CN116761483A - 一种钙钛矿薄膜制备方法及叠层太阳能电池 - Google Patents

一种钙钛矿薄膜制备方法及叠层太阳能电池 Download PDF

Info

Publication number
CN116761483A
CN116761483A CN202311039030.9A CN202311039030A CN116761483A CN 116761483 A CN116761483 A CN 116761483A CN 202311039030 A CN202311039030 A CN 202311039030A CN 116761483 A CN116761483 A CN 116761483A
Authority
CN
China
Prior art keywords
layer
substrate
textured
perovskite
suede
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311039030.9A
Other languages
English (en)
Inventor
请求不公布姓名
易海芒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Heijing Optoelectronic Technology Co ltd
Original Assignee
Shenzhen Heijing Optoelectronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Heijing Optoelectronic Technology Co ltd filed Critical Shenzhen Heijing Optoelectronic Technology Co ltd
Priority to CN202311039030.9A priority Critical patent/CN116761483A/zh
Publication of CN116761483A publication Critical patent/CN116761483A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供的钙钛矿薄膜制备方法,在钙钛矿成膜工序里添加了超声辅助的反溶剂水浴法,促进了钙钛矿薄膜在绒面基底上更好的形成。该方法能够进一步萃取出绒面基底上残留的有机溶剂和添加剂,防止膜内缺陷的形成,提升钙钛矿薄膜的质量,提高器件性能,和稳定性。通过该方法制备的叠层太阳能电池中的膜内缺陷密度明显减少,拥有更高的开路电压以及短路电流密度,提升了器件的稳定以及光电转化效率。

Description

一种钙钛矿薄膜制备方法及叠层太阳能电池
技术领域
本发明主要涉及太阳能电池技术领域,具体涉及一种钙钛矿薄膜制备方法及晶硅叠层太阳能电池。
背景技术
太阳能作为被重视的新型清洁能源之一,具有资源量大、成本低廉的优势。利用光伏电池将太阳能转化为电能,是目前最有效利用太阳能的方式之一。其中,单晶硅、多晶硅等太阳能电池已有比较成熟的产业化技术。而近年来,钙钛矿太阳能电池受到科学界和工业界的广泛关注,该电池具有带隙可调节、激子束缚力小、光电转换效率高等优势。
目前现有的大部分晶硅/钙钛矿叠层太阳电池,都是基于抛光的晶硅底电池所制备的。这是因为现有的钙钛矿成膜方法一般都是针对抛光基底的,然而,现阶段已经大规模商业化的晶硅电池的表面大多为绒面。绒面可以大大减少器件对于入射光的反射,提升光吸收,是高效太阳能电池不可或缺的条件之一。因此,目前基于抛光晶硅底电池的晶硅/钙钛矿叠层太阳电池,普遍拥有较大的吸光损失,而有较低的短路电流密度。
就此而言,使用绒面晶硅基底是进一步提高晶硅/钙钛矿叠层太阳电池的性能的必然选项。比如公开号为CN112151634A的一篇专利公开了一种在具有绒面的晶硅太阳能电池涂敷钙钛矿材料的方法,在已完成清洗的绒面晶硅电池层上涂敷钙钛矿前驱液体,退火得到钙钛矿层。然而对于绒面基底来说,因为其特有的基底不平整性,很容易导致钙钛矿前驱体溶液分布不均匀。当钙钛矿在绒面基底之上成膜烘干时,一些有机溶剂以及添加剂更容易残留在薄膜内,而造成大量缺陷,影响器件的性能。
发明内容
本发明的目的在于克服现有晶硅钙钛矿叠层太阳能电池中在绒面晶硅太阳能电池上形成钙钛矿层容易导致溶剂残留的问题,提出了一种钙钛矿薄膜制备方法及叠层太阳能电池,通过在钙钛矿薄膜形成的工艺中加入超声辅助的反溶剂水浴法,促进了钙钛矿薄膜在绒面基底上更好的形成,进一步萃取出绒面结构中残留的有机溶剂和添加剂,防止膜内缺陷的形成,提高器件的稳定性和光电转化效率。
为达成上述目的,本发明提供的具体方案如下:
一种钙钛矿薄膜制备方法,包括步骤:
提供一绒面基底,在所述绒面基底的表面上形成钙钛矿吸收层;
将所述绒面基底浸入反溶剂中进行水浴加热,同时对其进行超声处理,结束后,取出所述绒面基底并进行干燥处理;
其中,所述反溶剂包括甲苯(Tol)、氯苯(CB)、乙酸乙酯(EA),异丙醇(IPA)中的至少一种;
具体地,所述水浴加热的温度为25~80℃,所述超声处理的功率为5~300W,超声时间为5~60min;
具体地,所述干燥的温度为40~200℃,干燥时间为0~30min。
在一个实施例中,所述绒面基底的制备包括:
提供一绒面硅衬底,在所述绒面硅衬底的一面依次制备基底钝化层、P型基底掺杂层以及第一导电层,在所述绒面硅衬底的另一面依次制备基底表面钝化层、N型基底掺杂层、隧穿层以及空穴传输层,得到所述绒面基底,其中所述钙钛矿吸收层在所述空穴传输层上形成;
具体地,所述第一导电层包括在P型掺杂层上依次形成的第一导电透明层及第一金属电极层。
在一个实施例中,所述钙钛矿薄膜制备方法还包括在所述钙钛矿吸收层的表面上依次形成钝化层、电子传输层、缓冲层以及第二导电层;
具体地,所述第二导电层包括在所述缓冲层上依次形成的第二导电透明层及第二金属电极层。
本发明还提供一种上述方法制备的叠层太阳能电池,包括绒面基底;以及依次设置在所述绒面基底表面上的钙钛矿吸收层、钝化层、电子传输层、缓冲层以及第二导电层;
具体地,所述第二导电层包括在所述缓冲层上依次设置的第二导电透明层及第二金属电极层;
所述绒面基底包括绒面晶硅层;以及在所述绒面晶硅层一表面上依次设置的隧穿层及空穴传输层,所述钙钛矿吸收层设置在所述空穴传输层上;以及在所述绒面晶硅层的另一表面上设置的第一导电层;
具体地,所述第一导电层包括在所述绒面晶硅层的表面上依次设置的第一导电透明层及第一金属导电层;
具体地,所述绒面晶硅层包括绒面硅衬底;以及在所述绒面硅衬底一表面上依次设置的基底钝化层、P型基底掺杂层,所述第一导电层设置在所述P型基底掺杂层上;以及在所述绒面硅衬底的另一面上依次制备的基底表面钝化层、N型基底掺杂层,所述隧穿层设置在所述N型基底掺杂层上。
本发明提供的钙钛矿薄膜制备方法,在钙钛矿成膜工序里添加了超声辅助的反溶剂水浴法,促进了钙钛矿薄膜在绒面基底上更好的形成。该方法能够进一步萃取出绒面基底上残留的有机溶剂和添加剂,防止膜内缺陷的形成,提升钙钛矿薄膜的质量,提高器件性能,和稳定性。通过该方法制备的叠层太阳能电池中的膜内缺陷密度明显减少,拥有更高的开路电压以及短路电流密度,提升了器件的稳定以及光电转化效率。
附图说明
图1为本发明实施例中一种钙钛矿薄膜制备方法步骤示意图;
图2为本发明实施例中一种叠层太阳能电池结构示意图。
1、绒面基底;2、钙钛矿吸收层;3、残留溶剂;20、钙钛矿膜层;
10、第一导电层;11、绒面晶硅层;12、隧穿层;13、空穴传输层;21、钝化层;22、电子传输层;23、缓冲层、24、第二导电层;
101、第一金属电极层;102、第一导电透明层;111、P型基底掺杂层;112、基底钝化层;113、绒面硅衬底;114、基底表面钝化层;115、N型基底掺杂层;241、第二导电透明层;242、第二金属电极层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上;术语“中心”、“纵向”、“横向”、“上”、“下”、“左”、“右”、“内”、“外”、“前端”、“后端”、“头部”、“尾部”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
请参阅图1,本发明实施例提供一种钙钛矿薄膜制备方法,包括步骤:
提供一绒面基底1,在所述绒面基底1的表面上形成钙钛矿吸收层2;
将所述绒面基底1浸入反溶剂中进行水浴加热,同时对其进行超声处理,结束后,取出所述绒面基底1并进行干燥处理。
在一个实施例中,所述钙钛矿吸收层2采用的旋涂法,具体为,制备钙钛矿前驱液,将钙钛矿前驱液均匀涂覆在绒面基底1的表面,然后使用反溶剂进行动态旋涂,旋涂转速为1200-6000rpm,旋涂时间为20-120s,反溶剂滴定时间为开始转速后的10-50s,旋涂结束后,得到钙钛矿膜层20,然后进行退火操作,退火温度为50-150℃,退火时间为5-40 min,最终得到钙钛矿吸收层2。
所述钙钛矿吸收层2也可以采用闪蒸法,具体为,制备钙钛矿前驱液,将钙钛矿前驱液均匀涂覆在绒面基底1的表面,进行闪蒸操作,闪蒸时间为10-60s,闪蒸温度为0-100℃,闪蒸结束后,得到钙钛矿膜层20,进行退火处理,退火温度为50-150℃,退火时间为5-40min,最终得到钙钛矿吸收层2。
上面所述钙钛矿前驱液的溶质具体为ABX3结构,A位为有机阳离子,包括CH3NH3 +(MA+ )、NH2CH=NH2 + (FA+)、CH3CH2NH3 +或Cs+中的至少一种;
B位是金属阳离子,包括Pb2+、Sn2+中的至少一种;
X位是卤素阴离子,包括F-、Cl-、Br-、I-中的至少一种;
利用化学计量比进行调节并与有机溶剂进行溶解,浓度在1.5-2 M之间;
有机溶剂包括二甲基甲酰胺 (DMF)、G-丁内酯 (GBL)、二甲基亚砜 (DMSO)和N,N-二甲基乙酰胺 (DMA)中的至少一种。
在本实施例中,所述绒面基底1为表面上具有绒面结构的层膜,在太阳能电池的生产应用中,绒面结构的不规则表面可以使得太阳光在表面的反射次数增加,可以有效地降低太阳能电池地表面反射率,提高器件的光吸收系数,从而来增加器件的光电转化效率,本申请所述的绒面基底1具有绒面结构同样可以起到减少光反射的效果。
然而在利用钙钛矿前驱体溶液形成钙钛矿吸收层2的过程中,由于绒面基底1上的绒面结构,会使得部分残留溶剂3残留在所述绒面基底1和钙钛矿吸收层2的界面处,若是无法进一步的清理掉,会造成膜内缺陷的形成,降低器件的性能。
在本发明实施例中,利用反溶剂水浴加热的方法可以将残留溶剂3从界面中萃取出来,减少界面的溶剂残留,同时利用超声对其进行处理,不仅可以加快残留溶剂3被萃取的效率,还能进一步促进钙钛矿吸收层2在绒面基底1的结构优化,提升膜层的质量,从而提高器件的性能和稳定性。
其中,所述反溶剂包括甲苯(Tol)、氯苯(CB)、乙酸乙酯(EA),异丙醇(IPA)中的至少一种;
具体地,所述水浴加热的温度为25~80℃,所述超声处理的功率为5~300W,超声时间为5~60min;
具体地,所述干燥的温度为40~200℃,干燥时间为0~30min。
在一个实施例中,所述绒面基底1的制备包括:提供一绒面硅衬底113,在所述绒面硅衬底113的一面依次制备基底钝化层112、P型基底掺杂层111以及第一导电层10,在所述绒面硅衬底113的另一面依次制备基底表面钝化层114、N型基底掺杂层115、隧穿层12以及空穴传输层13,得到所述绒面基底1,其中所述钙钛矿吸收层2在所述空穴传输层13上形成,所述第一导电层10包括在所述P型基底掺杂层111上依次形成的第一导电透明层102及第一金属电极层101。
在本实施例中,所述绒面硅衬底113的表面上具有绒面,在该基础上,形成在所述绒面硅衬底113两个表面的各个膜层同样具有绒面结构;具体地,所述绒面硅衬底113的绒面可以通过碱溶液对硅片进行各向异性腐蚀制备而成。
在所述绒面硅衬底113两个表面形成的基底钝化层112和基底表面钝化层114均是钝化结构,可以饱和半导体表面处的悬挂键,降低表面活性,增加表面的清洁程序 ,避免由于表面层引入杂质而形成复合中心,由此来降低少数载流子的表面复合速率;具体地,所述基底钝化层112和基底表面钝化层114可以采用气相沉积法、原子层沉积法等方法形成。
在本实施例中,所述P型基底掺杂层111和N型基底掺杂层115可以采用扩散的方式形成,具体地,采用磷源/氮源在绒面硅衬底113上进行扩散形成掺杂结构,分别得到所述P型基底掺杂层111和N型基底掺杂层115。
所述第一导电透明层102可以采用磁控溅射法,将待制备的基底样片置于磁控溅射设备中,控制功率在50~200W之间,设置靶材,溅射形成所述第一导电透明层102;所述第一金属电极层101层采用蒸镀法,将待制备的基底样片放置于掩模板上进行蒸镀,蒸镀真空度为5×10-5~2×10-4 Pa,蒸镀温度在500~2000℃,蒸发速率为0.1~5 Å/S,蒸镀金属材料从而形成所述第一金属电极层101。
在本实施例中,所述隧穿层12采用采用原子层沉积法、磁控溅射法或湿化学法的其中一种制备,可以消除晶硅电池和钙钛矿电池直接串联所产生的电性不匹配和器件不稳定的问题。
在本实施例中,所述空穴传输层13采用旋涂法制备,将空穴传输层分散液均匀涂覆在所述隧穿层12的表面,旋涂转速为1000-5000rpm,旋涂时间为10-100s,旋涂结束后,进行退火操作,退火温度为300-600℃,退火时间为10-50 min,得到空穴传输层13。
在本实施例中,所述空穴传输层13还可以采用磁控溅射法制备,将待制备的基底样片置于磁控溅射设备中,控制功率为30-90W,溅射得到所述空穴传输层13。
在一个实施例中,所述钙钛矿薄膜制备方法还包括在所述钙钛矿吸收层2的表面上依次形成钝化层21、电子传输层22、缓冲层23以及第二导电层24,所述第二导电层24包括在所述缓冲层23上依次形成的第二导电透明层241及第二金属电极层242。
所述钝化层21可以采用蒸镀法制备,将钝化层材料蒸发至所述钙钛矿吸收层2的表面,蒸镀真空度为1~5×10-4 Pa,蒸镀温度在50~400℃,蒸发速率在0.05-1 Å/S,蒸发结束后,进行退火操作,退火温度为0-150℃,退火时间为0-30 min,得到所述钝化层21。
所述钝化层21还可以采用旋涂法制备,将钝化层分散液均匀涂覆在钙钛矿吸收层2的表面,进行超声溶解并旋涂,超声时间为0-30 min,旋涂转速为1000-7000rpm,旋涂时间为20-120s;旋涂结束后,进行退火操作,退火温度为40-160℃,退火时间为5-40 min,得到所述钝化层21。
所述钝化层21还可以采用喷涂法制备,将钝化层分散液喷涂在钙钛矿吸收层的表面,喷涂速率为1-100 cm/s,喷涂结束后,进行退火操作,退火温度为20-170℃,退火时间为0-30 min,得到所述钝化层21。
所述钝化层21用于降低所述钙钛矿吸收层的表面活性,使表面的载流子复合效率降低,从而来提高器件的光电转化效率。
所述电子传输层22采用旋涂法制备,将电子传输层分散液均匀涂覆在所述钝化层21的表面,旋涂转速为500-4000rpm,旋涂时间为10-80s,得到所述电子传输层22。
所述电子传输层22还可以采用蒸镀法制备,将电子传输层材料蒸发至所述钝化层21的表面,蒸镀真空度为5×10-5~5×10-4 Pa,蒸镀温度在100-400℃,蒸发速率在0.05-1Å/S,得到所述电子传输层22。
所述缓冲层23采用原子层沉积法制备,将缓冲层材料利用原子层沉积设备沉积至所述电子传输层22的表面,沉积真空度为0~1×104 Pa,沉积管道温度在50~150℃之间,沉积腔室温度为40~150℃,得到所述缓冲层23。
所述缓冲层23还可以采用蒸镀法制备,将缓冲层材料蒸发至所述电子传输层22的表面,蒸镀真空度为6×10-5~4×10-4 Pa,蒸镀温度在100~500℃,蒸发速率在0.05~1 Å/S,得到所述缓冲层23。
在本实施例中,所述第二导电层24可以采用与所述第一导电层10一样的方法制备,具体地,所述第二导电透明层241可以采用磁控溅射法,将待制备的基底样片置于磁控溅射设备中,控制功率在50~200W之间,设置靶材,溅射形成所述第二导电透明层241;所述第一金属电极层242采用蒸镀法,将待制备的基底样片放置于掩模板上进行蒸镀,蒸镀真空度为5×10-5~2×10-4 Pa,蒸镀温度在500~2000℃,蒸发速率为0.1~5 Å/S,蒸镀金属材料从而形成所述第二金属电极层242。
本实施例提供的钙钛矿薄膜制备方法,在绒面基底1上制备完钙钛矿吸收层2之后,通过超声辅助的水浴加热法对该绒面基底1进行处理,萃取出绒面基底1和钙钛矿吸收层2界面处的残留溶剂3,同时对界面的膜层结构进一步的改善,减少膜内缺陷的形成,从而提高了器件的性能及稳定性。
请参阅图2,本发明实施例还提供一种由上述钙钛矿薄膜制备方法得到的叠层太阳能电池,包括绒面基底1;以及依次设置在所述绒面基底表面上的钙钛矿吸收层2、钝化层21、电子传输层22、缓冲层23以及第二导电层24。
具体地,所述第二导电层24包括在所述缓冲层23上依次设置的第二导电透明层241及第二金属电极层242。
在本实施例中,所述绒面基底1的表面上为绒面结构,因此,在所述绒面基底1表面上形成的钙钛矿吸收层2、钝化层21、电子传输层22、缓冲层23以及第二导电层24同样为具有绒面结构的膜层,绒面结构的不规则表面可以使得太阳光在表面的反射次数增加,可以有效地降低太阳能电池地表面反射率,提高器件的光吸收系数,从而来增加器件的光电转化效率。
在本实施例中,所述钙钛矿吸收层2具体为ABX3结构,A位为有机阳离子,包括CH3NH3 +(MA+ )、NH2CH=NH2 + (FA+)、CH3CH2NH3 +或Cs+中的至少一种;
B位是金属阳离子,包括Pb2+、Sn2+中的至少一种;
X位是卤素阴离子,包括F-、Cl-、Br-、I-中的至少一种。
所述钙钛矿吸收层2上的钝化层21可以降低所述钙钛矿吸收层2的表面活性,使表面的载流子复合效率降低,从而来提高器件的光电转化效率;具体地,所述钝化层21为丙二胺碘、丙二胺溴(PDADBr)、丁基氯化胺(BACl)、丁基溴化胺(BABr)、丁基碘化胺(BAI)、N,N-二甲基-1,3-丙二胺盐酸盐 (DMePDADCl)、十二二胺溴(DDDADBr)、氟化镁、氟化锂(LiF)、氟化钠(NaF) 中的至少一种组成。
所述电子传输层22可有效地起到运输电子并阻挡空穴的作用,具体地,所述电子传输层采用氧化锌(ZnO)、二氧化锡(SnO2)、二氧化钛(TiO2)、[6 ,6]-苯基C61丁酸甲酯(PC61BM)、碳60(C60)、2,9-二甲基-4,7-二苯基-1,10-菲啰啉(BCP)中的至少一种组成。
所述缓冲层23可有效改善界面间的能带失配、载流子复合及化学反应等问题, 进而提高钙钛矿电池中的电荷分离及收集效率, 实现界面及稳定性问题的有效改善,具体地,所述缓冲层23采用氧化锌(ZnO)、二氧化锡(SnO2)、二氧化钛(TiO2) 中的至少一种组成。
所述第二导电层24由第二导电透明层241及第二金属电极层242组成,起到导通电子并输出电流的作用,具体地,所述第二金属电极层242采用银(Ag)、金(Au)、铜(Cu)、铝(Al)、碳(C)中的至少一种组成;所述第二导电透明层241采用氧化铟锡(ITO)、铟锌氧化物(IZO)、氧化锌铝(AZO)中的至少一种。
在本实施例中,所述绒面基底1包括绒面晶硅层11;以及在所述绒面晶硅层11一表面上依次设置的隧穿层12及空穴传输层13,所述钙钛矿吸收层2设置在所述空穴传输层13上;以及在所述绒面晶硅层11的另一表面上设置的第一导电层10,所述第一导电层10包括在所述绒面晶硅层11的表面上依次设置的第一导电透明层102及第一金属导电层101。
具体地,所述绒面晶硅层11包括绒面硅衬底113;以及在所述绒面硅衬底113一表面上依次设置的基底钝化层112、P型基底掺杂层111,所述第一导电层10设置在所述P型基底掺杂层111上;以及在所述绒面硅衬底113的另一面上依次制备的基底表面钝化层114、N型基底掺杂层115,所述隧穿层12设置在所述N型基底掺杂层115上。
所述隧穿层12可以采用二氧化硅等氧化物组成,可以在叠层电池的接触位置处产生隧穿电流,联接两个子电池。
所述空穴传输层13为聚[双 (4 苯基)(2,4,6 三甲基苯基)胺](PTAA)、聚-3己基噻吩(P3HT)、氧化镍(NiOx)、氧化钼(MoOx)、碘化亚铜(CuI)、硫氰酸亚铜(CuSCN)中的至少一种,可以起到传输空穴并阻挡电子传输的作用。
在本实施例中,所述空穴传输层13、钙钛矿吸收层2、钝化层21及电子传输层22组成一钙钛矿电池;所述P型基底掺杂层111、基底钝化层112、绒面硅衬底113、基底表面钝化层114及N型基底掺杂层115构成绒面晶硅层11,所述绒面晶硅层11为一种晶硅电池,具体地,可以选择单晶硅、多晶硅或者非晶硅半导体形成的晶硅电池。通过隧穿层12连接两个电池形成串联结构,可以实现优异的表面钝化和载流子的选择性收集,从而提高器件的性能。
本发明提供一种叠层太阳能电池,包括绒面基底1、钙钛矿吸收层2、钝化层21、电子传输层22、缓冲层23以及第二导电层24,利用超声辅助的水浴加热的方法处理制备好钙钛矿吸收层2的绒面基底1,减少矿钙钛矿吸收层2与绒面基底1接触界面处的溶剂残留,降低了膜内缺陷,进一步改善了钙钛矿吸收层2与绒面基底1接触界面的结构,从而提高器件的性能和稳定性。
下面提供具体的实施例及对比例对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
提供一种叠层太阳能电池,包括第一金属电极层101、第一导电透明层102、P型基底掺杂层111、基底钝化层112、绒面硅衬底113、基底表面钝化层114、N型基底掺杂层115、隧穿层12、空穴传输层13、钙钛矿吸收层2、钝化层21、电子传输层22、缓冲层23、第二导电透明层241、第二金属电极层242,采用如下方法制备,包括步骤:
步骤一:提供一绒面硅衬底113,在所述绒面硅衬底113背面依次制备基底钝化层112和P型基底掺杂层111,另一表面依次制备基底表面钝化层114和N型基底掺杂层115;
步骤二:利用磁控溅射法,设置ITO靶材,控制功率为60W,运行时间为1.5h,在P型基底掺杂层111上形成第一导电透明层102;
步骤三:利用蒸镀法,将上一步骤制备的基底样片放入蒸镀机腔室,待蒸镀真空度为2×10-4 Pa时进行蒸镀,调节蒸镀电压至蒸发温度,控制蒸发速率在2.5 Å/S,将银蒸镀至所述第一导电透明层102,得到第一金属电极层101;
步骤四:利用磁控溅射法,将上一步骤制备的基底样片置于掩模版后放置于磁控溅射设备中,控制功率为60W,运行时间为1h,在N型基底掺杂层115上形成隧穿层12,所述隧穿层12为二氧化硅;
步骤五:将上一步骤制备的基底样片采用UV-Ozone处理15 min,利用旋涂法,配备空穴传输层分散液,称取0.05 mol NiOx粉末溶解于1 ml超纯水中,超声震荡20 min;将空穴传输层分散液均匀涂覆在所述隧穿层12的表面,设置旋涂转速为2000rpm,旋涂时间为40s,溶液量为100ul;旋涂结束后,进行退火操作,退火温度为450℃,退火时间为30 min,得到空穴传输层13;
步骤六:利用闪蒸法,配备钙钛矿前驱液,称量钙钛矿粉末溶解于 1 ml DMF和DMSO溶剂中,溶剂比例为8:2,磁力搅拌30 min,随后将上一步骤制备的基底样片置于旋涂仪基台上,设置旋涂转速为3500rpm,旋涂时间为30s,钙钛矿前驱液溶液量为120ul涂覆在所述空穴传输层13的表面,旋涂结束后,将样片放置于闪蒸台上,设置闪蒸时间为30s,闪蒸温度为30℃,闪蒸结束后进行退火处理,设置退火温度为100℃,退火时间为15 min,得到钙钛矿吸收层2;使用超声反溶剂水浴法,基底样片浸入1L氯苯反溶剂水浴,同时对水浴进行超声处理,超声时间为10min,超声温度为60℃,超声功率为25W;超声结束后,进行退火操作,退火温度为100℃,退火时间为5min;
步骤七:利用蒸镀法,称取3 mg丙二胺碘放置于坩埚中,将上一步骤制备的基底样片放置于掩模版上,放入蒸镀机腔室,待蒸镀真空度为2×10-4 Pa时进行蒸镀,调节蒸镀电压至蒸发温度,控制蒸发速率在0.1Å/S,将丙二胺碘蒸镀至所述钙钛矿吸收层2上,结束后设置退火台温度为100℃,进行8min退火操作,得到所述钝化层21;
步骤八:利用蒸镀法,将上一步骤制备的基底样片放置于掩模版上,放入蒸镀机腔室,待蒸镀真空度为1×10-4 Pa时进行蒸镀,调节蒸镀电压至蒸发温度,控制蒸发速率在0.1-0.15Å/S,将C60蒸镀至所述钝化层21上,得到电子传输层22;
步骤九:利用原子层沉积法,设置原子层沉积设备真空度为0.5×104 Pa,沉积管道温度在60℃,沉积腔室温度70℃,将SnO2蒸镀至所述电子传输层22上,得到缓冲层23;
步骤十:利用磁控溅射法,设置IZO靶材,控制功率为50W,运行时间为1h,在所述缓冲层23上形成第二导电透明层241;
步骤十一:利用蒸镀法,将上一步骤制备的基底样片放入蒸镀机腔室,待蒸镀真空度为2×10-4 Pa时进行蒸镀,调节蒸镀电压至蒸发温度,控制蒸发速率在2.5 Å/S,将银蒸镀至所述第二导电透明层241,得到第二金属电极层242,最终得到一种叠层太阳能电池。
实施例2
提供一种叠层太阳能电池,与实施例1具有同样的器件结构,但制备方法与实施例1的区别在于步骤六中的超声反溶剂水浴法采用的反溶剂为异丙醇。
比较例1
提供一种叠层太阳能电池,与实施例1的区别在于绒面硅衬底改为抛光硅衬底,具体包括第一金属电极层、第一导电透明层、P型基底掺杂层、基底钝化层、抛光硅衬底、基底表面钝化层、N型基底掺杂层、隧穿层、空穴传输层、钙钛矿吸收层、钝化层、电子传输层、缓冲层、第二导电透明层、第二金属电极层,制备的方法与实施例1一致。
对比例2
提供一种叠层太阳能电池,与实施例1具有同样的器件结构,但制备方法与实施例1的区别在于移除了步骤六中的超声反溶剂水浴法。
利用太阳光模拟器,进行一个标准太阳光强校准,并对面积为1.0 cm2的以上实施例及对比例得到器件进行IV测试,设置起始电压为1.95V,截止电压为0V,量程为100 mA,结果保留两位小数,其测试结果如下表所示:
器件 光电转化效率(%) 开路电压(v) 短路电流密度(mA/cm2 衰减率/稳定性(%/year)
实施例1 31.25 1.98 20.5 0.8
实施例2 30.33 1.96 20.2 1.5
对比例1 29.88 1.97 19.2 0.9
对比例2 27.65 1.82 20.1 6.5
从多个实施例及对比例对比可知,实施例1、2明显有更高的光电转化效率,实施例1、2及对比例2相对于对比例1有更高的短路电流,实施例1、2及对比例1相对于对比例2有更低的衰减率。因此从实验结果我们可知,对比例3由于没有采用超声辅助的反溶剂水浴法对基底样片进行处理,膜内缺陷较多,稳定性较差;而实施例1、2采用超声辅助的反溶剂水浴法对基底样片进行处理,成膜效果更好,膜内缺陷较少,明显有着更高的光电转化效率和短路电流密度。
本发明旨在提供一种基于绒面晶硅基底上的钙钛矿薄膜制备方法及晶硅/钙钛矿叠层太阳能电池,在绒面基底上制备完钙钛矿吸收层之后,采用超声辅助的反溶剂水浴法,进一步萃取出绒面基底上残留的有机溶剂和添加剂,防止膜内缺陷的形成,提升钙钛矿薄膜的质量,提高器件性能和稳定性。
上述实施例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对这些实施例进行多种变化、修改、替换和变形,这些对本发明权利要求进行等同替换后的技术方案,均落于本发明的保护范围,本发明的保护范围由所附权利要求及其等同物限定。

Claims (10)

1.一种钙钛矿薄膜制备方法,其特征在于,包括步骤:
提供一绒面基底,在所述绒面基底的表面上形成钙钛矿吸收层;
将所述绒面基底浸入反溶剂中进行水浴加热,同时对其进行超声处理,结束后,取出所述绒面基底并进行干燥处理。
2.根据权利要求1所述的钙钛矿薄膜制备方法,其特征在于,所述水浴加热的温度为25~80℃,所述超声处理的功率为5~300W,超声时间为5~60min;所述干燥的温度为40~200℃,干燥时间为0~30min。
3.根据权利要求1所述的钙钛矿薄膜制备方法,其特征在于,所述反溶剂包括甲苯(Tol)、氯苯(CB)、乙酸乙酯(EA),异丙醇(IPA)中的至少一种。
4.根据权利要求1~3任一项所述的钙钛矿薄膜制备方法,其特征在于,所述绒面基底的制备包括:
提供一绒面硅衬底,在所述绒面硅衬底的一面依次制备基底钝化层、P型基底掺杂层以及第一导电层,在所述绒面硅衬底的另一面依次制备基底表面钝化层、N型基底掺杂层、隧穿层以及空穴传输层,得到所述绒面基底,其中所述钙钛矿吸收层在所述空穴传输层上形成。
5.根据权利要求4所述的钙钛矿薄膜制备方法,其特征在于,所述第一导电层包括在P型基底掺杂层上依次形成的第一导电透明层及第一金属电极层。
6.根据权利要求1~3任一项所述的钙钛矿薄膜制备方法,其特征在于,所述钙钛矿薄膜制备方法还包括在所述钙钛矿吸收层的表面上依次形成钝化层、电子传输层、缓冲层以及第二导电层。
7.根据权利要求6所述的钙钛矿薄膜制备方法,其特征在于,所述第二导电层包括在所述缓冲层上依次形成的第二导电透明层及第二金属电极层。
8.一种叠层太阳能电池,采用权利要求1~7所述的钙钛矿薄膜制备方法制备而成,其特征在于,包括绒面基底;以及依次设置在所述绒面基底表面上的钙钛矿吸收层、钝化层、电子传输层、缓冲层以及第二导电层。
9.根据权利要求8所述的叠层太阳能电池,其特征在于,所述绒面基底包括绒面晶硅层;以及在所述绒面晶硅层一表面上依次设置的隧穿层及空穴传输层,所述钙钛矿吸收层设置在所述空穴传输层上;以及在所述绒面晶硅层的另一表面上设置的第一导电层。
10.根据权利要求9所述的叠层太阳能电池,其特征在于,所述绒面晶硅层包括绒面硅衬底;以及在所述绒面硅衬底一表面上依次设置的基底钝化层、P型基底掺杂层,所述第一导电层设置在所述P型基底掺杂层上;以及在所述绒面硅衬底的另一面上依次制备的基底表面钝化层、N型基底掺杂层,所述隧穿层设置在所述N型基底掺杂层上。
CN202311039030.9A 2023-08-17 2023-08-17 一种钙钛矿薄膜制备方法及叠层太阳能电池 Pending CN116761483A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311039030.9A CN116761483A (zh) 2023-08-17 2023-08-17 一种钙钛矿薄膜制备方法及叠层太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311039030.9A CN116761483A (zh) 2023-08-17 2023-08-17 一种钙钛矿薄膜制备方法及叠层太阳能电池

Publications (1)

Publication Number Publication Date
CN116761483A true CN116761483A (zh) 2023-09-15

Family

ID=87948238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311039030.9A Pending CN116761483A (zh) 2023-08-17 2023-08-17 一种钙钛矿薄膜制备方法及叠层太阳能电池

Country Status (1)

Country Link
CN (1) CN116761483A (zh)

Similar Documents

Publication Publication Date Title
CN111599923A (zh) 一种提高钙钛矿太阳能电池效率的方法
CN110335945B (zh) 一种双电子传输层无机钙钛矿太阳能电池及其制法和应用
WO2023155562A1 (zh) 一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法
CN117715485A (zh) 一种多孔溶解制备钙钛矿薄膜的方法及叠层太阳能电池
CN115117247A (zh) 一种钙钛矿太阳能电池及其制备方法
CN116669443B (zh) 一种图形化电子传输层的叠层太阳能电池及制备方法
CN219998239U (zh) 一种图形化隧穿层的叠层太阳能电池
CN111933802B (zh) 离子液体于制备钙钛矿光敏层、钙钛矿太阳能电池的用途
CN220023501U (zh) 一种晶硅/钙钛矿叠层太阳能电池
CN111063806B (zh) 一种钙钛矿太阳能电池及其制备方法
CN116634823A (zh) 一种制备钝化层的方法及晶硅/钙钛矿叠层太阳能电池
CN116801652A (zh) 一种晶硅钙钛矿叠层太阳能电池及制备方法
CN109888097A (zh) 一种钙钛矿薄膜的制备方法及以此为基础制备的太阳能电池
CN116234331A (zh) 基于苯甲酰胺溴修饰的钙钛矿太阳能电池及其制备方法
CN116761483A (zh) 一种钙钛矿薄膜制备方法及叠层太阳能电池
CN116847704B (zh) 一种钙钛矿薄膜制备方法及叠层太阳能电池
CN114583061A (zh) 三维结构的无铅锡基钙钛矿薄膜及其太阳能电池的制备方法
CN117939978B (zh) 一种钙钛矿/电子传输层一体化成膜方法及叠层电池
CN117119860A (zh) 一种三元共蒸制备钙钛矿薄膜的方法及叠层太阳能电池
CN117715488A (zh) 一种高压退火制备钙钛矿薄膜的方法及叠层太阳能电池
CN117998938A (zh) 一种钙钛矿薄膜制备方法及叠层太阳能电池
CN117355190A (zh) 一种基于超声工艺的钙钛矿钝化方法及叠层太阳能电池
CN115843205B (zh) 一种钙钛矿膜层的制备方法及钙钛矿太阳能电池
CN117939978A (zh) 一种钙钛矿/电子传输层一体化成膜方法及叠层电池
CN220359678U (zh) 一种晶硅/钙钛矿叠层太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination