CN116732508B - 一种用于锂离子电池钢壳的表面防腐处理方法 - Google Patents

一种用于锂离子电池钢壳的表面防腐处理方法 Download PDF

Info

Publication number
CN116732508B
CN116732508B CN202311028810.3A CN202311028810A CN116732508B CN 116732508 B CN116732508 B CN 116732508B CN 202311028810 A CN202311028810 A CN 202311028810A CN 116732508 B CN116732508 B CN 116732508B
Authority
CN
China
Prior art keywords
lithium ion
ion battery
battery steel
steel shell
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311028810.3A
Other languages
English (en)
Other versions
CN116732508A (zh
Inventor
陈璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Ruien New Energy Technology Co ltd
Original Assignee
Jiangsu Ruien New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Ruien New Energy Technology Co ltd filed Critical Jiangsu Ruien New Energy Technology Co ltd
Priority to CN202311028810.3A priority Critical patent/CN116732508B/zh
Publication of CN116732508A publication Critical patent/CN116732508A/zh
Application granted granted Critical
Publication of CN116732508B publication Critical patent/CN116732508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • C23C22/03Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions containing phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/145Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

本发明提供一种用于锂离子电池钢壳的表面防腐处理方法,包括以下步骤:S1.将碱、氧化剂、胶体产生剂加入溶剂中,搅拌至混合均匀得到碱性钝化处理液;S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至25‑60℃后静置10‑20分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。本发明能有效提高锂离子电池钢壳表面的防腐性能。

Description

一种用于锂离子电池钢壳的表面防腐处理方法
技术领域
本发明涉及一种用于锂离子电池钢壳的表面防腐处理方法。
背景技术
锂离子电池的封装主要有三条技术路线,钢壳圆柱、铝壳方形及铝塑膜软包,其中,钢壳圆柱型锂离子电池由于其结构坚固的优点广泛应用于电动工具、无绳白色家电、家用储能、电动两轮车及电动汽车领域。这里的“钢壳”实际指代的是一类由铁镀镍板材经过冲压成型得到的圆柱壳体,并非由不锈钢构成。由于“钢壳”中的Fe/Ni在酸性电解液体系中不稳定,存在酸蚀的可能性,并由此引发一系列的锂电池自放电现象,所以如何增强“钢壳”的耐腐蚀性、降低因其引发的自放电率,成为一直困扰着钢壳圆柱锂电池制造业的行业性难题。
目前行业内“钢壳”的制造过程主要包括冲压、清洗和涂油三道工艺。其中涂油工艺也叫防锈工艺,是为了隔绝镀镍层与空气、水的接触,在表面采用一种弱碱性物质与矿物油的防锈试剂组合(一般是脂肪酸、二环己胺、壬基酚聚氧乙烯醚)对壳体表面的保护措施。经过涂油处理的钢壳在干燥空气中可以维持数年不生锈,但是在酸性电解液的持续化学腐蚀下,尤其是叠加高温因素后,表面的镍镀层会逐渐溶解,渐渐露出里面的铁,从而失去保护作用。实验数据表明,弱碱性化合物与矿物油的防锈试剂组合不能有效阻止壳体被电解液酸蚀(由高温存储10天开始自放电变成7天开始自放电,没有体现出防腐效果)。因此,亟需一种更加有效、经济的方法对“钢壳”-电解液体系提供持续的保护。
发明内容
本发明要解决的技术问题是提供一种用于锂离子电池钢壳的表面防腐处理方法,该方法能有效提高锂离子电池钢壳表面的防腐性能。
为解决上述技术问题,本发明的技术方案是:
一种用于锂离子电池钢壳的表面防腐处理方法,包括以下步骤:
S1.将碱、氧化剂、胶体产生剂加入溶剂中,搅拌至混合均匀得到碱性钝化处理液;
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至25-60℃后静置10-20分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
进一步地,本发明所述步骤S1中,碱为NaOH、KOH、RbOH、CsOH中的其中一种或几种。
进一步地,本发明所述步骤S1中,氧化剂为NaNO2、NaNO3、Na2CO3中的其中一种或几种。
进一步地,本发明所述步骤S1中,胶体产生剂为Na3PO4、Na2HPO4中的其中一种或两种。
进一步地,本发明所述步骤S1中,溶剂为水、乙醇、乙二醇、N-甲基吡咯烷酮中的其中一种或几种。
进一步地,本发明所述步骤S1中,碱、氧化剂、胶体产生剂、溶剂的质量比为(150-200):(20-30):(10-20):(800-1500)。
与现有技术相比,本发明具有以下有益效果:
1)本发明采用的碱性钝化处理液利用了金属镍与铁的布拜图(Pourbaixdiagram),即在高强度的碱性溶液中,镍/铁金属与溶液在其界面处发生表面氧化反应生成不溶的镍/铁氢氧化物和磷酸盐胶体沉淀,形成一层具有良好的耐蚀性且致密的钝化膜,对基体金属能起到隔离保护作用,且氢氧化物与磷酸盐的交替层叠使钝化膜兼具较高的强度和化学稳定性。由于该反应属于吸氧腐蚀,适量的氧化剂与加热条件一起有助于加速钝化反应的动力学,缩短处理时间的同时促进生成更厚且保护效果更强的钝化膜。
2)本发明使用的胶体产生剂——磷酸的钠盐能够通过皂化功能清洁基体表面,增加钝化膜的附着力,同时还能够通过较强的络合作用将金属表面的氧化物、氢氧化物部分转化为磷酸盐胶体,进一步提高钝化膜的致密性;此外,磷酸的钠盐还能够调节碱性钝化处理液的pH值,使其保持在适宜的碱性范围内,有利于钝化反应的进行。
3)经过本发明方法处理后的锂离子电池钢壳由高温存储10天开始自放电延后至31天内不发生自放电,表现出极佳的防腐效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的不当限定,在附图中:
图1为经过实施例1防腐处理后的锂离子电池钢壳的高温存储后的自放电率图;
图2为经过实施例2防腐处理后的锂离子电池钢壳的高温存储后的自放电率图;
图3为经过实施例3防腐处理后的锂离子电池钢壳的高温存储后的自放电率图;
图4为经过实施例4防腐处理后的锂离子电池钢壳的高温存储后的自放电率图;
图5为经过实施例5防腐处理后的锂离子电池钢壳的高温存储后的自放电率图;
图6为经过实施例6防腐处理后的锂离子电池钢壳的高温存储后的自放电率图;
图7为经过实施例7防腐处理后的锂离子电池钢壳的高温存储后的自放电率图;
图8为经过实施例8防腐处理后的锂离子电池钢壳的高温存储后的自放电率图;
图9为不经过防腐处理的锂离子电池钢壳的高温存储后的自放电率图。
具体实施方式
下面将结合具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1,按照以下步骤对锂离子电池钢壳的表面进行表面防腐处理:
S1.将150g NaOH、0g NaNO2、0 gNa3PO4加入1000mL水中,搅拌至混合均匀得到碱性钝化处理液;
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至25℃后静置15分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
采用锂离子电池钢壳在45℃高温存储后的自放电率来评价防腐效果,经测试,如图1所示,经过实施例1处理后的锂离子电池钢壳由原来高温存储10天发生自放电延后至存储16天发生自放电,表现出显著的防腐效果。
实施例2,按照以下步骤对锂离子电池钢壳的表面进行表面防腐处理:
S1.将150g NaOH、20g NaNO2、0g Na3PO4加入1000mL水中,搅拌至混合均匀得到碱性钝化处理液;
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至25℃后静置15分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
采用锂离子电池钢壳在45℃高温存储后的自放电率来评价防腐效果,经测试,如图2所示,经过实施例2处理后的锂离子电池钢壳由原来高温存储10天发生自放电延后至存储19天发生自放电,表现出显著的防腐效果。
实施例3,按照以下步骤对锂离子电池钢壳的表面进行表面防腐处理:
S1.将150g NaOH、0g NaNO2、20g Na3PO4加入1000mL水中,搅拌至混合均匀得到碱性钝化处理液;
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至25℃后静置15分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
采用锂离子电池钢壳在45℃高温存储后的自放电率来评价防腐效果,经测试,如图3所示,经过实施例3处理后的锂离子电池钢壳由原来高温存储10天发生自放电延后至存储16天发生自放电,表现出显著的防腐效果。
实施例4,按照以下步骤对锂离子电池钢壳的表面进行表面防腐处理:
S1.将150g NaOH、20g NaNO2、10g Na3PO4加入1000mL水中,搅拌至混合均匀得到碱性钝化处理液;
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至60℃后静置15分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
采用锂离子电池钢壳在45℃高温存储后的自放电率来评价防腐效果,经测试,如图4所示,经过实施例4处理后的锂离子电池钢壳由原来高温存储10天发生自放电延后至存储28天发生自放电,表现出显著的防腐效果。
实施例5,按照以下步骤对锂离子电池钢壳的表面进行表面防腐处理:
S1.将150g NaOH、30g NaNO2、10g Na3PO4加入1000mL水中,搅拌至混合均匀得到碱性钝化处理液;
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至60℃后静置15分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
采用锂离子电池钢壳在45℃高温存储后的自放电率来评价防腐效果,经测试,如图5所示,经过实施例5处理后的锂离子电池钢壳由原来高温存储10天发生自放电延后至存储31内没有发生自放电,表现出极佳的防腐效果。
实施例6,按照以下步骤对锂离子电池钢壳的表面进行表面防腐处理:
S1.将150g NaOH、30g NaNO2、20g Na3PO4加入1000mL水中,搅拌至混合均匀得到碱性钝化处理液;
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至60℃后静置15分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
采用锂离子电池钢壳在45℃高温存储后的自放电率来评价防腐效果,经测试,如图6所示,经过实施例6处理后的锂离子电池钢壳由原来高温存储10天发生自放电延后至存储31天内没有发生自放电,表现出极佳的防腐效果。
实施例7,按照以下步骤对锂离子电池钢壳的表面进行表面防腐处理:
S1.将200g NaOH、20g NaNO2、10g Na3PO4加入1000mL水中,搅拌至混合均匀得到碱性钝化处理液;
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至60℃后静置15分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
采用锂离子电池钢壳在45℃高温存储后的自放电率来评价防腐效果,经测试,如图7所示,经过实施例7处理后的锂离子电池钢壳由原来高温存储10天发生自放电延后至存储28天发生自放电,表现出较好的防腐效果。
实施例8,按照以下步骤对锂离子电池钢壳的表面进行表面防腐处理:
S1.将150g NaOH、30g NaNO2、0g Na3PO4加入1000mL水中,搅拌至混合均匀得到碱性钝化处理液;
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至60℃后静置15分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
采用锂离子电池钢壳在45℃高温存储后的自放电率来评价防腐效果,经测试,如图8所示,经过实施例8处理后的锂离子电池钢壳由原来高温存储10天发生自放电延后至存储25天发生自放电,表现出显著的防腐效果。
对比例:不对锂离子电池钢壳的表面进行表面防腐处理
采用锂离子电池钢壳在45℃高温存储后的自放电率来评价防腐效果,经测试,如图9所示,锂离子电池钢壳在高温存储10天发生自放电,表现为最弱的防腐效果。
此外,由实施例1-8的防腐效果比较可知,当碱性钝化处理液中缺少氧化剂和/或胶体产生剂时防腐效果均会有不同程度的弱化,当碱性钝化处理液中碱、氧化剂、胶体产生剂同时存在时可以达到较好的防腐效果,此外,处理温度较高时防腐效果也较好。
实施例9,按照以下步骤对锂离子电池钢壳的表面进行表面防腐处理:
S1.将160g KOH、25g NaNO3、15g Na3HPO4加入500mL水和300mL乙醇中,搅拌至混合均匀得到碱性钝化处理液;
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至50℃后静置10分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
实施例10,按照以下步骤对锂离子电池钢壳的表面进行表面防腐处理:
S1.将180g RbOH、28g NaCO3、18g Na3HPO4加入1000mL水和500mL乙二醇中,搅拌至混合均匀得到碱性钝化处理液;
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至40℃后静置16分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
实施例11,按照以下步骤对锂离子电池钢壳的表面进行表面防腐处理:
S1.将175g CsOH、24g NaNO3、16g Na3HPO4加入1200mL N-甲基吡咯烷酮中,搅拌至混合均匀得到碱性钝化处理液;
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至30℃后静置20分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (1)

1.一种用于锂离子电池钢壳的表面防腐处理方法,其特征在于:包括以下步骤:
S1.将碱、氧化剂、胶体产生剂加入溶剂中,搅拌至混合均匀得到碱性钝化处理液,碱为NaOH、KOH、RbOH、CsOH中的其中一种或几种,氧化剂为NaNO2,胶体产生剂为Na3PO4,溶剂为水、乙醇、乙二醇、N-甲基吡咯烷酮中的其中一种或几种;所述步骤S1中,碱、氧化剂、胶体产生剂、溶剂的质量比为(150-200):(20-30):(10-20):(800-1500);
S2.将锂离子电池钢壳浸泡于步骤S1得到的碱性钝化处理液中,加热至25-60℃后静置10-20分钟,取出后分别用自来水和去离子水各清洗一次,最后经过80℃热空气烘干。
CN202311028810.3A 2023-08-16 2023-08-16 一种用于锂离子电池钢壳的表面防腐处理方法 Active CN116732508B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311028810.3A CN116732508B (zh) 2023-08-16 2023-08-16 一种用于锂离子电池钢壳的表面防腐处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311028810.3A CN116732508B (zh) 2023-08-16 2023-08-16 一种用于锂离子电池钢壳的表面防腐处理方法

Publications (2)

Publication Number Publication Date
CN116732508A CN116732508A (zh) 2023-09-12
CN116732508B true CN116732508B (zh) 2023-11-21

Family

ID=87906522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311028810.3A Active CN116732508B (zh) 2023-08-16 2023-08-16 一种用于锂离子电池钢壳的表面防腐处理方法

Country Status (1)

Country Link
CN (1) CN116732508B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2329576A1 (de) * 1973-06-09 1974-12-19 Daimler Benz Ag Verfahren zur oberflaechenverbesserung von waelzkoerpern bzw. -kugeln und/oder laufbahnen von homokinetischen gelenken bzw. waelzlagern
RU1711506C (ru) * 1989-09-08 1994-08-15 ВНИИ авиационных материалов Способ получения защитного покрытия на деталях из магниевых сплавов, преимущественно крупногабаритных
JP2005097702A (ja) * 2003-09-26 2005-04-14 Shimizu:Kk 金属塗装用下地処理液および塗装方法
CN101709466A (zh) * 2009-12-08 2010-05-19 广东工业大学 化学镀镍层的碱性钝化方法
CN102002698A (zh) * 2010-11-29 2011-04-06 湘潭大学 一种镀镍电池钢壳防锈处理剂及其使用方法
CN102634804A (zh) * 2012-04-27 2012-08-15 湘潭大学 一种镀镍电池钢壳有机防锈剂及其使用方法
CN103898486A (zh) * 2013-06-04 2014-07-02 无锡市锡山区鹅湖镇荡口青荡金属制品厂 一种笔记本电脑外壳用镁合金表面化学镀镍工艺
CN109860461A (zh) * 2019-01-22 2019-06-07 欣旺达电子股份有限公司 电池外壳、电池及电池外壳的制备方法
CN211455761U (zh) * 2020-01-09 2020-09-08 康丽萍 一种具有防腐功能的锂电池外壳

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2329576A1 (de) * 1973-06-09 1974-12-19 Daimler Benz Ag Verfahren zur oberflaechenverbesserung von waelzkoerpern bzw. -kugeln und/oder laufbahnen von homokinetischen gelenken bzw. waelzlagern
RU1711506C (ru) * 1989-09-08 1994-08-15 ВНИИ авиационных материалов Способ получения защитного покрытия на деталях из магниевых сплавов, преимущественно крупногабаритных
JP2005097702A (ja) * 2003-09-26 2005-04-14 Shimizu:Kk 金属塗装用下地処理液および塗装方法
CN101709466A (zh) * 2009-12-08 2010-05-19 广东工业大学 化学镀镍层的碱性钝化方法
CN102002698A (zh) * 2010-11-29 2011-04-06 湘潭大学 一种镀镍电池钢壳防锈处理剂及其使用方法
CN102634804A (zh) * 2012-04-27 2012-08-15 湘潭大学 一种镀镍电池钢壳有机防锈剂及其使用方法
CN103898486A (zh) * 2013-06-04 2014-07-02 无锡市锡山区鹅湖镇荡口青荡金属制品厂 一种笔记本电脑外壳用镁合金表面化学镀镍工艺
CN109860461A (zh) * 2019-01-22 2019-06-07 欣旺达电子股份有限公司 电池外壳、电池及电池外壳的制备方法
CN211455761U (zh) * 2020-01-09 2020-09-08 康丽萍 一种具有防腐功能的锂电池外壳

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
深孔镀镍后处理工艺及其维护;高风雷;材料保护(第06期);第55页 *

Also Published As

Publication number Publication date
CN116732508A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
Wang et al. Stabilization perspective on metal anodes for aqueous batteries
RU2620258C2 (ru) Композиции для предварительной обработки, а также способы нанесения покрытия на электрод батареи
JP2008103132A (ja) リチウムイオン電池の集電体用アルミニウム箔及びそれを用いたリチウムイオン電池
CN105406069A (zh) 一种磷酸锰铁锂包覆处理三元材料的方法
CN108389803B (zh) 一种小塑封体集成电路的高可靠性引线框架加工工艺
CN105200509B (zh) 一种电子储能材料的清洗方法
KR102561707B1 (ko) 열 교환기를 생산하는 방법
CN116732508B (zh) 一种用于锂离子电池钢壳的表面防腐处理方法
JP2021028905A (ja) 負極に亜鉛を使用したアルカリ二次電気化学発電体
CN105349000A (zh) 一种金属表面防腐蚀涂料及其制备方法
US20230138359A1 (en) Method for composite delamination
WO2002071527A1 (fr) Procede de fabrication d'une batterie nickel-hydrogene
CN106784870A (zh) 一种锂空气电池非碳正极及其制备方法、锂空气电池
CN111916703A (zh) 一种磷酸锰铁锂/碳@石墨烯复合材料的原位合成方法
JP4832670B2 (ja) 高イオン伝導性固体電解質及び該固体電解質を使用した電気化学システム
CN115064651A (zh) 一种双功能保护层改性锌负极及其制备方法
CN108110316B (zh) 一种以水滑石层堆积的锂电池聚合物电解质及制备方法
CN103194743A (zh) 一种用于锂离子电池负极极耳的镍金属条的表面处理方法
JP2000096255A (ja) マグネシウム含有金属の低電気抵抗性皮膜処理物及びその表面処理方法
KR102364363B1 (ko) 수도커패시터용 집전체의 제조 방법
CN103065801A (zh) 固体电解电容器制备方法与应用
CN104694914A (zh) 一种锂离子电池正极腐蚀箔的表面预处理工艺
CN105349026A (zh) 一种铝合金防腐提拉溶胶及其制备方法
CN105295722A (zh) 一种铝合金防腐提拉复合铝钛溶胶及其制备方法
EP3229297B1 (en) Air battery using a positive electrode, and method of manufacturing the positive electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant