CN116693293A - 一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法 - Google Patents

一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法 Download PDF

Info

Publication number
CN116693293A
CN116693293A CN202310339135.XA CN202310339135A CN116693293A CN 116693293 A CN116693293 A CN 116693293A CN 202310339135 A CN202310339135 A CN 202310339135A CN 116693293 A CN116693293 A CN 116693293A
Authority
CN
China
Prior art keywords
powder
stainless steel
zrw
temperature
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310339135.XA
Other languages
English (en)
Other versions
CN116693293B (zh
Inventor
吴守军
陈越
张庆宇
杨文宇
田延翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest A&F University
Original Assignee
Northwest A&F University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest A&F University filed Critical Northwest A&F University
Priority to CN202310339135.XA priority Critical patent/CN116693293B/zh
Publication of CN116693293A publication Critical patent/CN116693293A/zh
Application granted granted Critical
Publication of CN116693293B publication Critical patent/CN116693293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法,其主要步骤是:在带盖非密封不锈钢容器装入按比例充分混合的碳化锆与氧化钨粉混合粉体并加盖,将加盖容器进一步封闭在装有高温产生氧气的固体粉末的不锈钢容器中,之后在900~1000ºC高温处理,在碳化锆粉体表面形成ZrW2O8包覆ZrC复合粉体。该复合粉体对应组成为ZrC和ZrW2O8或少量的ZrO2,颗粒基本保持碳化锆颗粒形貌。该复合粉体制备方法简单,无需真空或气氛控制设备,制备温度明显低于现有固相反应制备ZrW2O8温度,且反应时间显著缩短,制备的复合粉体均匀,成本低廉。

Description

一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合 粉体的方法
技术领域
本发明涉及陶瓷复合粉体制备技术领域,尤其是涉及一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法。
背景技术
硼基和碳基超高温陶瓷(UHTCs)主要包括过渡金属的硼化物和碳化物, 如HfB2、ZrB2、HfC、ZrC、TaC等,具有极高的熔点(超过3000ºC)、较高的高温强度和较好的抗氧化性能,是最有希望应用于高超音速飞行器热防护结构上的候选材料。但这类材料具有极强的共价键性、较低的体积扩散速率以及组成成分或产物容易挥发等特点,从而导致其烧结致密化十分困难;同时单一的陶瓷存在抗热震性能差、断裂韧性低等缺点无法满足超高声速飞行器使用要求。ZrSi2具有较高熔点 (ZrSi2的熔点为1620ºC),研究表明ZrSi2可以大幅提高超高温陶瓷的烧结性能(S.Q. Guo, Y. Kagawa, T. Nishimura. Mechanical behaviorof two-step hot-pressed ZrB2-based composites with ZrSi2. Journal of theEuropean Ceramic Society 29 (2009) 787-794);而且ZrSi2有助有改善ZrB2-SiC的力学性能(O.N. Grigoriev, B. A. Galanov, V. A. Kotenko, S. M. Ivanov, A. V.Koroteev, N. P. Brodnikovsky. Mechanical properties of ZrB2–SiC(ZrSi2)ceramics. Journal of the European Ceramic Society 30 (2010) 2173-2181);ZrSi2-SiC涂层比SiC涂层具有更好的抗氧化和抗烧蚀性能(O. N. Grigoriev, B. A. Galanov,V. A. Lavrenko, A. D. Panasyuk, S. M. Ivanov, A. V. Koroteev, K. G. Nickel.Oxidation of ZrB2–SiC–ZrSi2ceramics in oxygen. Journal of the European CeramicSociety 30 (2010) 2397-2405。研究证实ZrC-ZrSi2-SiC涂层具有良好的抗氧化性和抗热震性。通常采用将ZrSi2粉体与ZrC或ZrB2等其它粉体按一定比例机械混合后烧结的方法制备相关复相陶瓷,但制备出的复相陶瓷的组织和性能的均匀性较难保证。采用复合粉体是保证复相陶瓷的组织和性能的均匀性的最有效途径之一。
复相陶瓷粉体通常采用机械混合、液相法制备。机械混合工艺简单、成本低,如发明专利“一种复相陶瓷粉体的制备方法”(申请号CN201110264309.8,公开号CN102432294A,公开日2012年5月2日)中叙及的将碳化物、硼化物、硅化物以及金属氧化物作为原料粉体混合,加入分散剂和粘结剂在水相体系中研磨,而得湿料;再将湿料经过喷雾干燥造粒制备而成复相陶瓷粉体。但机械混合复合粉体均匀性较差。
采用硅粉、锆粉和石墨粉,在2073-2273 K(1800-2000 ºC)下通过液相反应可以形成硅化锆-碳化锆复相涂层( M. H. Hu, K. Z. Li, H. J. Li, B. Wang, H. L. Ma.Double layer ZrSi2-ZrC-SiC/SiC oxidation protective coating for carbon/carboncomposites. Surface Engineering 31 (2015) 335-341)。但该液相反应温度高,且有少量低熔点的硅残余。目前复合粉体的制备方法仅有机械合金化法和高温自蔓延合成法,但机械混合法,难以获得均匀的复合粉体;而高温自蔓延合成法由于燃烧过程有较大的热梯度,往往造成不需要的物相出现,产物的控制比较困难,而且为了控制燃烧自蔓延速度减缓反应速度,加入稀释剂会导致引入杂质。ZrW2O8在750℃以上会发生分解,因此采用传统高能机械合金化无法与ZrC复合;ZrC在500℃以上会发生氧化,因此无法通过高温自蔓延合成法制备ZrW2O8-ZrC复合材料。而 ZrO2 和WO3 粉末在 1200℃高温反应 24h 以上才能形成ZrW2O8。要使用 ZrC 和 WO3 粉末固相反应 ZrW2O8 包覆 ZrC 复合粉体,面临如何控制ZrC 的氧化反应,既能确保获得适量的 ZrW2O8 包覆层,又能保证内部 ZrC 的量。
发明内容
本发明所要解决的技术问题是:提供一种廉价的、利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法。
为解决上述技术问题,本发明的技术方案是:一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法,包括以下步骤:
(1)将干燥的氧化钨粉与碳化锆混合粉体按比例充分混合,所述氧化钨粉体与碳化锆的质量比为3.8~4.5;
(2)将步骤(1)获得的混合粉体装入带盖不密封不锈钢内层容器中,并将所述不锈钢内层容器加盖;
(3)将所述不锈钢内层容器放入比所述不锈钢内层容器略大的同材质的不锈钢外层容器中,并放入适量高温产生氧气的固体粉末,粉末用量约为外层容器容量的15~40%,并将所述不锈钢外层容器封闭;
(4)将所述不锈钢外层容器放置于高温炉中恒温处理,处理温度900~1000ºC,处理时间4~6小时。
进一步的,在步骤(1)中,所述化锆粉体的粒径为0.2~10µm,所述氧化钨粉的粒径为0.2~10µm。
进一步的,在步骤(2)和(3)中,所述不锈钢内层容器与不锈钢外层容器中铬的含量均大于15%。
进一步的,在步骤(3)中,所用高温产生氧气的固体粉末粒度为60-150目,固体粉末高温分解产生氧气的温度不高于600 ºC且分解不剧烈。
进一步的,在步骤(4)中,所述高温炉为电阻炉或气氛炉。
采用了上述技术方案,本发明的有益效果为:本发明通过密闭系统中高温下易分解氧化物分解产生氧气,产生的氧气与碳化锆发生反应剧烈放热,由此会导致ZrC表面ZrO2与WO3接触界面附近局部温度急剧升高,从而促使ZrC表面快速形成的ZrO2与WO3进一步反应,从而形成ZrW2O8包覆ZrC复合粉体;利用氧化反应产生气体和密闭不锈钢容器使得反应处于高压状态,简化了设备与工艺流程、节约了成本。通过本发明的方法原位反应扩散形成的复合粉体保留所用碳化锆颗粒的粒径特征,粉体组成均匀。
综上所述,本发明具有以下优点:
(1)采用密闭系统下,氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体,粉体组成均匀。
(2)无需复杂的真空或气氛炉,较低温度实现复合粉体的制备。
(3)仅以氧化钨粉、碳化锆粉及高温分解产生氧气的固体粉为原料,不涉及其他辅助原料和中间过程,工艺简单。
(4)发明涉及的ZrW2O8包覆ZrC复合粉体制备温度为900~1000ºC,处理时间为4~6h,反应温度与时间明显低于相关固相反应制备ZrW2O8的要求。
附图说明
图1是氧化钨粉体与碳化锆的质量比为3.8,处理温度900℃,处理时间6小时反应后的粉体X-射线衍射图谱图;
图2是氧化钨粉体与碳化锆的质量比为4.5,处理温度1000℃,处理时间4小时反应后的粉体X-射线衍射图谱图。
具体实施方式
下面结合实施例对本发明进一步说明。
实施例一
一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法,包括以下步骤:
(1)将干燥的氧化钨粉体与碳化锆混合粉体按比例充分混合,所述氧化钨粉体与碳化锆的质量比为3.8,所述碳化锆粉体的粒径为2μm,所述氧化钨的粒径为5μm。
(2)将步骤(1)获得的混合粉体装入带盖不密封不锈钢内层容器中,并将所述不锈钢内层容器加盖;
(3)将所述不锈钢内层容器放入比所述不锈钢内层容器直径略大的铬含量大于15%的不锈钢外层容器中,并放入适量高温分解产生氧气的固体粉末,粉末用量约为外层容器容量的5~30%,并将所述不锈钢外层容器封闭,所用高温产生氧气的固体粉末粒度为100目,固体粉末高温分解产生氧气的温度不高于600℃且分解不剧烈。
(4)将所述不锈钢外层容器放置于高温炉中恒温处理,处理温度900℃,处理时间6小时,所述高温炉为电阻炉或气氛炉。
图1给出了该实施例反应后的粉体X-射线衍射图谱。分析表明,反应后粉体的主要组成为ZrW2O8、ZrC,由于本实施例中,氧化钨粉体与碳化锆的质量比为3.8,假使按ZrC+1.5WO3+2O2=ZrW2O8+CO反应,碳化锆粉明显过量,由于ZrC在900℃极易氧化,且放热明显,由此会导致ZrC表面ZrO2与WO3接触界面附近局部温度急剧升高,从而促使ZrC表面快速形成的ZrO2与WO3进一步反应,使得在ZrC粉外部形成ZrW2O8包覆层。由此证实:本实施例得到了ZrW2O8包覆ZrC复合粉体。
实施例二
一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法,包括以下步骤:
(1)将干燥的氧化钨粉体与碳化锆混合粉体按比例充分混合,所述氧化钨粉体与碳化锆的质量比为4.5,所述碳化锆粉体的粒径为5μm,所述氧化钨的粒径为5μm。
(2)将步骤(1)获得的混合粉体装入带盖不密封不锈钢内层容器中,并将所述不锈钢内层容器加盖;
(3)将所述不锈钢内层容器放入比所述不锈钢内层容器直径略大的铬含量大于15%的不锈钢外层容器中,并放入适量高温分解产生氧气的固体粉末,粉末用量约为外层容器容量的5~30%,并将所述不锈钢外层容器封闭,所用高温产生氧气的固体粉末粒度为60目,固体粉末高温分解产生氧气的温度不高于600℃且分解不剧烈。
(4)将所述不锈钢外层容器放置于高温炉中恒温处理,处理温度1000℃,处理时间4小时,所述高温炉为电阻炉或气氛炉。
图2给出了该实施例反应后的粉体X-射线衍射图谱。分析表明,反应后粉体的主要组成为ZrW2O8、ZrC,由于本实施例中,氧化钨粉体与碳化锆的质量比为4.5,假使按ZrC+1.5WO3+2O2=ZrW2O8+CO反应,碳化锆粉略过量。由此证实:本实施例得到了ZrW2O8包覆ZrC复合粉体。
本发明不局限于上述具体的实施方式,本领域的普通技术人员从上述构思出发,不经过创造性的劳动,所作出的种种变换,均落在本发明的保护范围之内。

Claims (5)

1.一种利用利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法,其特征在于,包括以下步骤:
(1)将干燥的氧化钨粉与碳化锆粉混合粉体按比例充分混合,所述氧化钨粉体与碳化锆的质量比为3.8~4.5;
(2)将步骤(1)获得的混合粉体装入带盖不密封不锈钢内层容器中,并将所述不锈钢内层容器加盖;
(3)将所述不锈钢内层容器放入比所述不锈钢内层容器略大的同材质的不锈钢外层容器中,并放入适量高温产生氧气的固体粉末,粉末用量约为外层容器容量的15~40%,并将所述不锈钢外层容器封闭;
(4)将所述不锈钢外层容器放置于高温炉中恒温处理,处理温度900~1000ºC,处理时间4~6小时。
2.如权利要求1所述的利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法,其特征在于,在步骤(1)中,所述碳化锆粉体的粒径为0.2~10µm,所述氧化钨粉的粒径为0.2~10µm。
3.如权利要求1所述的利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法,其特征在于,在步骤(2)和(3)中,所述不锈钢内层容器与不锈钢外层容器中铬的含量均大于15%。
4.如权利要求1所述的利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法,其特征在于,在步骤(3)中,所用高温产生氧气的固体粉末粒度为60-150目,固体粉末高温分解产生氧气的温度不高于600 ºC且分解不剧烈。
5.如权利要求1所述的利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法,其特征在于,在步骤(4)中,所述高温炉为电阻炉或气氛炉。
CN202310339135.XA 2023-04-01 2023-04-01 一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法 Active CN116693293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310339135.XA CN116693293B (zh) 2023-04-01 2023-04-01 一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310339135.XA CN116693293B (zh) 2023-04-01 2023-04-01 一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法

Publications (2)

Publication Number Publication Date
CN116693293A true CN116693293A (zh) 2023-09-05
CN116693293B CN116693293B (zh) 2024-05-28

Family

ID=87838172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310339135.XA Active CN116693293B (zh) 2023-04-01 2023-04-01 一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法

Country Status (1)

Country Link
CN (1) CN116693293B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018325A (zh) * 1973-06-22 1975-02-26
JPH02175655A (ja) * 1988-12-27 1990-07-06 Toyota Central Res & Dev Lab Inc 複合材料の製造方法および原料組成物
JP2003238232A (ja) * 2002-02-07 2003-08-27 Asahi Kasei Corp 熱膨張制御材料及びその製造方法
JP2005255503A (ja) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd 低熱膨張複合体
JP2009067619A (ja) * 2007-09-11 2009-04-02 Tokyo Univ Of Science タングステン酸ジルコニウム−酸化ケイ素複合焼結体、当該複合焼結体の製造方法、及び当該複合焼結体を備えた成形体
US20120183765A1 (en) * 2011-01-17 2012-07-19 Hon Hai Precision Industry Co., Ltd. Coated article and method for manufacturing same
CN103208735A (zh) * 2012-01-12 2013-07-17 郑州大学 用于大功率半导体激光器列阵的热膨胀系数可调节热沉
CN103466620A (zh) * 2013-08-20 2013-12-25 西北农林科技大学 一种利用固相反应扩散法制备碳化锆/硼化锆复合粉体的方法
WO2017016079A1 (zh) * 2015-07-28 2017-02-02 山东合创明业精细陶瓷有限公司 高纯超细ZrC-SiC复合粉体的合成方法
CN110734091A (zh) * 2019-10-25 2020-01-31 扬州昇业机械有限公司 一种TiO2包覆ZrW2O8的方法
CN113903918A (zh) * 2021-09-27 2022-01-07 蜂巢能源科技(马鞍山)有限公司 一种正极材料及其制备方法和锂离子电池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018325A (zh) * 1973-06-22 1975-02-26
JPH02175655A (ja) * 1988-12-27 1990-07-06 Toyota Central Res & Dev Lab Inc 複合材料の製造方法および原料組成物
JP2003238232A (ja) * 2002-02-07 2003-08-27 Asahi Kasei Corp 熱膨張制御材料及びその製造方法
JP2005255503A (ja) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd 低熱膨張複合体
JP2009067619A (ja) * 2007-09-11 2009-04-02 Tokyo Univ Of Science タングステン酸ジルコニウム−酸化ケイ素複合焼結体、当該複合焼結体の製造方法、及び当該複合焼結体を備えた成形体
US20120183765A1 (en) * 2011-01-17 2012-07-19 Hon Hai Precision Industry Co., Ltd. Coated article and method for manufacturing same
CN103208735A (zh) * 2012-01-12 2013-07-17 郑州大学 用于大功率半导体激光器列阵的热膨胀系数可调节热沉
CN103466620A (zh) * 2013-08-20 2013-12-25 西北农林科技大学 一种利用固相反应扩散法制备碳化锆/硼化锆复合粉体的方法
WO2017016079A1 (zh) * 2015-07-28 2017-02-02 山东合创明业精细陶瓷有限公司 高纯超细ZrC-SiC复合粉体的合成方法
CN110734091A (zh) * 2019-10-25 2020-01-31 扬州昇业机械有限公司 一种TiO2包覆ZrW2O8的方法
CN113903918A (zh) * 2021-09-27 2022-01-07 蜂巢能源科技(马鞍山)有限公司 一种正极材料及其制备方法和锂离子电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SUJUAN WU等: "Tuning the thermal expansion behavior and promoting the mechanical properties of Mg–9Al–1Zn magnesium alloys by the introduction of MnCoGe-based alloys", SCRIPTA MATERIALIA, vol. 214, 30 June 2022 (2022-06-30) *
吴日民;居相文;程晓农;杨娟;: "基于ZrW_2O_8粉体的可控热膨胀复合材料的研究进展", 材料科学与工程学报, no. 06, 20 December 2015 (2015-12-20) *
柳宁;李刚;李锦州;: "负热膨胀材料ZrW_2O_8制备方法的研究进展", 硅酸盐通报, no. 06, 15 December 2008 (2008-12-15) *

Also Published As

Publication number Publication date
CN116693293B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
EP0503974B1 (en) Multigrain abrasive particles
Rice et al. Zirconium borohydride as a zirconium boride precursor
KR20070050983A (ko) 금속 카바이드 및 이를 제조하는 방법
GB2270687A (en) Zirconia based composite material
Cheng et al. A SiCnw/PyC-toughened ZrB2-SiC coating for protecting Si-SiC coated C/C composites against oxidation
WO2006106873A1 (ja) 炭化チタン粉末および炭化チタン-セラミックス複合粉末とその製造方法ならびにその炭化チタン粉末の焼結体および炭化チタン-セラミックス複合粉末の焼結体とその製造方法
US5912399A (en) Chemical synthesis of refractory metal based composite powders
WO2010128492A1 (en) Ultra-hard diamond composites
CN106587088B (zh) 一种新型三元锇钌硼化物硬质材料及其制备方法
Dudina et al. Detonation spraying behavior of TiCx–Ti powders and the role of reactive processes in the coating formation
JP6344975B2 (ja) ダイヤモンド複合焼結体とその製造方法
Yu et al. Coating of Y2O3 additive on Al2O3 powder and its effect on the wetting behaviour in the system Al2O3p/Al
CN116693293B (zh) 一种利用氧化放热与固相反应扩散法制备ZrW2O8包覆ZrC复合粉体的方法
JP4940239B2 (ja) 亜酸化ホウ素複合材料
CN108975339B (zh) 一种过渡金属碳化物粉末和过渡金属碳化物-氮化物复合粉末的制备工艺
JP4171916B2 (ja) 耐熱性被覆部材
Leconte et al. Elaboration of SiC, TiC, and ZrC nanopowders by laser pyrolysis: from nanoparticles to ceramic nanomaterials
Zhang et al. Reaction‐Bonding Preparation of Si3N4/MoSi2 and Si3N4/WSi2 Composites from Elemental Powders
Çalişkan et al. Synthesis of the in-Situ Si₃N₄-SiC Composite Nano Powders by Carbothermal Reduction
Astapov et al. HEAT-RESISTANT COATINGS FORMED FROM SHS POWDER OF THE ZrSi2–MoSi2–ZrB2 SYSTEM FOR CARBON COMPOSITES
JP2852407B2 (ja) 高強度ダイヤモンド・金属複合焼結体及びその製造法
Ameen et al. In situ synthesis of oxidation and wear resistant coatings on graphite
Chkhartishvili et al. Obtaining of boron carbide based titanium-containing nanocomposites (Mini-review)
Martin et al. Formation process of mixed silicon and tungsten carbide from copyrolysis of polysilane and metallic tungsten: Part I
JP2779454B2 (ja) 酸化アルミニウム質焼結体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant