CN116500708A - 一种硬质增韧减反射膜及其制作方法 - Google Patents

一种硬质增韧减反射膜及其制作方法 Download PDF

Info

Publication number
CN116500708A
CN116500708A CN202310333584.3A CN202310333584A CN116500708A CN 116500708 A CN116500708 A CN 116500708A CN 202310333584 A CN202310333584 A CN 202310333584A CN 116500708 A CN116500708 A CN 116500708A
Authority
CN
China
Prior art keywords
film
hard
nano composite
hardness
toughening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310333584.3A
Other languages
English (en)
Inventor
沈伟东
王雨思
杨陈楹
郑婷婷
袁文佳
刘雨洁
陈潇
章岳光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310333584.3A priority Critical patent/CN116500708A/zh
Publication of CN116500708A publication Critical patent/CN116500708A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种硬质增韧减反射膜,包括依次设于基板上的内层匹配膜堆、纳米复合膜和外层匹配膜堆;所述纳米复合膜为由交替设置的高、低硬度薄膜层堆叠而成的复合膜;所述内层匹配膜堆和外层匹配膜堆均由交替设置的高、低折射率层膜层组成。本发明同时公开了上述硬质增韧减反射膜的制备方法。本发明基于氮化物材料的高硬度,结合纳米复合多层薄膜堆叠的层间增韧,构建了关键纳米复合膜层厚度可调结构,实现了高硬度、高韧性、角度不敏感的宽波段减反射性能,在性能上克服了目前商业化的氮化硅基减反膜的脆性断裂问题。

Description

一种硬质增韧减反射膜及其制作方法
技术领域
本发明涉及一种光学元件,具体涉及一种硬质增韧减反射膜,可应用于智能手机、平板电脑、零售扫描仪、眼镜、住宅和建筑窗户、安防监控镜头、车载镜头、汽车挡风玻璃等领域。
背景技术
盖板玻璃通常置于光学系统的最外侧,用于提供输入或输出界面的保护窗口,目前广泛应用于智能手机、平板电脑、零售扫描仪、眼镜、住宅和建筑窗户、户外相机镜头、汽车应用等领域。随着显示技术的不断发展,人们对显示产品的视觉需求逐渐增高,阳光下的可读性是可穿戴设备、平板电脑和笔记本电脑最需要的功能之一。除此之外,盖板玻璃需要对日常使用的划痕、颠簸和跌落提供出色的抗损坏性。
减反射膜可以消除玻璃基板表面的菲涅尔反射,是提高成像质量的关键。但是,大多数用于增透薄膜的典型氧化物或者氟化物硬度低,容易划伤或磨损。与常见的盖板玻璃相比,例如化学强化玻璃、康宁大猩猩玻璃等,传统光学薄膜不能满足现代复杂、恶劣环境中的应用需求。因此,硬质减反射膜被认为是最有希望取代现有的减反射膜的一种新型光学薄膜。目前的硬质减反射薄膜的制作方式主要有两种,一种是混合氧化物薄膜方法,另外一种是硬质氮化物薄膜方法。
混合氧化物薄膜方法旨在通过优化薄膜的材料性能,而不是几何涂层参数来改善光学涂层性能。一般的方法是利用两种或两种以上氧化物或氟化物薄膜材料合成新的混合物材料。Stefan Bruns等人在题为《Properties of reactive sputtered alumina–silicamixtures》的文章中提出利用混合氧化铝和氧化硅薄膜来提高减反射薄膜硬度的方法。但是该方法制备得到的混合物薄膜硬度低于氮化物和碳化物,同时高硬度的混合物折射率也相应较高,不适用于制作减反射薄膜。
硬质氮化物薄膜方法通过选用具有高硬度的氮化硅薄膜制备减反射膜,从而达到抗划伤的效果。常用的高硬度的氮化物材料有:SiNx,SiOxNy,SiuAlvOxNy,AlNx,AlOxNy。其中,无定形态的Si3N4因其高硬度,表面摩擦系数小,高透过率等特性,是目前制作硬质防反射薄膜的常用方法。见2022年授予Shandon等人的US 2022299606(A1)号美国专利、授予Jaymin等人的US 2022317340(A1)号美国专利、授予Bellman等人的US 2022075097(A1)号美国专利中所公开的内容。但这种方法也存在不足之处,那就是氮化硅薄膜坚硬而不够“坚韧”;并且高硬度氮化物的薄膜往往呈现出极大的脆性和低的失效应变,在薄膜制品弯曲、落砂、跌落、摩擦等测试后呈现出较低的抵抗能力。因此,研究一种“坚韧”、光学性能优异的硬质增韧减反射膜制备方法具有重要意义。
发明内容
本发明针对商业化的氮化物减反射薄膜由于脆性断裂导致薄膜失效的技术问题,提供了一种硬质增韧减反射膜以及其制备方法。
一种硬质增韧减反射膜,包括依次设于基板上的内层匹配膜堆、纳米复合膜和外层匹配膜堆;所述纳米复合膜为由交替设置的高、低硬度薄膜层堆叠而成的复合膜;所述内层匹配膜堆和外层匹配膜堆均由交替设置的高、低折射率膜层组成。
所述基板可以根据使用场合进行选择和确定。本发明得到的硬质增韧减反射膜可以应用于智能手机、平板电脑、零售扫描仪、眼镜、住宅和建筑窗户、安防监控镜头、车载镜头、汽车挡风玻璃等领域。所以基板可以是手机、电脑等屏幕材料,或者扫描仪屏幕等,也可以是玻璃等材料,或者其他柔性材料。
本发明中纳米复合膜层为具有软、硬弹性模量(Elastic modulus)交替的介质膜堆叠。所述纳米复合材料的选择可以是氧化物与氮化物的组合、氧化物与氧化物的组合、氮化物与氮化物的组合等吧。作为优选,所述纳米复合膜中,低硬度薄膜材料和高硬度薄膜材料选自如下组合:
Ta2O5/Si3N4、Nb2O5/Si3N4、TiO2/Si3N4、AlN/Si3N4、Al2O3/SiOxNy、AlxOyNz/SiOxNy、HfO2/ZrO2
作为优选,所述高硬度薄膜层材料选择高硬度氮化物。为了获得较高硬度,所述纳米复合膜中,高硬度氮化物膜层材料的厚度占比至少大于50%。
作为优选,所述纳米复合膜的厚度为500-5000nm;进一步,所述纳米复合膜的厚度为1000-5000nm,其中单层高、低硬度薄膜层的厚度为0.5-100nm。
作为优选,所述纳米复合膜中,低硬度薄膜材料和高硬度薄膜材料的折射率的差值小于等于0.2。在调整机械性能的同时,不会对膜层的光学性能带来干扰。
作为优选,高折射率膜层材料选择二氧化钛、五氧化二钽、五氧化二铌、氧化铪、氧化锆、硫化锌、钛酸镧、氮化铝、氮氧化铝、氮化硅、氮氧化硅、氮氧硅铝混合物中的一种以及上述至少两个的混合物;低折射率膜层材料选择二氧化硅、氧化铝、氟化镁、氟化铝、氟化铈中的一种以及上述至少两个的混合物。
作为优选,高折射率膜层厚度为5~300纳米;进一步优选为10~200纳米;低折射率膜层厚度为1~300纳米;进一步优选为5~100纳米。上、内层匹配膜堆中高折射率膜层层数为3~50层,进一步优选为4~10层;低折射率膜层层数为4~50层,进一步优选为5~10层。更进一步,内层匹配膜堆中高折射率膜层层数为1~20层,进一步优选为2~5层;低折射率膜层层数为2~20层,进一步优选为3~6层;外层匹配膜堆中高折射率膜层层数为1~20层,进一步优选为2~5层;低折射率膜层层数为2~20层,进一步优选为2~6层。
制备时,纳米复合膜层置于内、外层匹配膜堆之间,且内层匹配膜堆与纳米复合膜层相邻的一层为低折射率膜层,上层匹配膜堆与纳米复合膜层相邻的一层为低折射率膜层。
作为优选,所述低折射率层采用SiO2,高折射率层采用Si3N4,所述纳米复合膜为Ta2O5/Si3N4组成的膜堆结构,所述纳米复合膜总厚度为1-3微米,纳米复合膜中低硬度薄膜层的厚度占比小于等于15%。
一种上述任一技术方案所述的硬质增韧减反射膜的设计方法,包括:
首先进行纳米复合膜的设计:根据实际需要确定纳米复合膜的总厚度,根据硬度要求,确定纳米复合膜中低硬度薄膜层的厚度,进而确定纳米复合膜中高、低硬度薄膜层的数量和各自的厚度;
完成纳米复合膜设计后,将纳米复合膜等效为一层高折射率膜层;然后根据光学缓冲层的概念(buffer layer),以光学函数作为优化目标,使用传递矩阵对膜层厚度进行优化,使得内层匹配膜堆和外层匹配膜堆的等效导纳与纳米复合膜导纳一致,最终完成所述硬质增韧减反射膜的设计。
一种上述任一技术方案所述的硬质增韧减反射膜的制备方法,包括如下步骤:
(1)确定内层匹配膜堆、纳米复合膜和外层匹配膜堆膜层的材料和结构参数;
(2)采用物理气相沉积或者化学气相沉积技术在基片上依次沉淀内层匹配膜堆、纳米复合膜和外层匹配膜堆膜层;
(3)得到所述硬质增韧减反射膜。
本发明与传统设计方法不同。传统的光学薄膜膜系优化只考虑光学函数作为优化目标,使用传递矩阵对整体膜层厚度进行优化,优化过程中使用尽可能少的层和较低折射率材料来实现减反射性能。通常情况下,基于TiO2/SiO2膜堆组合的减反射膜,以400nm-800nm波段范围内100%透射为目标函数,利用传递矩阵方法,最终优化得到的膜层总物理厚度为300nm-700nm。而本发明的硬质增韧减反射膜设计目标,包括:400nm-800nm波段范围内100%透射;薄膜总物理厚度200-5000nm厚度区间范围内可调整,且调整过程中光学特性不变,这是通过光学缓冲层的设计概念(buffer layer)得以实现的;纳米压痕深度200nm条件下,多层薄膜硬度大于20Gpa。
本发明的硬质增韧减反射膜,与传统的硬质减反射膜原理不同。它通过独特的缓冲层设计方法实现光机械组合设计。举例说明:当基板折射率为1.52,靠近基板侧的膜层折射率N3=1.75,计算得到导纳值为(N3)2/1.52=2.014。若选择膜层N2材料折射率为2.014置于N3膜层上,此时由于满足缓冲层的条件,膜层N2的任何物理厚度对λ0的反射率不产生影响,因为导纳值不发生变化。将纳米复合薄膜层间增韧原理和光学缓冲层设计方法结合在一起,由于纳米复合薄膜层满足虚设层条件,其物理厚度任意可调,反射率不产生变化,这给机械特性提供了设计空间。同时。纳米复合薄膜两侧的匹配膜堆消除了界面之间的反射,实现高精度宽带减反射性能。
纳米复合薄膜层的机械特性设计是通过两种方法实现的。一方面,构成的纳米复合膜层中纳米堆叠的层数可调整。大量的界面有助于防止裂纹,因此显著的提高了硬质薄膜的韧性,进而获得增强的耐摩擦、抗划伤性能。另一方面,纳米复合薄膜层中堆叠中材料是有软硬交替的氧化物膜层和氮化物薄膜构成,纳米复合材料具有单一块状材料不具备的高硬度和增强韧性特点。
本发明的多层膜结构分为三部分:第一部分在基片附近采用匹配膜堆#1(即内层匹配膜堆),以消除基板和纳米复合膜的反射;第二部分采用纳米复合膜#2,以调节薄膜的力学性能,第三部分采用靠近空气侧的匹配膜堆#3(即外层匹配膜堆),以消除复合材料膜和空气界面的反射。
本发明与传统增透膜的特性不同。从机械性能上看,本发明的纳米复合膜由一种软、硬交替的K1和K2多层膜堆叠而成,其硬度可通过选择薄膜材料及膜厚比例来调节。单层K1膜的厚度范围为0.5-100nm,单层K2膜的厚度范围为0.5-100nm。纳米多层复合薄膜的结构符合下列通式:[K1(a)nm/K2(b)nm]x,式中a、b分别表示所述的单层K1薄膜和单层K2薄膜的厚度,0.5<a<100nm;0.5<b<100nm。x表示单层K1和单层K2薄膜的交替周期数或者交替层数,且x为正整数。薄膜的总厚度可由x与所述单层K1和单层K2薄膜的厚度计算所得,即[(a+b)*x](nm)。本发明纳米多层复合薄膜的总厚度约为1000-5000nm,优选为1000nm。此时(a+b)*x=1000(nm)。
从光学上,由低硬度材料E1与高硬度材料E2构成的多层薄膜等效为单一介质,其材料组合要求具有近似的折射率|n1-n2|<0.2,从而降低了宽波段反射率光谱的震荡。纳米多层复合薄膜放置于两个匹配膜堆之间,并满足缓冲层条件,其目的是使光学透过率不再作为纳米复合膜层厚度的函数,从而实现薄膜厚度任意变化。
本发明硬质增韧减反射膜可采用物理气相沉积或者化学气相沉积技术来制备,比如离子辅助蒸发、磁控溅射等离子加强,化学汽相沉积、低压化学气相沉积等,优选反应磁控溅射。
所述基板的材料可以为ZF6玻璃、K9玻璃、紫外熔融石英、蓝宝石、硅片、白玻璃等硬质材料,也可以为聚乙烯、聚甲基丙烯酸甲酯、聚二甲基硅氧烷、聚碳酸酯、聚对苯二甲酸乙二醇酯等塑料材料。
一种硬质增韧减反射膜可以具有如下物理厚度:200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1000nm、1200nm、1400nm、1600nm、1800nm、2000nm、2500nm、3000nm、3500nm、4000nm、4500nm、5000nm,以及其间的所有范围和子范围。
通过纳米压痕仪硬度测试进行测量,本发明得到的硬质增韧减反射膜的可以具有如下最大硬度:约10GPa或更大,约15GPa或更大,约18GPa或更大,或者约20GPa或更大。
作为优选的组合:所述高折射率材料为氮化硅,所述低折射率材料为SiO2,所述纳米薄膜堆叠为Ta2O5/Si3N4,所述多层薄膜总厚度为1-3微米。作为优选,所述纳米复合膜的厚度为1-3微米,其中Ta2O5层厚占比为15%以下,进一步,层厚占比为10%或10%以下。
与现有技术相比,本发明具有以下优点:
本发明制备的硬质增韧减反射膜,通过“缓冲层光学设计”结合“纳米级复合薄膜力学”策略,使得多层膜兼具力学的保护功能和优异的光学性能。这种具有高硬度、强韧性和高透光率的硬质增韧减反射膜,在光学表面形成了非常致密结实且坚硬的无机介质膜层,不仅起到防止眩光作用,而且可以增强抗冲击、耐磨和抗划伤性能。本发明的硬质增韧减反射膜整体结构紧凑、制备过程简单,成本低,便于大规模、批量化生产。
本发明基于氮化物材料的高硬度,结合纳米复合多层薄膜堆叠的层间增韧,构建了关键纳米复合膜层厚度可调结构,实现了高硬度、高韧性、角度不敏感的宽波段减反射性能,在性能上克服了目前商业化的氮化硅基减反膜的脆性断裂问题。本发明利用光学设计中的虚设层原理,只需改变纳米复合膜层的厚度,就可以获得满足不同抗划伤性能要求。该策略大大地增加了硬质增韧减反射膜在极端环境应用中的耐久性。该发明有望为智能手机、平板电脑、零售扫描仪、眼镜、住宅和建筑窗户、户外相机镜头、汽车应用等领域提供出色的光学和力学防护性能。
附图说明
图1为实施例1制备的硬质增韧减反射膜的结构示意图;
图2为实施例1制备硬质增韧减反射膜以不同角度入射时的反射光谱图;
图3为硬质增韧减反射膜在不同纳米复合薄膜厚度条件下的模拟反射光谱图;
图4为实施例1制备的硬质增韧减反射膜的纳米压痕硬度;
图5为实施例1制备的硬质增韧减反射膜的弹性模量;
图6为比较例1与实施实例1的硬质增韧减反射膜经划痕仪载荷变化图。在渐进式负载划伤试验中,尖端以10mm/s的速度移动,在渐进式负载下划伤样品表面,在300μm的距离上从0到500mN线性增加。并在峰值处标记出多层薄膜损坏后临界载荷力。
图7为比较例1与实施例1样品在摩擦测试后(0.5cm2/500g钢丝绒摩擦3000次)的表面形貌。比较例1为具有1μm的氮化硅膜层的硬质减反射薄膜,薄膜结构参考授予Shandon等人的US 2022299606(A1)号美国专利。实施例1为本发明的硬质增韧减反射膜。
具体实施方式
下面结合附图对本发明进行进一步地详细说明。
实施例1:如图1所示,一种硬质增韧减反射膜由靠近基底的内层匹配膜堆3、纳米复合膜层2、靠近空气侧的外层匹配膜堆1组成,其中纳米复合膜层为总厚度约为1μm的5nmTa2O5/50nmSi3N4纳米复合多层薄膜堆叠。
基于硬质增韧减反射膜的制备方法,包括以下步骤:
(1)选择400nm—800nm范围内100%透射为设计的目标光谱;纳米复合膜的物理厚度约为1微米。
(2)采用氮化硅和氧化硅分别为高折射率材料和低折射率材料,选择氮化硅(Si3N4,nH=2.05)和二氧化硅(SiO2,nL=2.15)作为高、低折射率材料,构成导纳匹配膜堆。
(3)折射率相近的氮化硅(Si3N4,nH=2.05)和氧化钽(Ta2O5,nL=2.15)构成纳米复合薄膜,并同时作为光学缓冲层。由于氮化硅与氧化钽的折射率接近(|n1-n2|<0.2),因此对光学特性的影响可以忽略。氮化硅与氧化钽具有较大的杨氏模量差异,多层交叠后可以阻止涂层中微裂纹的快速扩展,从而防止磨损过程碎片的形成,降低涂层的磨损率。
(4)硬质增韧减反射膜使用传递矩阵对膜层厚度进行优化,优化过程中需要使纳米复合膜满足缓冲层条件。最终优化得到的膜层总物理厚度约为1500nm,薄膜结构参数如表1所示。
(5)采用电感耦合等离子体(ICP)辅助反应的磁控溅射实际制备了该减反膜。磁控溅射装置装有两个单元素靶材,一个是金属钽靶(纯度99.999%),一个是硅靶(纯度99.999%)。在这些实验中,射频功率下的ICP始终维持在3KW的功率水平。通过溅射Si、Ta靶材,并在ICP离子源种分别充入氧气O2、氮气N2与薄的金属层反应来获得标准化学计量比的SiO2、Ta2O5和Si3N4等化合物薄膜。制备过程中没有对基板进行特意的加热,但受溅射过程和离子源辅助反应中的热辐射作用,镀膜过程中基板温度会逐渐上升,内部的单独温度测量表明,沉积温度未超过120℃。
表1硬质增韧减反膜结构
图2为上述制备的硬质增韧减反射膜以不同角度入射时的反射光谱图。在400-800nm的波长范围内,正入射条件下的反射率低于0.8%;45度入射角条件下的反射率低于2%;60度入射角条件下的反射率低于10%。
图3为具有不同厚度的硬质增韧减反射膜的反射光谱(Si3N4层厚50nm,Ta2O5层厚5nm)。通过导纳匹配方法使得纳米复合膜满足虚设层条件,此时光学透过率不再作为纳米复合膜层厚度的函数,实现纳米复合膜层厚度任意可调,满足不同程度的抗划伤需求。同时,缓冲层足够厚、足够硬且具有韧性,是影响硬度的最重要因素,提高了机械性能的设计自由度。“缓冲层光学设计”结合“纳米级复合薄膜力学”策略使得硬质增韧减反射膜同时具有力学的保护功能和优异的光学性能成为可能。
图4和图5为利用纳米压痕测量按照表1得到薄膜样品的硬度和模量值。表2针对每个膜层样品,在100nm、200nm压痕深度下获得的硬度和杨氏模量。实施例1中的硬质增韧减反射膜可展现出约大于25Gpa@100nm的硬度。本发明提出了由氧化Ta2O5层分离的致密Si3N4膜结构,可防止脆性Si3N4元件的突变失效。大量的界面有助于偏转扩展裂纹,降低其应力强度。
表2硬质增韧减反射膜的机械性能
图6为采用对比样品(以1μm的氮化硅膜层代替本发明的纳米复合膜,其余结构相同)硬质增韧减反射膜经划痕仪载荷变化图。在渐进式负载划伤试验中,尖端以10mm/s的速度移动,在渐进式负载下划伤样品表面,在300移动的距离上从0到500mN线性增加。并在峰值处标记出多层薄膜损坏后临界载荷力。由图6中(a)可以看出,本发明得到的薄膜样品的破坏模式是渐进式塑性变形,有效地抑制了开裂和/或分层的发生。薄膜对划痕载荷的响应表现为韧性。划开的薄膜完美地附着在划痕的边缘。其弹性变形回复率高达78.3%。而从对比样品(图6中(b))的检测结果可知,测试过程中,膜层发生断裂。
图7为薄膜样品在摩擦测试后的表面形貌。比较例1参考授予Shandon等人的US2022299606(A1)号美国专利,制备得到具有1美国的氮化硅膜层的硬质减反射薄膜。比较例1与本发明实施例1在同等条件下进行摩擦测试,用于说明纳米复合薄膜明显增强的抗断裂能力。
在涂层磨损3000次后,摩擦后比较例1(图7中(a)所示)试样的膜开裂和剥落较为明显,而实施例1(图7中(b)所示)薄膜样品则没有出现这种现象,说明具有纳米复合薄膜的多层增透膜比其他样品具有更高的耐磨性。由于Ta2O5/Si3N4纳米复合薄膜中部的裂纹扩展伴随着裂纹尖端周围塑性流动,因此多层膜在开裂过程中耗散的功大幅增加。额外的应变能耗散是由层间界面的裂纹偏转导致涂层的增韧。同时,实施例1薄膜样品的硬度仍可维持在25Gpa@100nm的水平。因此,提高多层涂层的磨损性能取决于其结构的优化,以获得硬度、刚度和韧性的最佳组合。

Claims (9)

1.一种硬质增韧减反射膜,其特征在于,包括依次设于基板上的内层匹配膜堆、纳米复合膜和外层匹配膜堆;所述纳米复合膜为由交替设置的高、低硬度薄膜层堆叠而成的复合膜;所述内层匹配膜堆和外层匹配膜堆均由交替设置的高、低折射率层膜层组成。
2.根据权利要求1所述的硬质增韧减反射膜,其特征在于,所述纳米复合膜中,低硬度薄膜材料和高硬度薄膜材料选自如下组合:
Ta2O5/Si3N4、Nb2O5/Si3N4、TiO2/Si3N4、AlN/Si3N4、Al2O3/SiOxNy、AlxOyNz/SiOxNy、HfO2/ZrO2
3.根据权利要求1所述的硬质增韧减反射膜,其特征在于,所述纳米复合膜中,高硬度薄膜层的总厚度占比至少大于50%。
4.根据权利要求1所述的硬质增韧减反射膜,其特征在于,所述纳米复合膜的厚度为500-5000nm,其中单层高、低硬度薄膜层的厚度为0.5-100nm。
5.根据权利要求1所述的硬质增韧减反射膜,其特征在于,所述纳米复合膜中,低硬度薄膜材料和高硬度薄膜材料的折射率的差值小于等于0.2。
6.根据权利要求1所述的硬质增韧减反射膜,其特征在于,高折射率膜层材料选自二氧化钛、五氧化二钽、五氧化二铌、氧化铪、氧化锆、硫化锌、钛酸镧、氮化铝、氮氧化铝、氮化硅、氮氧化硅、氮氧硅铝混合物中的一种以及上述至少两个的混合物;低折射率膜层材料选自二氧化硅、氧化铝、氟化镁、氟化铝、氟化铈中的一种以及上述至少两个的混合物。
7.根据权利要求1所述的硬质增韧减反射膜,其特征在于,低折射率层采用SiO2,高折射率层采用Si3N4,所述纳米复合膜为Ta2O5/Si3N4组成的膜堆结构,所述纳米复合膜总厚度为1-3微米,纳米复合膜中低硬度薄膜层的总厚度占比小于等于15%。
8.一种权利要求1所述的硬质增韧减反射膜的设计方法,其特征在于:
首先进行纳米复合膜的设计:根据实际需要确定纳米复合膜的总厚度,根据硬度要求,确定纳米复合膜中低硬度薄膜层的厚度,进而确定纳米复合膜中高、低硬度薄膜层的数量和各自的厚度;
完成纳米复合膜设计后,将纳米复合膜等效为一层高折射率膜层;然后以光学函数作为优化目标,使用传递矩阵对膜层厚度进行优化,最终得到内层匹配膜堆和外层匹配膜堆的组成,完成所述硬质增韧减反射膜的设计。
9.一种权利要求1所述的硬质增韧减反射膜的制备方法,其特征在于:
(1)确定内层匹配膜堆、纳米复合膜和外层匹配膜堆膜层的材料和结构参数;
(2)采用物理气相沉积或者化学气相沉积技术在基板上依次沉淀内层匹配膜堆、纳米复合膜和外层匹配膜堆膜层;
(3)得到所述硬质增韧减反射膜。
CN202310333584.3A 2023-03-31 2023-03-31 一种硬质增韧减反射膜及其制作方法 Pending CN116500708A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310333584.3A CN116500708A (zh) 2023-03-31 2023-03-31 一种硬质增韧减反射膜及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310333584.3A CN116500708A (zh) 2023-03-31 2023-03-31 一种硬质增韧减反射膜及其制作方法

Publications (1)

Publication Number Publication Date
CN116500708A true CN116500708A (zh) 2023-07-28

Family

ID=87319358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310333584.3A Pending CN116500708A (zh) 2023-03-31 2023-03-31 一种硬质增韧减反射膜及其制作方法

Country Status (1)

Country Link
CN (1) CN116500708A (zh)

Similar Documents

Publication Publication Date Title
CN108802863B (zh) 具有耐久性和耐划痕性的防反射制品
US9703010B2 (en) Articles with anti-reflective high-hardness coatings and related methods
CN109683223B (zh) 透明构件
MXPA04012960A (es) Sustrato transparente que comprende un revestimiento antirreflejante.
JP2000211948A (ja) 反射防止コ―ティングを備える透明基板
CN111247458B (zh) 混合梯度干涉硬涂层
CN113646276B (zh) 光学构件
CN113302523A (zh) 由溅射的氮化硅或氮氧化硅制造的硬质高折射率光学膜
CN112694847A (zh) 一种具有防眩光、减反射以及防指纹的薄膜
CN109790627B (zh) 蓝宝石薄膜涂布基材
TWI802585B (zh) 混合式梯度-干涉硬塗層
CN111766650A (zh) 非平面基材的光学涂层及其生产方法
CN117836674A (zh) 具有带延伸红外透射的薄、耐久性抗反射涂层的制品
CN111132945B (zh) 具有受控的粗糙度和微结构的涂层
CN117169994A (zh) 一种可见光波段的硬度梯度增透膜及其制备方法
US20230301002A1 (en) Cover articles with high hardness and anti-reflective properties for infrared sensors
CN116500708A (zh) 一种硬质增韧减反射膜及其制作方法
KR102147373B1 (ko) 적외선 저반사 코팅막 및 이의 제조방법
JP2000290044A (ja) 低反射ガラス板およびそれを用いた車両用低反射合わせガラス板
CN114105489A (zh) 含透明基板和具匹配反射率的耐磨层的元件及制造方法
JP2001096669A (ja) 反射防止積層体、光学機能性積層体、および表示装置
WO2023171313A1 (ja) 遠赤外線透過部材及び遠赤外線透過部材の製造方法
US20230301003A1 (en) Cover articles with durable optical structures and functional coatings, and methods of making the same
WO2023171309A1 (ja) 遠赤外線透過部材及び遠赤外線透過部材の製造方法
TW202413077A (zh) 光學積層體及物品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination