CN116590294A - 诱导型基因启动子P-k613在水稻根系的表达分析与应用 - Google Patents

诱导型基因启动子P-k613在水稻根系的表达分析与应用 Download PDF

Info

Publication number
CN116590294A
CN116590294A CN202310439718.XA CN202310439718A CN116590294A CN 116590294 A CN116590294 A CN 116590294A CN 202310439718 A CN202310439718 A CN 202310439718A CN 116590294 A CN116590294 A CN 116590294A
Authority
CN
China
Prior art keywords
promoter
rice
expression
root
root system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310439718.XA
Other languages
English (en)
Inventor
李金涛
逯丹阳
王昊
樊海燕
林婷婷
吕俊莹
闫欣
张雨凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinyang Normal University
Original Assignee
Xinyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyang Normal University filed Critical Xinyang Normal University
Priority to CN202310439718.XA priority Critical patent/CN116590294A/zh
Publication of CN116590294A publication Critical patent/CN116590294A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • C12N15/8227Root-specific
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8291Hormone-influenced development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8291Hormone-influenced development
    • C12N15/8293Abscisic acid [ABA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8291Hormone-influenced development
    • C12N15/8298Brassinosteroids

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供了水稻锌指转录因子基因k613的启动子P‑k613及其在水稻根系诱导表达中的应用。茉莉酸甲酯(JA)、油菜素内酯(BR)、细胞分裂素(6‑BA)和脱落酸(ABA)与植物抵御生物与非生物胁迫密切相关,这些激素均能够强烈诱导P‑k613表达。冷胁迫、聚乙二醇(PEG)、硝态氮和铵态氮等环境也能诱导P‑k613表达。将该启动子应用于基因工程领域,可以实现对目的基因表达的时空和组织特异性进行精准调控,同时该启动子也是在植物分子遗传改良过程中启动子改造和设计的重要资源。

Description

诱导型基因启动子P-k613在水稻根系的表达分析与应用
技术领域
本发明属于植物基因工程技术领域。具体涉及一个水稻锌指转录因子家族基因的启动子P-k613克隆及其在水稻根系生长发育中的应用。
背景技术
真核生物生长发育是转录因子结合DNA顺式作用元件调控基因表达的结果。DNA顺式作用元件包括启动子、增强子、沉默子、绝缘子等,其决定了基因在组织和细胞中表达的时空特异性。启动子是指转录起始位点上游的一段DNA序列,通过为转录因子提供结合位点,进而招募RNA聚合酶复合体调控RNA的合成。根据启动子距离转录起始位点的距离,分为近端启动子区域和远端启动子区,大多数调控转录元件定位于近端启动子区。因此,克隆并深入研究启动子的结构与功能,对于理解基因在转录水平的调控机制有着较大的帮助,同时也可以为植物基因工程中调控目的基因功能性表达提供有利的工具。
根据启动子的功能及作用方式可以分为组成型启动子、组织器官特异型启动子和诱导型启动子,以及双向启动子和人工合成启动子。早期禾本科启动子的研究主要集中玉米的Ubiquitin启动子、水稻Actin1、OsCc1、GAPDH启动子等组成型启动子(Christensenand Quail,1996.Ubiquitin promoter-based vectors for high-level expression ofselectable and/or screenablemarkergenesinmonocotyledonousplants.TransgenicResearch,5:213-218;Zhangetal.,1991.Analysis ofRiceAct 5′RegionActivityinTransgenic Rice Plants.Plant Cell,1991,3:1155;Jangetal.,2002.High-level andubiquitousexpressionoftherice cytochromecgene OsCc1 andits promoter activityin transgenic plants provides a useful promoter for transgenesis ofmonocots.PlantPhysiology,129:1473-1481),但是研究表明,许多组成型启动子可能会引起植物的正常生理活动异常以及一些食品安全性等方面的担忧等问题,因此获取组织特异型启动子以及诱导型启动子已经成为基因工程领域研究的重点。
水稻(OryzasativaL.)是最重要的粮食作物之一,全世界一半以上的人口以其为主食。水稻根系作为植物在长期适应环境进化而来的三大营养器之一,发挥着固定、吸收水分和养分的功能。水稻育种研究结果表明,水稻各基因型的耐旱、耐涝、耐盐能力以及地上株型、育性的差异与其根系的生理优势和生长活力密切相关(吴伟明和程式华,2005.水稻根系育种的意义与前景.中国水稻科学19:174-180)。研究表明,植物激素不仅参与了植物包括根系的生长发育的调控,并且参与了植物抵御生物与非生物胁迫中发挥重要作用(Zhao etal.,2015.The Interaction between Rice ERF3 and WOX11 Promotes CrownRoot Development by RegulatingGene ExpressionInvolvedinCytokininSignaling.Plant Cell,27:2469-2483;Mai etal.,2014.Genes controlling rootdevelopment in rice.Rice,7:30;Zhu et al.,2012.A gain-of-function mutation inOsIAA11 affects lateral root development in rice.Mol.Plant5:154–161;Kitomi etal.,2011.The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 isinvolved in crown root initiation in rice through the induction of OsRR1,atype-A response regulator of cytokinin signaling.Plant Journal67:472–484;Coudert et al.,2010.Genetic control of root development in rice,the modelcereal.Trends Plant Sci.15:219-226)。因此,通过分子遗传改良以提高品种本身对水分、养分的利用率和逆境的生物与非生物胁迫,将大大减少人力和物力资源的浪费,并能减少因大量化学肥料和农药流失对环境造成的污染,对确保我国的粮食安全和发展持续、高效的绿色农业具有重要意义。
发明内容
本发明通过基因工程的方法创建了水稻锌指转录因子家族基因k613启动子融合GUS报告基因转基因植株。借助对转基因植株GUS报告基因染色模式的分析,揭示k613基因启动子P-k613的表达模式,以期应用于水稻根系分子遗传改良。
本发明在于提供了一个受激素、环境胁迫和氮素诱导表达的水稻锌指转录因子k613基因的启动子的应用。
本发明达到上述目的的技术方案是,根据水稻公共数据库Rice GenomeAnnotation Project(http://rice.uga.edu/),以序列表SEQ ID NO 1中所获得的1-2545bp核苷酸序列为模板序列,设计适于构建表达载体的引物并在引物两端加上Hind III和BamH I的酶切位点,以水稻品种“中花11”(中国农业科学院作物科学研究所)样品为模板DNA,通过PCR的方法扩增得到k613基因启动子片段。利用酶切连接的方法,将k613基因启动子片段插入到DX2181载体。进一步利用农杆菌介导的遗传转化的方法将携带P-k613片段的表达载体转入水稻愈伤组织,培育出稳定转化转基因水稻植株。
因此,在第一方面,本发明提供了一种转录因子基因k613的启动子P-k613,所述启动子P-k613的核苷酸序列如SEQ ID NO:1所示。
在第二方面,本发明提供了所述转录因子基因k613启动子P-k613在水稻根系诱导表达中的应用。
进一步地,所述应用包括在生物与非生物胁迫下调控水稻植株根系生长发育的应用。
进一步地,所述启动子P-k613被与植物抵御生物与非生物胁迫密切相关的激素、冷、聚乙二醇(PEG)、硝态氮和铵态氮等诱导表达,进一步地,所述激素选自于茉莉酸甲酯(JA)、油菜素内酯(BR)、细胞分裂素(6-BA)和脱落酸(ABA)。
进一步地,所述启动子P-k613在水稻根系的伸长区、中柱区域弱表达。
在第三方面,本发明还提供了用于构建所述启动子P-k613的表达载体片段的引物,所述引物包括Promk613-F和Promk613-R引物对,所述Promk613-F的核苷酸序列如SEQID NO:2所示,所述Promk613-R的核苷酸序列如SEQ ID NO:3所示。
与现有技术相比,本发明的优点如下:
本发明通过克隆一个水稻锌指转录因子基因k613的启动子P-k613,其在水稻根系的伸长区、中柱区域弱表达。茉莉酸甲酯(JA)、油菜素内酯(BR)、细胞分裂素(6-BA)和脱落酸(ABA)与植物抵御生物与非生物胁迫密切相关,这些激素均能够强烈诱导P-k613表达。此外,PEG模拟干旱胁迫、冷环境(4℃)、硝态氮和铵态氮也能显著诱导P-k613表达。这些说明,P-k613基因启动子是一个诱导型启动子,能够在水稻根系中受多种激素和环境诱导调控。将该启动子应用于基因工程领域,可以实现对目的基因表达的时空和组织特异性进行精准调控,同时该启动子也是在植物分子遗传改良过程中启动子改造和设计的重要资源。
附图说明
图1为表达载体DX2181及本发明构建的P-k613启动子融合载体构建的示意图;
图1A为表达载体质粒DX2181,图1B为本发明构建的载体图;
图2为不同激素处理P-k613基因启动子转基因植株在根系中的表达模式;
图2A为对照组,无添加激素处理情况下P-k613启动子融合报告基因GUS在水稻根尖表达情况;
图2B为1/2MS培养基28℃条件下种植3天后,10μM茉莉酸甲酯(JA)处理本发明创建的P-k613启动子融合gus转基因植株24h,报告基因gus在水稻根尖表达情况;
图2C为1/2MS培养基28℃条件下种植3天后,10μM油菜素内酯(BR)处理本发明创建的P-k613启动子融合gus转基因植株24h,报告基因gus在水稻根尖表达情况;
图2D为1/2MS培养基28℃条件下种植3天后,10μM细胞分裂素(6-BA)处理本发明创建的P-k613启动子融合gus转基因植株24h,报告基因gus在水稻根尖表达情况;
图2E为1/2MS培养基28℃条件下种植3天后,10μM脱落酸(ABA)处理本发明创建的P-k613启动子融合gus转基因植株24h,报告基因gus在水稻根尖表达情况;
图2F为1/2MS培养基28℃条件下种植3天后,4℃处理本发明创建的P-k613启动子融合gus转基因植株24h,报告基因gus在水稻根尖表达情况;
图2G为1/2MS培养基28℃条件下种植3天后,质量分数为5%的聚乙二醇(PEG)处理本发明创建的P-k613启动子融合gus转基因植株24h,报告基因gus在水稻根尖表达情况;
图2H为1/2MS培养基28℃条件下种植3天后,5mM KNO3处理本发明创建的P-k613启动子融合gus转基因植株24h,报告基因gus在水稻根尖表达情况;
图2I为1/2MS培养基28℃条件下种植3天后,5mM(NH4)2SO4处理本发明创建的P-k613启动子融合gus转基因植株24h,报告基因gus在水稻根尖表达情况。
附图中标尺=10mm。
具体实施例方式
为了使本发明的目的、技术方案和优点更加清楚明白,下面结合具体的实施例对本发明进一步详细说明。
实施例1
根据水稻公共数据库Rice Genome Annotation Project(http://rice.plantbiology.msu.edu/index.shtml),以序列表SEQ ID NO 1中所获得的1-2500bp核苷酸序列为模板序列,设计适于构建表达载体的引物并在引物两端加上Hind III和BamHI的酶切位点,以水稻品种“中花11”(中国农业科学院作物科学研究所)样品为模板DNA,通过PCR的方法扩增得到的P-k613启动子片段。
具体条件如下:
PCR反应总体积为20μl,具体配法是:模板100ng,10xPCRbuffer 2μl,10mMdNTP1.6μl,2.5mM Mg2+1.5μl,左、右引物(PromSHB-F和PromSHB-R)各0.2μl,LA Taq酶0.2μl,加去离子水到20μl(所用到的PCRbuffer、dNTP、Mg2+、LA Taq酶等均为自宝生物工程大连有限公司)。PCR反应条件如下:①94℃10分钟,预变性,②94℃30秒,变性,③68℃4分钟,退火及延伸,④从②-③重复31次,循环扩增,⑥72℃7分钟,保温,⑦4℃保存。
引物的构建:分别用Hind III和BamH I酶切PCR产物和表达载体质粒DX2181(该质粒的图谱见图1),目的片段回收纯化后用连接酶连接,通过电转化的方法(电转化仪为eppendorf公司产品,所用电压为1800v,操作方法见该仪器说明书),将连接产物转到大肠杆菌DH10β感受态中(购自普洛麦格生物技术有限公司,即美国Promega公司),在含有250ppm卡那霉素(购自罗氏生物公司产品)的LA(LA配方参见J.萨姆布鲁克,EF弗里奇,T曼尼阿蒂斯著,黄培堂,王嘉玺等译,分子克隆实验指南(第三版),科学出版社,2002版)抗性培养基上涂皿培养;用来构建P-k613表达载体片段的引物为:
Promk613-F:5’-TCTAAGCTTATGGATATTTTGTTATGTGTGTG-3’(SEQ ID NO:2),
Promk613-R:5’-TTAGGATCCCAGTCAAGAAACCAGTCAAGGG-3’(SEQ ID NO:3)。
菌落的培养:将LA抗性培养基上长出的单菌落在超净工作台接种于灭菌的10ml离心管,管内预先加入3ml含250ppm卡那霉素的LB抗性培养基,然后在37℃摇床上培养16-18小时。按照J.萨姆布鲁克和D.W.拉塞尔著,黄培堂等译,《分子克隆实验指南》,科学出版社,2002版报道的方法抽提质粒,用Hind III和BamH I酶切并电泳检测,并挑取大小正确克隆测序验证。
将测序正确的克隆电转化农杆菌,利用农杆菌介导的转基因方法(Wu et al.,2003.Development of enhancer trap lines for functional analysis ofthe ricegenome.Plant J.35:418–427)将上述的启动子表达载体遗传转化载体导入水稻粳稻受体品种中花11(ZH11),获得的P-k613启动子转基因植株,然后对这些阳性转基因植株根系进行GUS染色观察检测阳性植株。
实施例2
收获T0代阳性转基因种子之后,将其种植于1/2MS培养基的平皿(13cm×13cm)上28℃培养箱(16h/8h)垂直培养3天,然后将苗在无添加激素处理情况下培养24小时;取根尖部分放入GUS染液,抽真空,37℃孵育16小时,酒精脱去非特异染色,使用莱卡体视显微镜(S8AP0,莱卡,德国)观察并拍照。如附图2A所示,蓝色指示GUS在水稻根系中表达部位,说明启动子P-k613在水稻根系的伸长区和成熟区的中柱弱表达。
实施例3
实施例3与实施例2基本相同,其不同之处在于,
收获T0代阳性转基因种子之后,将其种植于1/2MS培养基的平皿(13cm×13cm)上28℃培养箱(16h/8h)垂直培养3天,然后移苗至含有10μM茉莉酸甲酯(JA)的培养基上处理24小时,取根尖部分放入GUS染液,抽真空,37℃孵育16小时,酒精脱去非特异染色,使用莱卡体视显微镜(S8AP0,莱卡,德国)观察并拍照。如附图2B所示,整条水稻根系(包括根尖分生组织区和根冠)被GUS染液染成深蓝色,对比实施例2(图2A),说明P-k613启动子活性在JA处理水稻根系的表达区域和表达强度均显著增加。该结果表明,P-k613在水稻根系中能够被JA强烈诱导表达。在基因工程中,利用P-k613序列启动特定基因的表达,当需要提高目的基因在根系表达时,通过添加诱导物JA,实现增强目的基因在根系中的高水平表达。
实施例4
实施例4与实施例2基本相同,其不同之处在于,
收获T0代阳性转基因种子之后,将其种植于1/2MS培养基的平皿(13cm×13cm)上28℃培养箱(16h/8h)垂直培养3天,然后分别移苗至含有10μM油菜素内酯BR的培养基上处理24小时。取根尖部分放入GUS染液,抽真空,37℃孵育16小时,酒精脱去非特异染色,使用莱卡体视显微镜(S8AP0,莱卡,德国)观察并拍照。如附图2C所示,与实施例3(图2B)相似,整条水稻根系被GUS染液染成深蓝色,对比实施例2(图2A),说明P-k613启动子活性在BR处理水稻根系的表达区域和表达强度均显著增加。该结果表明,P-k613在水稻根系中能够被BR强烈诱导表达。在基因工程中,利用P-k613序列启动特定基因表达,当需要提高目的基因在根系表达时,通过添加诱导物BR,实现增强目的基因在根系中的高水平表达。
实施例5
实施例5与实施例2基本相同,其不同之处在于,
收获T0代阳性转基因种子之后,将其种植于1/2MS培养基的平皿(13cm×13cm)上28℃培养箱(16h/8h)垂直培养3天,然后移苗至含有10μM细胞分裂素6-BA的培养基上处理24小时。取根尖部分放入GUS染液,抽真空,37℃孵育16小时,酒精脱去非特异染色,使用莱卡体视显微镜(S8AP0,莱卡,德国)观察并拍照。如附图2D所示,水稻根尖一段区域(包括根冠、分生组织区、伸长区和成熟区)被GUS染液染成蓝色,对比实施例2(图2A),根系分生区和根冠区域染色较深。说明P-k613启动子活性在ABA处理的水稻根尖显著增加。该结果表明,P-k613在水稻根尖能够被6-BA诱导表达。在基因工程中,利用P-k613序列启动特定基因表达,当需要提高目的基因在根尖成熟区部分表达时,通过添加诱导物ABA,实现增强目的基因的表达水平。
实施例6
实施例6与实施例2基本相同,其不同之处在于,
收获T0代阳性转基因种子之后,将其种植于1/2MS培养基的平皿(13cm×13cm)上28℃培养箱(16h/8h)垂直培养3天,然后移苗至含有10μM脱落酸(ABA)的培养基上处理24小时。取根尖部分放入GUS染液,抽真空,37℃孵育16小时,酒精脱去非特异染色,使用莱卡体视显微镜(S8AP0,莱卡,德国)观察并拍照。如附图2E所示,靠近水稻根尖一段区域(成熟区)被GUS染液染成深蓝色,对比实施例2(图2A),说明P-k613启动子活性在ABA处理的水稻根尖成熟区表达显著增加。该结果表明,P-k613能够被ABA诱导在水稻根尖表达。在基因工程中,利用P-k613序列启动特定基因表达,当需要提高目的基因在根尖成熟区表达时,通过添加诱导物ABA,实现增强目的基因在根尖成熟区的表达水平。
实施例7
实施例7与实施例2基本相同,其不同之处在于,收获T0代阳性转基因种子之后,将其种植于1/2MS培养基的平皿(13cm×13cm)上28℃培养箱(16h/8h)垂直培养3天,然后将植株转移至4℃下处理24小时。取根尖部分放入GUS染液,抽真空,37℃孵育16小时,酒精脱去非特异染色,使用莱卡体视显微镜(S8AP0,莱卡,德国)观察并拍照。如附图2F所示,靠近水稻根系一段区域(根冠、分生区和成熟区)被GUS染液染成深蓝色,对比实施例2(图2A),说明P-k613启动子活性在冷处理的水稻根系表达显著增加。
该结果表明,P-k613能够被冷胁迫诱导在水稻根尖表达。在基因工程中,利用P-k613序列启动特定基因表达,当需要提高目的基因在根系表达时,通过冷处理,实现增强目的基因在根尖成熟区的表达水平。
实施例8
实施例8与实施例2基本相同,其不同之处在于,收获T0代阳性转基因种子之后,将其种植于1/2MS培养基的平皿(13cm×13cm)上28℃培养箱(16h/8h)垂直培养3天,然后移苗至含有5%的聚乙二醇(PEG)的培养基上处理24小时。取根尖部分放入GUS染液,抽真空,37℃孵育16小时,酒精脱去非特异染色,使用莱卡体视显微镜(S8AP0,莱卡,德国)观察并拍照。如附图2G所示,整个根部区域都被GUS染液染成深蓝色,对比实施例2(图2A),说明P-k613启动子活性在PEG处理的水稻根系表达显著增加。
该结果表明,P-k613在水稻根系能够被干旱诱导表达。在基因工程中,利用P-k613序列启动特定基因表达,当需要提高目的基因在根系表达时,通过PEG处理,实现增强目的基因在整个根系的表达水平。
实施例9
实施例9与实施例2基本相同,其不同之处在于,收获T0代阳性转基因种子之后,将其种植于1/2MS培养基的平皿(13cm×13cm)上28℃培养箱(16h/8h)垂直培养3天,然后移苗至含有5mM KNO3的培养基上处理24小时。取根尖部分放入GUS染液,抽真空,37℃孵育16小时,酒精脱去非特异染色,使用莱卡体视显微镜(S8AP0,莱卡,德国)观察并拍照。如附图2H所示,根分生组织、根冠和整个根系中柱区域都被GUS染色,对比实施例2(图2A),说明P-k613启动子活性在KNO3处理的水稻根系表达显著增加。
该结果表明,P-k613在水稻根系能够被KNO3诱导表达。在基因工程中,利用P-k613序列启动特定基因表达,当需要提高目的基因在根系表达时,通过KNO3处理,实现增强目的基因在整个根系的表达水平。
实施例10
实施例10与实施例2基本相同,其不同之处在于,收获T0代阳性转基因种子之后,将其种植于1/2MS培养基的平皿(13cm×13cm)上28℃培养箱(16h/8h)垂直培养3天,然后移苗至含有5mM(NH4)2SO4的培养基上处理24小时。取根尖部分放入GUS染液,抽真空,37℃孵育16小时,酒精脱去非特异染色,使用莱卡体视显微镜(S8AP0,莱卡,德国)观察并拍照。如附图2I所示,整个根系中柱区域都被GUS染色,对比实施例2(图2A),说明P-k613启动子活性在(NH4)2SO4处理的水稻根系中柱表达显著增加。
该结果表明,P-k613在水稻根系能够被(NH4)2SO4诱导表达。在基因工程中,利用P-k613序列启动特定基因表达,当需要提高目的基因在根系表达时,通过(NH4)2SO4处理,实现增强目的基因在整个根系的表达水平。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (7)

1.一种转录因子基因k613的启动子P-k613,所述启动子P-k613的核苷酸序列如SEQ IDNO:1所示。
2.权利要求1所述的转录因子基因k613启动子P-k613在水稻根系诱导表达中的应用。
3.根据权利要求2所述的应用,其中,所述应用包括在生物与非生物胁迫下调控水稻植株根系生长发育的应用。
4.根据权利要求2所述的应用,其中,所述启动子P-k613抵御胁迫相关的激素、冷、聚乙二醇(PEG)、硝态氮和铵态氮诱导表达。
5.根据权利要求4所述的应用,其中,所述激素选自于茉莉酸甲酯(JA)、油菜素内酯(BR)、细胞分裂素(6-BA)和脱落酸(ABA)。
6.根据权利要求2所述的应用,其中,所述启动子P-k613在水稻根系的伸长区、中柱区域弱表达。
7.用于构建权利要求1所述的启动子P-k613的表达载体片段的引物,所述引物包括Promk613-F和Promk613-R引物对,所述Promk613-F的核苷酸序列如SEQ ID NO:2所示,所述Promk613-R的核苷酸序列如SEQ ID NO:3所示。
CN202310439718.XA 2023-04-23 2023-04-23 诱导型基因启动子P-k613在水稻根系的表达分析与应用 Pending CN116590294A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310439718.XA CN116590294A (zh) 2023-04-23 2023-04-23 诱导型基因启动子P-k613在水稻根系的表达分析与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310439718.XA CN116590294A (zh) 2023-04-23 2023-04-23 诱导型基因启动子P-k613在水稻根系的表达分析与应用

Publications (1)

Publication Number Publication Date
CN116590294A true CN116590294A (zh) 2023-08-15

Family

ID=87599841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310439718.XA Pending CN116590294A (zh) 2023-04-23 2023-04-23 诱导型基因启动子P-k613在水稻根系的表达分析与应用

Country Status (1)

Country Link
CN (1) CN116590294A (zh)

Similar Documents

Publication Publication Date Title
CN109797157B (zh) 一种抗非生物逆境转录因子PbrbHLH92及其引物、编码的蛋白和应用
CN111235165A (zh) 一种百合的易感真菌基因LrWRKY-S1及其应用
CN105985954B (zh) 水稻miR160b基因在调控分蘖角度中的应用
CN112126655A (zh) 一种亚洲棉GaNCED3基因在提高植物抗旱性中的应用
CN108424920B (zh) 玉米耐逆相关转录因子ZmNAC33基因及其应用
CN111118035B (zh) 参与调控水稻根系发育的pin9基因及应用
CN112322645A (zh) OsHDA710表观调控因子基因在水稻发育和抗逆中的应用
CN109666069B (zh) 一种植物开花时间性状相关蛋白AtJAZ5及其编码基因和应用
CN108486112B (zh) 一种具有花药组织特异性的启动子
CN114703199B (zh) 一种植物抗旱性相关的基因TaCML46及应用
CN102226181B (zh) 甘蓝型油菜BnPABP2启动子的制备方法及其应用
CN112195185B (zh) 一种番茄叶型调控基因及应用
CN116590294A (zh) 诱导型基因启动子P-k613在水稻根系的表达分析与应用
CN107573411A (zh) 小麦TaZIM1‑7A蛋白在调控作物抽穗期中的应用
CN110106200B (zh) 玉米bbm1基因在提高植物遗传转化效率中的应用
CN105802994A (zh) 一种RNAi植物表达载体及其应用
CN104694551A (zh) 水稻抽穗期基因dth10-1及其应用
CN111440231A (zh) 蛋白质GmFULa在调控大豆株型和产量中的应用
CN107142261B (zh) 一种在水稻幼穗特异表达的启动子及其应用
CN110129338B (zh) 玉米转录因子ZmEREB160基因及其应用
NL2030997B1 (en) Zea mays receptor-like kinase 7 (zmrlk7) gene related to kernel and plant type development of maize and use thereof
CN114350675B (zh) 一种调控亚麻次生壁合成的LuNAC基因及其应用
CN111647578B (zh) Usb1蛋白在调控植物抗旱性中的应用
CN116789785B (zh) 长雄蕊野生稻高产、高光效基因FarL1及其应用
CN107354158B (zh) 诱导型基因启动子p-shoebox的表达分析与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination