CN116836576A - 一种陶瓷微球包覆铁钴镍钐钕高熵涂层及其制备方法 - Google Patents

一种陶瓷微球包覆铁钴镍钐钕高熵涂层及其制备方法 Download PDF

Info

Publication number
CN116836576A
CN116836576A CN202310776914.6A CN202310776914A CN116836576A CN 116836576 A CN116836576 A CN 116836576A CN 202310776914 A CN202310776914 A CN 202310776914A CN 116836576 A CN116836576 A CN 116836576A
Authority
CN
China
Prior art keywords
entropy
coating
preparation
electron beam
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310776914.6A
Other languages
English (en)
Other versions
CN116836576B (zh
Inventor
刘政
申造宇
李业华
何山
赫丽华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN202310776914.6A priority Critical patent/CN116836576B/zh
Publication of CN116836576A publication Critical patent/CN116836576A/zh
Application granted granted Critical
Publication of CN116836576B publication Critical patent/CN116836576B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Nanotechnology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及航空发动机隐身材料技术领域,涉及一种陶瓷微球包覆铁钴镍钐钕高熵涂层及其制备方法,包括陶瓷微球选择、铁钴镍钐钕靶材制备和铁钴镍钐钕高熵涂层制备的步骤;其铁钴镍钐钕高熵涂层制备的步骤为:将铁钴镍钐钕高熵靶材装入电子束物理气相沉积设备沉积室,蒸发铁钴镍钐钕高熵靶材,铁钴镍钐钕高熵靶材的分子式为Fe0.2Co0.2Ni0.2Sm0.2Nd0.2,纯度大于98%;选择沉积工艺参数:沉积室的真空度<1×10‑4Torr;电子束的束流强度1.8‑2.0A;陶瓷微球温度800‑1000℃;蒸发时间5‑60min;控制靶材蒸发时间,最终在陶瓷微球表面获得铁钴镍钐钕高熵涂层。本发明既能提升铁钴镍钐钕高熵包覆层的均匀性,又能提高陶瓷微球的电磁性能。

Description

一种陶瓷微球包覆铁钴镍钐钕高熵涂层及其制备方法
技术领域
本发明涉及航空发动机隐身材料涂层技术领域,属于一种陶瓷微球包覆铁钴镍钐钕高熵涂层及其制备方法。
背景技术
隐身技术起源于第二次世界大战,在美英德日俄等发达国家受到了广泛的关注。由于雷达探测具有探测距离远精度高等优点,对现代兵器产生的威胁日益严重,为此各国都在努力发展雷达隐身技术。雷达隐身技术是通过减弱抑制偏转目标的雷达回波强度或减小雷达散射截面积(RSC),来降低敌方雷达对目标的发现概率,主要包括外形隐身技术和雷达吸波材料隐身技术,其中雷达吸波材料隐身技术因其匹配性强,操作方便,易于调节等特点已成为了必要的隐身措施。
吸波涂料一般由胶黏剂、吸收剂和各种助剂组成,其中吸收剂是主体材料,直接决定了涂层吸波性能。根据吸波原理可知,影响吸波材料性能的重要因素包括吸收材料的阻抗匹配特性及材料衰减特性。其中,提高电磁波衰减需要提高的吸波材料的电磁损耗特性,而吸波材料的阻抗匹配需要吸波材料具有较好的介电匹配特性。但由于单一吸收剂存在频带窄、吸波性能不稳定等缺点,单一吸收剂的吸波材料离预期目标有一定差距。因此,吸收剂表面改性研究受到了广泛的关注。表面改性是一种具有特色的吸收剂改性方法,广泛应用于吸收剂表面处理,不仅可以改善吸波材料的抗氧化性和抗腐蚀性,而且可以降低介电常数和改善阻抗匹配等特性,最终达到提高吸波材料的吸波性能目的。
发明内容
本发明的目的是:针对上述现有技术的不足而设计提供一种陶瓷微球包覆铁钴镍钐钕高熵涂层及其制备方法,其目的通过电子束物理气相沉积技术,在陶瓷微球表面获得铁钴镍钐钕高熵涂层,获得一种全新的涂层材料,解决目前包覆改性技术均匀性和电磁性能提升的问题。
为解决此技术问题,本发明的技术方案是:
一方面,提供一种陶瓷微球包覆铁钴镍钐钕高熵涂层,所述陶瓷微球分子式为ZrO2,纯度大于95%,用过筛的方法保障陶瓷微球粒径为50~300微米;
所述铁钴镍钐钕高熵涂层制备时用到的靶材的分子式为Fe0.2Co0.2Ni0.2Sm0.2Nd0.2,纯度大于98%;
所述高熵涂层通过电子束物理气相沉积均匀包覆在陶瓷微球表面,其厚度在纳米级别,具有离散型和连续型两种组织结构,其成分为Fe0.2Co0.2Ni0.2Sm0.2Nd0.2,纯度为100%。所述高熵涂层厚度为2-100nm。
一方面,提供所述高熵涂层的制备方法,所述制备方法包含以下步骤:
步骤一、利用电子束熔炼的方法进行铁钴镍钐钕高熵靶材合成,其熔炼参数为加速电流20-25A,加速电压25-30KV,真空度<1×10-4Torr。
步骤二、将铁钴镍钐钕高熵靶材装入电子束物理气相沉积设备沉积室,蒸发铁钴镍钐钕高熵靶材,沉积工艺参数选取如下:
沉积室的真空度<1×10-4Torr;电子束的束流强度1.8-2.0A;陶瓷微球温度800-1000℃;蒸发时间5-60min;
步骤三、冷却:将陶瓷微球冷却至150摄氏度以下,控制旋转速度,在转动的陶瓷微球表面获得铁钴镍钐钕高熵涂层。
步骤二中陶瓷微球温度800-1000℃。电子束物理气相沉积最关键的工艺参数为:电子束的束流强度和陶瓷微球温度,通过电子束物理气相沉积进行包覆,使涂层具有较好结合强度,其纳米尺寸效应能很好提高陶瓷微球的电磁性能
所述步骤二中电子束的轰击时间30min。
步骤三中陶瓷微球的旋转速度为2-5RPM。优选地,为3-4RPM。
步骤一熔炼参数中电子枪功率250KW。
步骤三中所述的冷却为自然冷却。
本发明的有益效果是:本发明作为一类新型包覆改性技术,其利用电子束物理气相沉积技术制备铁钴镍钐钕高熵涂层,通过电子束流控制,将会使镍涂层具有独特的柱状晶结构和纳米结构,同时具有较好的结合性能,能提升铁钴镍钐钕高熵包覆层的均匀性,又能提高陶瓷微球的电磁性能。
附图说明
图1为实施例1的离散型包覆结构示意图;
图2为实施例1的电磁参数优化示意图;
图3为实施例2的离散连续型包覆结构示意图;
图4为实施例2的电磁参数优化示意图。
图5为不同包覆涂层厚度对陶瓷微球外观影响。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域的普通技术人员在没有做出创造性劳动的前提下,所获得的所有其他实施例,都属于本发明保护的范围。
下面将详细描述本发明实施例的各个方面的特征。在下面的详细描述中,提出了许多具体的细节,以便对本发明的全面理解。但是,对于本领域的普通技术人员来说,很明显的是,本发明也可以在不需要这些具体细节的情况下就可以实施。下面对实施例的描述仅仅是为了通过示出本发明的示例对本发明更好的理解。本发明不限于下面所提供的任何具体设置和方法,而是覆盖了不脱离本发明精神的前提下所覆盖的所有的产品结构、方法的任何改进、替换等。
在各个附图和下面的描述中,没有示出公知的结构和技术,以避免对本发明造成不必要的模糊。
实施例1:
本实施例为制备一种陶瓷微球包覆离散型纳米结构铁钴镍钐钕高熵涂层,通过离散型纳米结构铁钴镍钐钕高熵涂层包覆能提高陶瓷微球的电磁性能。
(1)利用电子束熔炼的方法进行铁钴镍钐钕高熵靶材合成,其熔炼参数为电子枪功率250KW,加速电流22A,加速电压30KV,真空度5×10-5Torr。
(2)将铁钴镍钐钕高熵靶材装入电子束物理气相沉积设备沉积室,通过电子枪蒸发铁钴镍钐钕高熵靶材,沉积室的真空度3×10-5Torr;电子束的束流强度1.85A,先轰击时间30min,控制陶瓷微球的温度850℃,蒸发10min;
(3)冷却:将陶瓷微球冷却至100摄氏度以下,在转动的陶瓷微球表面获得铁钴镍钐钕高熵涂层,旋转速度为2RPM,通过控制蒸发时间和低旋转速度进而控制蒸发速率,更易获得离散型铁钴镍钐钕高熵涂层包覆;
实施例2:
本实施例为制备一种陶瓷微球包覆连续型纳米结构铁钴镍钐钕高熵涂层,通过连续型纳米结构铁钴镍钐钕高熵涂层包覆能提高陶瓷微球的电磁性能。
(1)利用电子束熔炼的方法进行铁钴镍钐钕高熵靶材合成,其熔炼参数为电子枪功率250KW,加速电流23A,加速电压30KV,真空度8×10-5Torr。
(2)将铁钴镍钐钕高熵靶材装入电子束物理气相沉积设备沉积室,通过电子枪蒸发铁钴镍钐钕高熵靶材,沉积室的真空度8×10-5Torr;电子束的束流强度1.1A,先轰击时间30min,控制陶瓷微球的温度950℃,蒸发45min;
(3)冷却:将陶瓷微球冷却至50摄氏度以下,在转动的陶瓷微球表面获得铁钴镍钐钕高熵涂层,通过控制蒸发时间和高旋转速度,旋转速度为4RPM,更易获得连续型铁钴镍钐钕高熵涂层包覆;
如图1和3所示,利用电子束物理气相沉积技术制备铁钴镍钐钕高熵包覆涂层,通过电子束流控制,将会使涂层具有独特的纳米结构,同时具有较好的包覆结合力。如图2和4所示,涂层设计上,通过电子束物理气相沉积技术蒸发铁钴镍钐钕高熵靶材,本发明既能提升铁包覆的均匀性,又能提高陶瓷微球的电磁性能。从图2和图4均可以看出,通过包覆后的涂层吸收性能和吸收频带均得到了较大提升,其中,线A代表未包覆的原始状态,线B为包覆后的。图2为离散型包覆,图4为连续型包覆。
如图3所示是连续型包覆结构,可以看出包覆的高熵涂层均匀在颗粒表面,图中高亮的一层即是包覆的涂层。图5能看出包覆前后颗粒外观的变化,其中左1为未包覆前的颗粒外观颜色为白色;左2、3为离散型包覆,包覆后为土黄色;左4、5为连续型包覆,包覆后为褐色;从外观也可以看出涂层均匀包覆在颗粒表面。

Claims (9)

1.一种陶瓷微球包覆铁钴镍钐钕高熵涂层,其特征在于:
所述陶瓷微球分子式为ZrO2,纯度大于95%,用过筛的方法保障陶瓷微球粒径为50~300微米;
所述铁钴镍钐钕高熵涂层制备时用到的靶材的分子式为Fe0.2Co0.2Ni0.2Sm0.2Nd0.2,纯度大于98%;
所述高熵涂层通过电子束物理气相沉积均匀包覆在陶瓷微球表面,其厚度在纳米级别,具有离散型和连续型两种组织结构,其成分为Fe0.2Co0.2Ni0.2Sm0.2Nd0.2,纯度为100%。
2.根据权利要求1所述的高熵涂层,其特征在于:所述高熵涂层厚度为2-100nm。
3.根据权利要求1所述的高熵涂层的制备方法,其特征在于:所述制备方法包含以下步骤:
步骤一、利用电子束熔炼的方法进行铁钴镍钐钕高熵靶材合成,其熔炼参数为加速电流20-25A,加速电压25-30KV,真空度<1×10-4Torr。
步骤二、将铁钴镍钐钕高熵靶材装入电子束物理气相沉积设备沉积室,蒸发铁钴镍钐钕高熵靶材,沉积工艺参数选取如下:
沉积室的真空度<1×10-4Torr;电子束的束流强度1.8-2.0A;陶瓷微球温度800-1000℃;蒸发时间5-60min;
步骤三、冷却:将陶瓷微球冷却至150摄氏度以下,控制旋转速度,在转动的陶瓷微球表面获得铁钴镍钐钕高熵涂层。
4.根据权利要求3所述的制备方法,其特征在于:步骤二中陶瓷微球温度800-1000℃。
5.根据权利要求3所述的制备方法,其特征在于:所述步骤二中电子束的轰击时间30min。
6.根据权利要求3所述的制备方法,其特征在于:步骤三中陶瓷微球的旋转速度为2-5RPM。
7.根据权利要求3所述的制备方法,其特征在于:步骤三中陶瓷微球的旋转速度为3-4RPM。
8.根据权利要求3所述制备方法,其特征在于:步骤一熔炼参数中电子枪功率250KW。
9.根据权利要求3所述制备方法,其特征在于:步骤三中所述的冷却为自然冷却。
CN202310776914.6A 2023-06-28 2023-06-28 一种陶瓷微球包覆铁钴镍钐钕高熵涂层及其制备方法 Active CN116836576B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310776914.6A CN116836576B (zh) 2023-06-28 2023-06-28 一种陶瓷微球包覆铁钴镍钐钕高熵涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310776914.6A CN116836576B (zh) 2023-06-28 2023-06-28 一种陶瓷微球包覆铁钴镍钐钕高熵涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN116836576A true CN116836576A (zh) 2023-10-03
CN116836576B CN116836576B (zh) 2024-09-13

Family

ID=88161044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310776914.6A Active CN116836576B (zh) 2023-06-28 2023-06-28 一种陶瓷微球包覆铁钴镍钐钕高熵涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN116836576B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118563285A (zh) * 2024-06-03 2024-08-30 柔电(武汉)科技有限公司 一种基于高熵热障陶瓷包覆的吸波材料及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531505A (zh) * 2009-04-22 2009-09-16 河北工业大学 一种防辐射陶瓷及其制备方法
JP2011035357A (ja) * 2009-08-04 2011-02-17 Therapeace:Kk 電磁波防護材
CN106607580A (zh) * 2015-10-25 2017-05-03 杨欣睿 一种添加稀土合金吸波材料
CN106623889A (zh) * 2015-10-31 2017-05-10 杨欣睿 一种Fe-Ni-Nd型合金吸波微粉及其制备方法
WO2020068435A1 (en) * 2018-09-24 2020-04-02 Corning Incorporated Rare-earth doped metal oxide ceramic waveguide quantum memories and methods of manufacturing the same
CN112899531A (zh) * 2021-01-19 2021-06-04 江苏大学 一种高熵合金颗粒增强铝基复合材料及磁场辅助制备方法
CN113046590A (zh) * 2021-02-04 2021-06-29 江苏大学 一种高熵合金/铝复合的泡沫型吸波材料及制备方法
CN114574789A (zh) * 2022-03-14 2022-06-03 宁波杭州湾新材料研究院 碳化硅纤维及中高熵陶瓷增强金属基复合材料及制备方法
CN115368166A (zh) * 2022-07-29 2022-11-22 中国航发北京航空材料研究院 一种陶瓷微球包覆镍涂层及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531505A (zh) * 2009-04-22 2009-09-16 河北工业大学 一种防辐射陶瓷及其制备方法
JP2011035357A (ja) * 2009-08-04 2011-02-17 Therapeace:Kk 電磁波防護材
CN106607580A (zh) * 2015-10-25 2017-05-03 杨欣睿 一种添加稀土合金吸波材料
CN106623889A (zh) * 2015-10-31 2017-05-10 杨欣睿 一种Fe-Ni-Nd型合金吸波微粉及其制备方法
WO2020068435A1 (en) * 2018-09-24 2020-04-02 Corning Incorporated Rare-earth doped metal oxide ceramic waveguide quantum memories and methods of manufacturing the same
CN112899531A (zh) * 2021-01-19 2021-06-04 江苏大学 一种高熵合金颗粒增强铝基复合材料及磁场辅助制备方法
CN113046590A (zh) * 2021-02-04 2021-06-29 江苏大学 一种高熵合金/铝复合的泡沫型吸波材料及制备方法
CN114574789A (zh) * 2022-03-14 2022-06-03 宁波杭州湾新材料研究院 碳化硅纤维及中高熵陶瓷增强金属基复合材料及制备方法
CN115368166A (zh) * 2022-07-29 2022-11-22 中国航发北京航空材料研究院 一种陶瓷微球包覆镍涂层及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118563285A (zh) * 2024-06-03 2024-08-30 柔电(武汉)科技有限公司 一种基于高熵热障陶瓷包覆的吸波材料及制备方法

Also Published As

Publication number Publication date
CN116836576B (zh) 2024-09-13

Similar Documents

Publication Publication Date Title
CN116836576B (zh) 一种陶瓷微球包覆铁钴镍钐钕高熵涂层及其制备方法
CN103396762B (zh) 一种吸波材料的制备方法及其所制得的吸波材料
CN113717690B (zh) 应用于雷达c波段的高导热型复合吸波材料及其制备方法
RU2370866C1 (ru) Радиопоглощающее покрытие
CN114032067B (zh) 一种CoFe@C/rGO电磁波吸收复合材料及其制备方法
AU2014333783A1 (en) Electromagnetic field absorbing composition
CN108892502B (zh) 一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法
CN117509744A (zh) 一种耐高温双核壳型电-磁损耗协同片状羰基铁粉吸波剂及其制备方法
CN108219663B (zh) 含核壳型吸波颗粒的电控智能吸波涂层材料
CN105131901A (zh) 均匀核壳复合材料PPy@PANI及其制备方法
CN116676568A (zh) 一种玻璃微球包覆铁钴镍中熵涂层及其制备方法
CN112080717A (zh) 一种耐高温复合吸波材料及其制备方法
CN116004184B (zh) 一种纳米金属氧化物/碳复合吸波材料及其制备方法
CN109880590B (zh) Fe3Al@Al2O3吸收剂及其制备方法及吸波胶带
CN109179490B (zh) 一种镧掺杂二氧化锡空心多孔微纳米球及其制备方法和应用
CN115368166A (zh) 一种陶瓷微球包覆镍涂层及其制备方法
CN110947950B (zh) 一种石墨烯改性FeCo吸收剂的制备方法
CN114314678A (zh) 一种花状Fe3O4/Ti3C2Tx复合吸波剂及其制备方法
CN109894611B (zh) 一种化学镀Cu铁钴基复合耐腐蚀吸波材料及其制备方法和应用
Qing et al. Effect of heat treatment on the microwave electromagnetic properties of carbonyl iron/epoxy-silicone resin coatings
CN117720099B (zh) 一种隐身颜料及其制备方法和在柔性多谱段兼容光学隐身涂层中的应用
RU2228565C1 (ru) Радиопоглощающее покрытие и способ его получения
CN118249097A (zh) 一种多层片状结构磁性金属/二氧化钛/碳化钛复合材料及其制备方法
Yamashita Effect of magnetic field on plasma characteristics of built‐in high‐frequency coil type sputtering apparatus
CN109065420A (zh) 一种具有三维结构表面的热阴极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant