala Ser Gly Ile Cys Gly Glu Gln Pro
625 630 635 640
Arg Gly Ala Gly Pro Asp Val Thr Ser Phe Leu Asp Gly Phe Asp Asp
645 650 655
Leu Glu Leu Pro Phe Trp Glu Ser Ser Ser Ser Gln Asp Ala Ala Gly
660 665 670
Thr Gln Val Thr Asp Asn Gln Cys Glu Met Gln Asn Phe Ile Val Asn
675 680 685
His Gln Phe Leu His Glu Pro Ile Leu Gly Val Asn Leu Gly Gly Thr
690 695 700
Ala Ala Ser Asn Thr Leu Glu Cys Glu His Asp Gly Ala Leu Gln Ala
705 710 715 720
Cys Gln Ser Ser Asp Gln Asp Gly Asp Gln Asn Gln Thr Cys His Asp
725 730 735
Gly His Ser Gly Asp Leu Thr Asn Leu Ser Ile Ile Ser Thr Gln Asp
740 745 750
Ser Leu Thr Asn Gly Lys Asn Ala Ser Gln Lys Arg Thr Asn Cys Glu
755 760 765
Asp Gly Thr Ala Gly Leu Asp Gly Ser Val Val Arg Ser Ala Asn Gly
770 775 780
Leu Arg Gly Glu Met Pro Pro Leu Gly Gln Glu Gln Asp Arg Thr Val
785 790 795 800
Arg Gln Lys Leu Ile Leu Thr Ile Glu Ser Asp Ser Asp
805 810
<210> 2
<211> 20
<212> DNA
<213> 人工序列
<220>
<223>基因ORYsa; OsSIZ2 3’UTR区域定量检测PCR扩增的上游引物
<400> 2
atggcacggc aggtttagac 20
<210>3
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> ORYsa; OsSIZ2 3’UTR区域定量检测PCR扩增的下游引物
<400>3
tggtggcatc tctcctctca a 21
<210>4
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> ORYsa; OsSIZ2 RNAi材料构建PCR扩增的正向上游引物
<400>4
ggatccttaa gacggccacc tgtttc 26
<210>5
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> ORYsa; OsSIZ2 RNAi材料构建PCR扩增的正向下游引物
<400>5
gtggtaccga ggcagataat gctgacag 28
<210>6
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> ORYsa; OsSIZ2 RNAi材料构建PCR扩增的反向上游引物
<400>6
attgagctct taagacggcc acctgtttc 29
<210>7
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> ORYsa; OsSIZ2 RNAi材料构建PCR扩增的反向下游引物
<400>7
ggtactagtg aggcagataa tgctgacag 29
<210>8
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> ORYsa; OsSIZ2 T-DNA插入突变体鉴定纯合体通用引物
<400>8
aacgctgatc aattccacag 20
<210>9
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> ORYsa; OsSIZ2 T-DNA插入突变体鉴定纯合体上游引物
<400>9
tcaccaaagg ttagcagcaa c 21
<210>10
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> ORYsa; OsSIZ2 T-DNA插入突变体鉴定纯合体下游引物
<400>10
tctctcaatt ttggccaagc 20
序列表
7

Claims (4)

1.水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2在改变水稻种子形态的基因工程育种中的应用,所述的水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2基因在Genbank的登录号为Os03g0719100,其编码的氨基酸序列为SEQ ID NO.1。
2.水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2在促进水稻花药开裂和/或提高水稻花粉育性的基因工程育种中的应用,所述的水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2基因在Genbank的登录号为Os03g0719100,其编码的氨基酸序列为SEQ ID NO.1。
3.水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2在调控水稻磷素及氮素吸收和转运中的应用,所述的SUMO化修饰E3连接酶基因ORYsa;OsSIZ2基因在Genbank的登录号为Os03g0719100,其编码的氨基酸序列为SEQ ID NO.1。
4.水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2在水稻生长发育中的应用,所述的水稻SUMO化修饰E3连接酶基因ORYsa;OsSIZ2基因在Genbank的登录号为Os03g0719100,其编码的氨基酸序列为SEQ ID NO.1。
CN201710585386.0A 2017-07-18 2017-07-18 水稻基因ORYsa;SIZ2的基因工程应用 Active CN107354162B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710585386.0A CN107354162B (zh) 2017-07-18 2017-07-18 水稻基因ORYsa;SIZ2的基因工程应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710585386.0A CN107354162B (zh) 2017-07-18 2017-07-18 水稻基因ORYsa;SIZ2的基因工程应用

Publications (2)

Publication Number Publication Date
CN107354162A true CN107354162A (zh) 2017-11-17
CN107354162B CN107354162B (zh) 2021-01-01

Family

ID=60284610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710585386.0A Active CN107354162B (zh) 2017-07-18 2017-07-18 水稻基因ORYsa;SIZ2的基因工程应用

Country Status (1)

Country Link
CN (1) CN107354162B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109254092A (zh) * 2018-09-28 2019-01-22 中国农业大学 苹果花柱自花与异花授粉差异sumo激酶蛋白筛选方法
CN110029125A (zh) * 2019-03-20 2019-07-19 南京农业大学 水稻基因ORYsa;SQD1的基因工程应用
CN115976071A (zh) * 2022-10-27 2023-04-18 沈阳农业大学 PAP10a基因在调控水稻抗稻瘟病中的应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109254092A (zh) * 2018-09-28 2019-01-22 中国农业大学 苹果花柱自花与异花授粉差异sumo激酶蛋白筛选方法
CN110029125A (zh) * 2019-03-20 2019-07-19 南京农业大学 水稻基因ORYsa;SQD1的基因工程应用
CN110029125B (zh) * 2019-03-20 2021-12-17 南京农业大学 水稻基因ORYsa;SQD1的基因工程应用
CN115976071A (zh) * 2022-10-27 2023-04-18 沈阳农业大学 PAP10a基因在调控水稻抗稻瘟病中的应用

Also Published As

Publication number Publication date
CN107354162B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
Ma et al. Transcriptomics analyses reveal wheat responses to drought stress during reproductive stages under field conditions
Bai et al. The nitrate transporter (NRT) gene family in poplar
JPH06504430A (ja) 植物細胞の増殖および成長
CN107937416A (zh) 提高水稻氮肥利用效率和产量的基因及其应用
Nozoye et al. The expression of iron homeostasis-related genes during rice germination
CN107435047A (zh) 一种植物磷信号网络中耐低磷关键基因GmPHR25及其与应用
CN109750047B (zh) 茶树己糖转运体基因CsSWEET17及其在调控植物营养生长和种子大小中的应用
Han et al. Expression of a maize SOC1 gene enhances soybean yield potential through modulating plant growth and flowering
CN107354162A (zh) 水稻基因ORYsa;SIZ2的基因工程应用
Freitas et al. In silico and in vivo analysis of ABI3 and VAL2 genes during somatic embryogenesis of Coffea arabica: competence acquisition and developmental marker genes
CN107828805A (zh) 水稻环氧类胡萝卜素双加氧酶OsNCED3基因编码序列及其应用
Huang et al. New MADS-box gene in fern: cloning and expression analysis of DfMADS1 from Dryopteris fragrans
Liang et al. PpSnRK1α overexpression alters the response to light and affects photosynthesis and carbon metabolism in tomato
CN110343705A (zh) 一种调控番茄抗坏血酸积累的nbs-lrr基因及其应用
Hirel et al. Genomics of nitrogen use efficiency in maize: From basic approaches to agronomic applications
CN106674337A (zh) 一种植物磷转运蛋白ZmPHT1;7及其编码基因和应用
CN104694552A (zh) GhEXLB2基因在增强植物抗旱性中的应用
Tan et al. RNA-seq and sRNA-seq analysis in lateral buds and leaves of juvenile and adult roses
CN108588116B (zh) 大豆紫色酸性磷酸酶基因GmPAP35的应用
Singh et al. 19 Physiological and Molecular Interventions for Improving Nitrogen-Use
CN113862387B (zh) 水稻耐旱性调控基因OsNAC6的分子标记及其应用
CN105018519B (zh) 水稻基因ORYsa;LPR5的基因工程应用
CN109082425B (zh) 油菜硼高效基因BnA3NIP5;1Q的转座子插入片段TEQ和引物及其应用
Rhee et al. Expression analysis of D-type cyclin in potato (Solanum tuberosum L.) under different culture conditions
CN109971764B (zh) 水稻OsNRT2.1基因在提高水稻籽粒中的锰元素含量中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant