CN116732247A - 一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法 - Google Patents

一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法 Download PDF

Info

Publication number
CN116732247A
CN116732247A CN202310636152.XA CN202310636152A CN116732247A CN 116732247 A CN116732247 A CN 116732247A CN 202310636152 A CN202310636152 A CN 202310636152A CN 116732247 A CN116732247 A CN 116732247A
Authority
CN
China
Prior art keywords
detection
lamp
microfluidic
crispr
cas12b
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310636152.XA
Other languages
English (en)
Inventor
陈宇菱
高原
李业
黄�俊
胡可顺
温方举
林骏凯
黄春莹
朱楚婕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lover Health Science and Technology Development Co Ltd
Original Assignee
Zhejiang Lover Health Science and Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Lover Health Science and Technology Development Co Ltd filed Critical Zhejiang Lover Health Science and Technology Development Co Ltd
Priority to CN202310636152.XA priority Critical patent/CN116732247A/zh
Publication of CN116732247A publication Critical patent/CN116732247A/zh
Priority to CN202410281510.4A priority patent/CN118240973A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种用于对白斑综合征的基于LAMP‑CRISPR/Cas12b的微流控检测方法,本发明通过Cas12b与crRNA所形成的复合物对扩增后的靶序列进行检测,能特异性的识别并结合目标序列,有效的避免了假阳性现象;本发明的检测体系微量化,提高了检测限,检测下限可达到1copy/μL;本发明中LAMP扩增与Cas12b检测均在60℃等温条件下反应,整个检测过程不存在温度变化极大的缩短了检测时间;本发明中的微流控芯片高度集成化,可将等温LAMP扩增和Cas12b检测集成于离心式微流控芯片中,有效的避免了样品间的交叉污染以及LAMP扩增后的气溶胶污染。

Description

一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控 检测方法
技术领域
本发明属于分子生物学技术领域,具体涉及一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法。
背景技术
对虾白斑综合征(White spot syndrome virus,WSSV)是由白斑综合征病毒引起的暴发性流行病,白斑综合征病毒可通过水平和垂直传播感染中国明对虾(Fenneropenaeus chinensis)、凡纳滨对虾(Litopenaeus vannamei)等几乎所有对虾类甲壳动物,对虾生命周期各阶段全部易感,发病病程短,致死率极高。感染白斑综合征病毒对虾甲壳内表面初现点状白斑,继而逐渐扩大至头胸部和全身,致使甲壳呈白色;发病前期虾须、扇尾发红,身体消瘦,漫游于水面,发病后期病虾残胃或空胃,甲壳易脱离真皮,游动缓慢无力,致死率高达100%。白斑综合征病毒造成养殖对虾大规模死亡和巨大经济损失,成为全球对虾养殖业危害最大的一种病毒病。因此,建立灵敏、准确、快捷、方便的检测方法是减少对虾白斑综合征发生和危害的重要途径。
目前,对虾是否感染白斑综合征的检验通常采用病理学显微镜观察、生化测定、免疫学试验、细胞培养和PCR等,这些方法耗时、耗力、操作复杂,很难适应当前快速、准确检测的需要。成簇的规则间隔短回文重复序列(CRISPR)相关(Cas)核酸酶方法目前已被应用于病原体检测,这种方法速度快、特异性高且操作简单。CRISPR/Cas12a系统用于检测的原理是:Cas12a酶与相应的crRNA结合成Cas12a-crRNA复合体,一旦crRNA识别到对应的靶标,Cas12a酶就会被激活,随后无差别的切割附近的单链DNA。基于该原理,将单链DNA制备成淬灭的荧光探针,通过监测荧光信号可实现目标序列的检测。近年来,环介导等温扩增技术(Loop-mediated isothermal amplification method,LAMP)技术与CRISPR/Cas12b分子检测技术表现出了良好的互补性:LAMP扩增具有高度特异性,可在短时间内产生高产量的扩增子,扩增子与CRISPR-Cas系统结合,可实现对目标核酸的几个拷贝的高度特异性、灵敏的检测。同时,LAMP扩增可显著提高CRISPR/Cas12b的检测灵敏度,CRISPR/Cas12b技术能够消除LAMP非特异性扩增产生的假阳性信号。然而,样品之间的交叉污染对于分子诊断是致命的,特别是对于高度敏感的基于CRISPR的技术。
微流控芯片(Microfluidics)是一种基于微流体界面精确操作的技术,是临床检测前沿最重要的检测和分析技术。通过在10-100微米通道内进行微量流体的操控、处理和反应,达到分子检测的目的。采用微流控芯片可实现对待测标本多种致病核酸的高通量快速检测,对于基于分子生物学的快速诊断发展和重大疫病的快速微量检测和疾病源头的阻断具有重大意义。
发明内容
本发明的目的是提供一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法。为了减少交叉污染的机会,申请人将等温LAMP扩增和Cas12b检测两步集成到一个微流控芯片之中,通过离心式微流控芯片控制靶序列在等温LAMP扩增后进入Cas12b检测体系检测的同时避免了气溶胶污染。该方法制作成本低、设备小型化、高通量、可同时检测多种样本、检测反应的试剂消耗微量化、分析速度快、灵敏度高,具有操作简单、自动化、集成化等特点。
本发明的具体技术方案如下:
本发明提供了一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测的引物,所述引物为LAMP引物组,包括外引物F3和B3、内引物FIP和BIP以及环引物LF和LB,具体核苷酸序列如下:
F3:ACAACACTGTGACCAAGAC;
B 3:GTTCCACACCTTGAATGTTC;
FIP:CCCAAGGTGTCGCTGTCAATTTTCTGTGACTGCTGAGGTTG;
BIP:
CCGCAATGGAAAGTCTGATGTTTTCCACGGGAGTGATGACAAG;
LF:CAGTCATCTTGAAGTAGCCTGA;
LB:ATGAAGGAAGAAGATGCGGAT。
本发明还提供了一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测的crRNA,所述crRNA的核苷酸序列如SEQ ID NO.25所示。
本发明还提供了一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测的探针,所述探针为:6-FAM-TTATT-BHQ1。
本发明还提供了一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测的试剂盒,包括所述引物、所述的crRNA以及所述的探针。
所述的试剂盒还包括微流控芯片,所述微流控芯片包括使用所述引物等温扩增的扩增室,使用所述crRNA和所述探针检测的检测室,以及连接所述扩增室与所述检测室的10-100μm的微通道。
本发明还提供了一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法,所述方法为非疾病诊断和治疗目的,使用所述的试剂盒进行检测,包括以下步骤:
(1)提取待检测样品的DNA;
(2)在所述微流控芯片的检测室中预先装载包含所述crRNA和所述探针的CRISPR/Cas12b检测体系,封底膜;
(3)将步骤(1)中提取的待检测样品的DNA与含有所述引物的LAMP扩增体系混合,然后加入到所述微流控芯片的扩增室中,封顶膜;
(4)将完成步骤(2)和步骤(3)的微流控芯片置于微流控检测仪中进行扩增和检测,得到检测产物;
(5)将检测产物进行酶标仪荧光检测,出现荧光信号的为阳性,无荧光信号的为阴性。
具体的,步骤(2)中所述CRISPR/Cas12b检测体系为:总体积为2.5μL,10×Cas12b反应缓冲液0.5μL、1mg/mLAapCas12b蛋白酶0.5μL、600ng/μL crRNA 0.2μL、10μM探针0.1μL,余量为ddH2O。
具体的,步骤(3)中所述LAMP扩增体系为:10×ThermoPol反应缓冲液2.5μL,10mMdNTP 3.5μL,100mM MgSO4水溶液1.5μL,10μM FIP 1.6μL,10μM BIP 1.6μL,10μM F30.2μL,10μM B30.2μL,10μM LF 0.4μL,10μM LB 0.4μL,Bst DNA聚合酶1.5μL,待检测样品的DNA1μL,用ddH2O补至25μL。
步骤(4)中,将上述密封好的微流控芯片置于与其配套的微流控检测仪中,设置程序,先在60℃下进行LAMP扩增30min,随后通过三次短时间离心(4600rpm,30s)将LAMP扩增产物从扩增室转移至检测室与Cas12b检测体系混合,在温度60℃下Cas12b检测20min,每分钟进行3次荧光信号收集。
本发明的有益效果:
(1)特异性强:本检测方法通过Cas12b与crRNA所形成的复合物对扩增后的靶序列进行检测,能特异性的识别并结合目标序列,有效的避免了假阳性现象;
(2)灵敏度高:本方法检测体系微量化,从侧面提高了靶序列的局部浓度,大大提高了检测限,检测下限可达到1copy/μL;
(3)等温高效:LAMP扩增与Cas12b检测均在60℃等温条件下反应,整个检测过程不存在温度变化极大的缩短了检测时间,仅需要50min即可出实验结果;
(4)无污染:微流控芯片高度集成化,可将等温LAMP扩增和Cas12b检测集成于离心式微流控芯片中,有效的避免了样品间的交叉污染以及LAMP扩增后的气溶胶污染;
(5)便携:微流控芯片结合与其配套的微流控检测仪,设备小型化,便于携带,适合现场快速检测;
(6)成本低:微流控芯片制作成本低、检测反应的试剂消耗微量化,大大降低了成本。采用微流控芯片可实现对待测标本多种致病核酸的高通量快速检测,对于基于分子生物学的快速诊断发展和重大疫病的快速微量检测和疾病源头的阻断具有重大意义。
附图说明
图1为WSSV LAMP引物的筛选;
图2为WSSV-crRNA的筛选;
图3为微流控芯片结构示意图;
图4为实施例1中基于LAMP-CRISPR/Cas12b的微流控检测方法对12个WSSV实际样本的检测结果;
图5为实施例2中特异性实验的结果;
图6为实施例3中灵敏度实验的结果。
具体实施方式
下面结合具体实施例对本发明作进一步描述,以下列举的仅是本发明的具体实施例,但本发明的保护范围不仅限于此。以下实施例中如无特殊说明,所使用原料均来源于市售,所采用方法均为本领域技术人员公知的常规操作方法。
实施例1
1.实验材料
一种对虾白斑综合征病毒(WSSV)的阳性质控品:核酸序列的GenBank登录号为AY168644.1。
样本S1-S12均为杭州虾苗基地获取的虾苗(由浙江省水产技术推广总站提供),样本阴阳性情况如下表1所示。
表1:实际样本qPCR检测结果
注:“+”表示阳性样本;“-”表示阴性样本
2.对虾白斑综合征病毒DNA的提取
(1)称取30mg的实验样本(取整颗虾苗),加入500μL的生理盐水,颠倒混匀后去除液体,重复该步骤一次;
(2)将洗净的虾苗置于研磨管中,加入1颗研磨珠(直径8mm),加入100μL的裂解液,放入均质仪中,以6m/s匀浆20s;
(3)再加入100μL的裂解液,并加入20μL的蛋白酶K,56℃温浴1h;
(4)加入200μL的结合液,70℃下孵育10min;
(5)加入200μL的无水乙醇,颠倒混匀后加入吸附柱,12000rpm离心30s;
(6)倒掉废液,向吸附柱中加入500μL的盐洗液,12000rpm离心30s;
(7)倒掉废液,向吸附柱中加入600μL的漂洗液,12000rpm离心30s;
(8)重复步骤7;
(9)彻底晾干漂洗液,加入100μLTE Buffer,离心,获得对虾白斑综合征病毒DNA。
3.crRNA及基于LAMP-CRISPR的微流控检测方法
3.1WSSV-LAMP引物设计及筛选
3.1.1WSSV-LAMP引物设计
通过“https://primerexplorer.jp/lampv5/index.html”网站进行引物设计,获得待筛选3组LAMP引物组,其核苷酸序列如下所示:
引物组1:
FIP:CCCAAGGTGTCGCTGTCAATTTTCTGTGACTGCTGAGGTTG;
BIP:
CCGCAATGGAAAGTCTGATGTTTTCCACGGGAGTGATGACAAG;
F3:ACAACACTGTGACCAAGAC;
B3:GTTCCACACCTTGAATGTTC;
LF:CAGTCATCTTGAAGTAGCCTGA;
LB:ATGAAGGAAGAAGATGCGGAT;
引物组2:
FIP:
GCCCAAGGTGTCGCTGTCAAACTGAGGTTGGATCAGGCTAC;
BIP:CTTGTCATCACTCCCGTGGAGGAAGGTGAGATTCTGCCCCA;
B3:CCACACCTTGAATGTTCCCT;
F3:CTCCGCATTCCTGTGACTG;
LF:ATCAATAGAGACGGGGGTGAA;
LB:GCCGAGCACTCGAAGTGA;
引物组3:
FIP:
ACCACACACAAAGGTGCCAACTCTTTGTCGGTAGCTCCAACA;
BIP:ACCACCTTTGGCGCACCAAT-CGTGCACGTACATGTCGA;
B3:GGTCTCAGTGCCAGAGTAGG;
F3:TGGTGCCAAAGATTAACCCA;
LB:CAGCTACCGCCGGTGGAAA;
LF:AGACGGGGGTGAAGGAGGAG。
3.1.2WSSV-LAMP引物筛选
LAMP等温扩增反应体系如表2所示(总体积25μL)。
表2:LAMP等温反应体系
将上述试剂混合后,加入20μL石蜡油密封液,混匀离心,盖紧管盖于63℃下进行LAMP扩增,选择最优的LAMP引物组。
检测结果:实验结果表明,最优的WSSV-LAMP引物为引物组1(如图1所示)。
3.2WSSV-crRNA的制备及筛选
3.2.1crRNA引物设计
通过“https://crispr.cos.uni-heidelberg.de/”网站进行Cas12b蛋白crRNA设计,结合LAMP扩增产物序列筛选crRNA特异性序列,并结合对应的前导序列和T7启动子序列,得到引物序列如下:
引物1:
F:5’-TAATACGACTCACTATAGGGGTCTAGAGGACAGAATTTTTCAACGGGTGTGCCAATGGCACTTTCCAGGTGGCAAAGCCCGTTGAGCTTCTCAAATCTGAGAAGTGGCACTCTCGATATTGTCTGTGTGG-3’;
R:5’-CCACACAGACAATATCGAGAGTGCCACTTCTCAGATTTGAGAAGCTCAACGGGCTTTGCCACCTGGAAAGTGGCCATTGGCACACCCGTTGAAAAATTCTGTCCTCTAGACCCCTATAGTGAGTCGTATTA-3’;
引物2:
F:5’-TAATACGACTCACTATAGGGGTCTAGAGGACAGAATTTTTCAACGGGTGTGCCAATGGCCACTTTCCAGGTGGCAAAGCCCGTTGAGCTTCTCAAATCTGAGAAGTGGCACCATTGCCGATCTTGATTTTG-3’;
R:5’-CAAAATCAAGATCCGCAATGGTGCCACTTCTCAGATTTGAGAAGCTCAACGGGCTTTGCCACCTGGAAAGTGGCCATTGGCACACCCGTTGAAAAATTCTGTCCTCTAGACCCCTATAGTGAGTCGTATTA-3;
引物3:
F:5’-TAATACGACTCACTATAGGGGTCTAGAGGACAGAATTTTTCAACGGGTGTGCCAATGGCACTTTCCAGGTGGCAAAGCCCGTTGAGCTTCTCAAATCTGAGAAGTGGCACGATGGTCTTGGTCACAGTGTTGT-3’;
R:5’-ACAACACTGTGACCAAGACCATCGTGCCACTTCTCAGATTTGAGAAGCTCAACGGGCTTTGCCACCTGGAAAGTGCCATTGGCACACCCGTTGAAAAATTCTGTCCTCTAGACCCCTATAGTGAGTCGTATTA-3’。
3.2.2双链DNA合成
将上述3组引物的上下游引物等体积混合,并设置温度程序,将其互补为双链DNA,引物混合体系及温度程序设置如下:
表3:引物混合体系
试剂名称 体积(μL)
引物F(10μM) 5
引物R(10μM) 5
ddH2O 40
温度程序:99℃10min;85℃,5min;80℃,5min;75℃,5min;70℃,5min;双链产物于-20℃保存。
3.2.3crRNA转录纯化
1、转录
将3.2.2得到的双链DNA用于转录,转录所用试剂及体系如下:
表4:转录体系
试剂名称 体积(μL)
T7 RNA Polymerase Mix 2
10×Reaction Buffer 2
ATP溶液 2
UTP溶液 2
GTP溶液 2
CTP溶液 2
DNA模板 2
RNase-free H2O 补加至20μL
其中,转录试剂盒购于南京诺唯赞(货号:TR101)。
转录程序:37℃6h,结束后加入DNase I,37℃消化15min,去除模板DNA。
2、RNA纯化(天根RNA纯化试剂盒,货号:DP412)
1)将未纯化的RNA产物用RNase-Free ddH2O补足至100μL,然后加入350μL的RK溶液;
2)混匀后加入250μL无水乙醇;将混合物加入至纯化柱中,12000rpm离心30s,弃废液;
3)向管中加入500μL的漂洗液,室温放置2min,12000rpm离心30s,弃废液;
4)重复上述步骤;
5)加入14-20μLRNase-Free ddH2O,室温放置2min,12000rpm离心2min;
6)转录产物置于-80℃冰箱保存备用。
3.2.4crRNA筛选
将LAMP扩增产物(LAMP等温扩增反应体系如表2所示)加入Cas12b检测体系进行检测,以筛选3组crRNA,检测体系如表5所示(总体积20μL),其中探针为:6-FAM-TTATT-BHQ1。
表5:CRISPR/Cas12b检测体系
试剂成分 体积(μL)
10×Cas12b反应缓冲液 2
AapCas12b蛋白酶 1
crRNA(600ng/μL) 1
探针(10μM) 1
LAMP扩增产物 1
ddH2O 加水至20μL
将配制好的反应管离心,置于ABI QuantStudioTM 3实时荧光定量PCR仪中,设置程序,程序如下:
60℃预变性1s;60℃变性45s;60℃退火、延伸(荧光信号采集)15s;总共20个循环。
最终得到LAMP-CRISPR/Cas12b检测反应的检测结果。根据检测结果(如图2所示),本发明选择WSSV-crRNA-2进行后续实验,
WSSV-crRNA-1序列为:
5’-GUCUAGAGGACAGUUAAAACAACGGGUGUGCCAAUGGCACUUUCCAGGUGGCUUUUAAAACAAGAGCUUCUCAAAUCUGAGAAGUGGCACGCUUUAAGUUU CACCCUUGC-3’。
WSSV-crRNA-2序列为:
5’-GUCUAGAGGACAGAAUUUUUCAACGGGUGUGCCAAUGGCACUUUCCAGGUGGCAAAGCCCGUUGAGCUUCUCAAAUCUGAGAAGUGGCACGCUUUAAGUUUCACCCUUGC-3’。
WSSV-crRNA-3序列为:
5’-GUCUAGAGGACAGAAUUUUUCAACGGGUGUGCCAAUGGCACUUUCCAGGUGGCAAAGCCCGUUGAGCUUCUCAAAUCUGAGAAGUGGCACCAUUGCGGAUCUUGAUUUUG-3’。
4.基于LAMP-CRISPR/Cas12b的微流控检测
本方法将LAMP扩增与Cas12b检测集成于离心式微流控芯片上,微流控芯片结构如图3所示,其中检测室体积为5μL,本发明将Cas12b检测体系预先装载于检测室,Cas12b反应体系如表6所示(总体积2.5μL)。
表6:CRISPR/Cas12b的微流控检测体系
试剂成分 体积(μL)
10×Cas12b反应缓冲液 0.5
AapCas12b蛋白酶 0.5
crRNA(600ng/μL) 0.2
探针(10μM) 0.1
ddH2O 加水至2.5μL
Cas12b检测体系装载完成后封底膜。
LAMP等温扩增反应体系如表2所示,混匀后加入微流控芯片的扩增室,并封上顶膜,置于微流控检测仪中进行扩增与检测。
5.荧光检测的方法和结果
检测方法:60℃LAMP扩增30min;就跟随短时间离心机(4600rpm,30s)将样品扔进反应室。60℃Cas12b检测20min,期间每分钟进行3次荧光收集。最终得到LAMP-CRISPR/Cas12b的微流控检测的检测结果。
检测结果:根据实验结果,出现明显荧光增加的为阳性,无荧光增加的则为阴性,实际样本检测结果与qPCR结果相同(如图4所示)。
实施例2检测特异性实验
1.检测方法
为检测实施例1提供的方法的特异性,采用该检测方法,分别对对虾白斑综合症病毒(WSSV)、传染性皮下及造血组织坏死病毒(IHHNV)、虾肠胞虫病毒(EHP)、十足目虹彩病毒1(DIV1)进行检测,分析试剂对WSSV病毒和对虾其他常见病毒的检测情况。
2.检测结果
检测结果表明,仅病毒WSSV样品出现荧光曲线,包括阴性对照(超纯水)及病毒EHP、IHHNV、DIV1样品均未检测出荧光(如图5所示)。
上述实验结果说明,实施例1所提供的基于LAMP-CRISPR/Cas12b的微流控检测方法能特异性检测出病原体WSSV中的靶序列,而不与其它病毒核酸发生交叉反应,说明实施例1所提供的基于LAMP-CRISPR/Cas12b的微流控检测方法特异性好,未出现假阳性。
实施例3灵敏度实验
1.检测方法
通过EcoRI和BamHI限制性内切酶对PUC57载体和WSSV vp28靶序列片段(GenBank登录号为AY168644.1)进行双酶切反应,建立含有WSSV vp28靶序列片段的PUC57载体。通过导入大肠杆菌BL21(DE3),挑选氨苄青霉素抗性阳性菌株,提取阳性质粒。通过NanoDropOne对阳性质粒进行定量,并将其分别稀释到104,103,102,101,100,10-1copies/μL。采用上述基于LAMP-CRISPR/Cas12b的微流控检测方法,对稀释后的各浓度阳性质粒和阴性对照(超纯水)进行扩增检测。
2.检测结果
检测结果如图6所示,从中可以看出本发明所提供的基于LAMP-CRISPR/Cas12b的微流控检测方法灵敏度可达1copies/μL,且能在20min内出现扩增曲线,可见其快速性与精确性,表明本发明的基于LAMP-CRISPR/Cas12b的微流控检测方法对WSSV病毒的诊断具有高度的灵敏性。

Claims (9)

1.一种用于白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测的引物,其特征在于,所述引物为LAMP引物组,包括外引物F3和B3、内引物FIP和BIP以及环引物LF和LB,具体核苷酸序列如下:
F3:ACAACACTGTGACCAAGAC;
B3:GTTCCACACCTTGAATGTTC;
FIP:CCCAAGGTGTCGCTGTCAATTTTCTGTGACTGCTGAGGTTG;
BIP:CCGCAATGGAAAGTCTGATGTTTTCCACGGGAGTGATGACAAG;
LF:CAGTCATCTTGAAGTAGCCTGA;
LB:ATGAAGGAAGAAGATGCGGAT。
2.一种用于白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测的crRNA,其特征在于,所述crRNA的核苷酸序列如SEQ ID NO.25所示。
3.一种用于白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测的探针,其特征在于,所述探针为:6-FAM-TTATT-BHQ1。
4.一种用于白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测的试剂盒,其特征在于,包括权利要求1所述引物、权利要求2所述的crRNA以及权利要求3所述的探针。
5.如权利要求4所述的试剂盒,其特征在于,还包括微流控芯片,所述微流控芯片包括使用所述引物等温扩增的扩增室,使用所述crRNA和所述探针检测的检测室,以及连接所述扩增室与所述检测室的10-100μm的微通道。
6.一种用于白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法,所述微流控检测方法为非疾病诊断和治疗目的,其特征在于,使用权利要求5所述的试剂盒进行检测,包括以下步骤:
(1)提取待检测样品的DNA;
(2)在所述微流控芯片的检测室中预先装载包含所述crRNA和所述探针的CRISPR/Cas12b检测体系,封底膜;
(3)将步骤(1)中提取的待检测样品的DNA与含有所述引物的LAMP扩增体系混合,然后加入到所述微流控芯片的扩增室中,封顶膜;
(4)将完成步骤(2)和步骤(3)的微流控芯片置于微流控检测仪中进行扩增和检测,得到检测产物;
(5)将检测产物进行酶标仪荧光检测,出现荧光信号的为阳性,无荧光信号的为阴性。
7.如权利要求6所述的微流控检测方法,其特征在于,步骤(2)中所述CRISPR/Cas12b检测体系为:总体积为2.5μL,10×Cas12b反应缓冲液0.5μL、1mg/mL AapCas12b蛋白酶0.5μL、600ng/μL crRNA 0.2μL、10μM探针0.1μL,余量为ddH2O。
8.如权利要求6所述的微流控检测方法,其特征在于,步骤(3)中所述LAMP扩增体系为:10×ThermoPol反应缓冲液2.5μL,10mM dNTP 3.5μL,100mM MgSO4水溶液1.5μL,10μM FIP1.6μL,10μM BIP 1.6μL,10μM F3 0.2μL,10μM B3 0.2μL,10μM LF 0.4μL,10μM LB 0.4μL,Bst DNA聚合酶1.5μL,待检测样品的DNA 1μL,用ddH2O补至25μL。
9.如权利要求6所述的微流控检测方法,其特征在于,步骤(4)中,所述扩增的条件为:在温度60℃下扩增30min;所述检测的条件为:在温度60℃下检测20min,每分钟进行3次荧光信号收集。
CN202310636152.XA 2023-05-31 2023-05-31 一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法 Pending CN116732247A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310636152.XA CN116732247A (zh) 2023-05-31 2023-05-31 一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法
CN202410281510.4A CN118240973A (zh) 2023-05-31 2024-03-12 一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310636152.XA CN116732247A (zh) 2023-05-31 2023-05-31 一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法

Publications (1)

Publication Number Publication Date
CN116732247A true CN116732247A (zh) 2023-09-12

Family

ID=87912552

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310636152.XA Pending CN116732247A (zh) 2023-05-31 2023-05-31 一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法
CN202410281510.4A Pending CN118240973A (zh) 2023-05-31 2024-03-12 一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202410281510.4A Pending CN118240973A (zh) 2023-05-31 2024-03-12 一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法

Country Status (1)

Country Link
CN (2) CN116732247A (zh)

Also Published As

Publication number Publication date
CN118240973A (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
CN108411036B (zh) 一种快速检测甲、乙型流感病毒核酸检测试剂盒及方法
CN109182600B (zh) 一种同步检测乙型肝炎病毒、丙型肝炎病毒、人免疫缺陷病毒1型的荧光定量pcr试剂盒
CN108998577A (zh) 一种用于检测猪圆环病毒2型和3型的试剂盒、引物对、探针及方法
CN107574261B (zh) 用于检测汉坦病毒的检测引物、检测试剂盒及检测方法
CN101144771A (zh) 检测人类免疫缺陷病毒的方法及试剂盒
Li et al. Development of a recombinase-aided amplification combined with lateral flow dipstick assay for the rapid detection of the African swine fever virus
CN115232888A (zh) 快速检测猪繁殖与呼吸综合征病毒的引物、试剂盒及方法
CN110923361A (zh) 基于数字pcr用于血源筛查的引物、探针及试剂盒
CN114214455A (zh) 乙肝病毒DNA快速定量引物探针及其CRISPR/Cas12b检测系统
CN114410836A (zh) 一种集样本处理、核酸提取及多重恒温扩增一体化的检测人细小病毒b19的试剂盒和方法
CN108070636A (zh) 一种荧光pcr扩增样本的处理方法和试剂盒
CN113293236A (zh) 猪繁殖与呼吸综合征病毒rt-lamp检测引物组及试剂盒
CN110527747B (zh) 一种检测猪瘟病毒野毒株的试剂盒
CN116732247A (zh) 一种用于对白斑综合征的基于LAMP-CRISPR/Cas12b的微流控检测方法
CN113234862B (zh) 非洲猪瘟病毒lamp检测引物组及试剂盒
Liu et al. Development of reverse transcription loop-mediated isothermal amplification for rapid detection of Batai virus in cattle and mosquitoes
CN113215314B (zh) 一种利用L/RPA快速检测SARS-CoV-2的探针及引物组、试剂盒、检测方法
Can-Can et al. Multiplex Nested Solid Phase PCR-Array Chip for Simultaneous Detection of Highly Pathogenic Microorganisms
CN118441100A (zh) 一种用于大口黑鲈鱼虹彩病毒的基于LAMP-CRISPR/Cas13a的微流控检测方法
CN113502341A (zh) 梅毒螺旋体16s RNA的实时荧光核酸恒温扩增检测试剂盒及其专用引物和探针
CN111088396A (zh) 一种同时检测副猪嗜血杆菌、猪细小病毒、猪圆环病毒2型的三重实时荧光pcr方法
CN116516069B (zh) 一种快速检测细胞中Epstein-Barr病毒的RPA试剂盒
CN111235317A (zh) 一种检测prrsv和pcv的引物组合物、试剂盒及方法
CN110923294A (zh) 一种std核酸提取和检测试剂及方法
CN104762414A (zh) 荧光可视化快速检测流行性乙型脑炎病毒的rt-lamp试剂盒

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20230912