CN116487467A - 一种硅基铁电异质结光电探测器及其制备方法和应用 - Google Patents

一种硅基铁电异质结光电探测器及其制备方法和应用 Download PDF

Info

Publication number
CN116487467A
CN116487467A CN202310479723.3A CN202310479723A CN116487467A CN 116487467 A CN116487467 A CN 116487467A CN 202310479723 A CN202310479723 A CN 202310479723A CN 116487467 A CN116487467 A CN 116487467A
Authority
CN
China
Prior art keywords
pbzr
ferroelectric
silicon
substrate
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310479723.3A
Other languages
English (en)
Inventor
陈思怡
陈明明
朱高雅
陈思学
程培宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202310479723.3A priority Critical patent/CN116487467A/zh
Publication of CN116487467A publication Critical patent/CN116487467A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供了一种硅基铁电异质结光电探测器及其制备方法和应用,属于信息技术领域;本发明通过在Si硅衬底表面上制备铁电薄膜材料,然后在Si硅衬底和铁电薄膜材料上沉积薄金属电极来构建硅基铁电异质结光电探测器;所述硅基铁电异质结光电探测器能够实现紫外‑可见‑近红外宽光谱和波长可选择光探测的目的,其在300‑900nm宽光谱和300‑340nm紫外/380‑900nm可见光‑近红外波长下均可进行可选择光探测,具有很强的工业实用性。

Description

一种硅基铁电异质结光电探测器及其制备方法和应用
技术领域
本发明属于信息技术领域,具体涉及一种硅基铁电异质结光电探测器及其制备方法和应用。
背景技术
半导体光电探测器是一种把光信号转换成电信号的光电子器件,其广泛应用于光通信、成像、传感等领域。目前,光电探测器主要包括金属/半导体/金属、半导体同质pn结或异质pn结等结构,通过界面电场光伏效应,实现单波段窄光谱或宽光谱、双波段宽光谱光探测的目的。
虽然宽光谱和波长可选择光电探测器可以有选择性地探测光谱信号,极大地拓展了器件的功能。但是,由于内建电场形成规律的制约,光电探测器中宽光谱和双波段波长可选择的光探测难以兼得。尽管利用带通滤光片技术可以实现宽光谱和波长可选择光探测,但这大幅增加了器件的尺寸和制备成本,限制了它们的应用。
针对上述问题,研究人员提出通过入射光波长诱导光电流方向翻转的策略,构建了热电异质结光电探测器和电化学电池两类器件,实现了紫外-可见-红外宽光谱和波长可选择光探测的结果。但这两类器件均易受环境(如高温)影响,存在一定的局限性,从而限制了它们的应用。因此,开发一种结构简单、性能稳定的宽光谱和波长可选择光电探测器对于发展新型多功能光电子器件具有重要意义。
发明内容
针对现有技术中存在不足,本发明提供了一种硅基铁电异质结光电探测器及其制备方法和应用;本发明通过在Si硅衬底表面上制备铁电薄膜材料,然后在Si硅衬底和铁电薄膜材料上沉积薄金属电极来构建硅基铁电异质结光电探测器;所述硅基铁电异质结光电探测器能够实现紫外-可见-近红外宽光谱和波长可选择光探测的目的,其在300-900nm宽光谱和300-340nm紫外/380-900nm可见光-近红外波长下均可进行可选择光探测,具有很强的工业实用性。
为了解决上述技术问题,本发明采用以下技术手段:
本发明首先提供一种硅基铁电异质结光电探测器,所述硅基铁电异质结光电探测器包括Si衬底和Si衬底表面上生长的PbZrxTi1-xO3铁电薄膜,所述Si衬底和PbZrxTi1-xO3铁电薄膜的表面沉积有薄金属电极;其中0<x<1。
优选地,所述Si衬底为n或p型Si。
优选地,所述PbZrxTi1-xO3铁电薄膜的厚度为10~1000nm。
优选地,所述薄金属电极包括钛、金、钼、钨或银中的一种或多种。
优选地,所述薄金属电极的沉积厚度为10~40nm。
优选地,所述薄金属电极的形状为圆形或正方形,面积为0.01~0.15mm2
本发明还提供了上述硅基铁电异质结光电探测器的制备方法,具体包括如下步骤:
在清洗干净的Si衬底表面生长PbZrxTi1-xO3铁电薄膜,然后将部分PbZrxTi1-xO3铁电薄膜刻蚀裸露出Si衬底,分别在Si衬底和PbZrxTi1-xO3铁电薄膜表面沉积薄金属电极,得到所述硅基铁电异质结光电探测器。
优选地,所述Si衬底的清洗步骤包括:
(1)依次使用丙酮、无水乙醇和去离子水对硅片进行超声清洗,去除硅片表面油污等污渍,然后使用氮气干燥处理;
(2)将硅片放置在氢氟酸中浸泡,去除硅表面自然氧化层;
(3)依次使用乙醇和去离子水对硅片进行清洗,去除硅片表面氢氟酸杂质,然后使用氮气干燥处理,得到清洗干净的硅片。
优选地,在Si衬底表面上通过磁控溅射法生长PbZrxTi1-xO3铁电薄膜;
所述磁控溅射法生长PbZrxTi1-xO3铁电薄膜的步骤如下:
(1)将PbZrxTi1-xO3靶材和清洗干净的Si衬底放置在磁控溅射生长室中,并将生长室真空抽至10-4Pa以下;
(2)在上述真空环境下对Si衬底进行退火处理,退火温度为300~400℃,退火时间为10~30分钟;
(3)PbZrxTi1-xO3靶材预溅射处理:缓慢通入Ar并调节生长室压力,打开溅射电源,在低功率下溅射PbZrxTi1-xO3靶材,去除PbZrxTi1-xO3靶材表面的污渍;所述预溅射功率为20~100W,预溅射时间为10~30分钟;
(4)溅射生长PbZrxTi1-xO3铁电薄膜:PbZrxTi1-xO3靶材预溅射处理后关闭溅射电源,然后缓慢通入O2并调节生长室压力,打开溅射电源并设定功率值,打开Si衬底表面处挡板进行PbZrxTi1-xO3铁电薄膜的生长,生长结束后关闭Si衬底表面处挡板,关闭溅射电源,关闭衬底加热电源,衬底自然降至室温。
其中,PbZrxTi1-xO3铁电薄膜生长时,Si衬底温度为400~650℃,溅射功率为50~200W,Ar/O2比为10:1~5:1,生长室压力为0.1~5Pa,生长时间为30~300分钟。
优选地,采用热蒸发法或电子束蒸镀法在Si衬底和PbZrxTi1-xO3铁电薄膜表面镀上薄金属电极。
优选地,薄金属电极的生长速度为金属电极的厚度为10~40nm。
本发明还提供了上述硅基铁电异质结光电探测器在300-900nm宽光谱、300-340nm紫外或380-900nm可见光-近红外波长下可选择光探测中的应用。
与现有技术相比,本发明的有益效果在于:
本发明通过在Si硅衬底表面上制备铁电薄膜材料,然后在Si硅衬底和铁电薄膜材料上沉积薄金属电极来构建硅基铁电异质结光电探测器;所述硅基铁电异质结光电探测器利用铁电薄膜PbZrxTi1-xO3退极化场和PbZrxTi1-xO3/Si异质结界面电场调控电子和空穴载流子的输运,实现了宽光谱和波长可选择光探测的结果。
本发明所述硅基铁电异质结光电探测器结合了铁电极化引起的退极化场和异质结界面电场,这两类电场具有热稳定性高的优点,因此本发明硅基铁电异质结光电探测器耐高温、性能稳定,克服了热电异质结光电探测器和电化学电池两类器件易受环境影响的不足。
本发明所述硅基铁电异质结光电探测器能够实现紫外-可见-近红外宽光谱和波长可选择光探测的目的,其在300-900nm宽光谱、300-340nm紫外以及380-900nm可见光-近红外波长下均可进行可选择光探测。并且。所述硅基铁电异质结光电探测器在实际工作中无需结合带通滤光片,大幅简化了器件的尺寸和制造成本,对发展新型多功能光电子器件具有重要意义。
附图说明
图1为本发明所述硅基铁电异质结光电探测器的结构示意图。
图2为本发明所述硅基铁电异质结光电探测器的剖面结构示意图。
附图标记:
1-Si衬底;2-PbZrxTi1-xO3铁电薄膜;3-薄金属电极。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
实施例1:
如图1~2所示,本发明所述硅基铁电异质结光电探测器包括Si衬底和Si衬底表面上生长的PbZrxTi1-xO3铁电薄膜,所述Si衬底和PbZrxTi1-xO3铁电薄膜的表面沉积有薄金属电极。其中,PbZrxTi1-xO3铁电薄膜的厚度为10~1000nm,所述PbZrxTi1-xO3铁电薄膜中通过调整Zr和Ti的组分占比来调节禁带宽度和铁电性。
本实施例中,所述薄金属电极选用金(Au)电极,所述Au电极的厚度为10nm。所述硅基铁电异质结光电探测器的具体制备方法包括如下步骤:
(1)清洗Si衬底:
选用p型Si作为Si衬底,依次使用丙酮、无水乙醇和去离子水对p型Si进行超声清洗,去除Si表面油污等污渍,然后使用氮气干燥处理;然后将Si放置在氢氟酸中浸泡3分钟,去除硅表面自然氧化层;最后依次使用乙醇和去离子水对p型Si进行清洗,去除p型Si表面氢氟酸杂质,然后使用氮气干燥处理,得到处理干净的p型Si衬底。
(2)PbZr0.52Ti0.48O3铁电薄膜的生长:
采用磁控溅射方法在清洗干净的p型Si衬底上生长PbZr0.52Ti0.48O3铁电薄膜。生长步骤如下:
(a)将PbZr0.52Ti0.48O3靶材和清洗干净的Si衬底放置在磁控溅射生长室中,将生长室真空至抽10-4Pa以下;
(b)在真空环境下对Si衬底进行400℃退火处理;
(c)PbZr0.52Ti0.48O3靶材预溅射处理:
将Si衬底温度升高至500℃,缓慢通入Ar并调节生长室内压力至1Pa。对PbZr0.52Ti0.48O3靶材进行预溅射处理10分钟,溅射功率为50W。
(d)溅射生长PbZr0.52Ti0.48O3铁电薄膜:
PbZr0.52Ti0.48O3靶材预溅射处理结束后,缓慢通入O2至Ar/O2比为10:1,调节生长室压力为2Pa,溅射功率设置为150W,打开Si衬底表面处挡板开始溅射生长PbZr0.52Ti0.48O3铁电薄膜。PbZr0.52Ti0.48O3铁电薄膜的厚度为10~1000nm,禁带宽度为3.40~3.55eV。
(3)薄金属电极的沉积:
铁电薄膜制备完后,进行沉积薄金属电极,在沉积金属电极之前用酒精、去离子水对步骤(2)中得到的铁电薄膜进行清洗。然后使用光刻和刻蚀方法,将部分PbZr0.52Ti0.48O3铁电薄膜刻蚀,使得p型Si材料裸露出来。
最后利用金属掩模板掩膜,采用电子束蒸镀方法在p型Si和PbZr0.52Ti0.48O3铁电薄膜表面沉积Au电极,Au电极的沉积温度为室温,Au电极厚度在3nm以下时沉积速率为厚度大于3nm时沉积速率为/>
实施例2:
本发明所述硅基铁电异质结光电探测器的制备方法与实施例1基本相同,仅有如下区别:步骤(3)中,薄金属电极选用钛、镍、金、铂、银、钼和钴一种或多种金属。
实施例3:
本发明所述硅基铁电异质结光电探测器的制备方法与实施例1基本相同,仅有如下区别:步骤(2)中,采用磁控溅射方法,选用PbZr0.2Ti0.8O3靶材制备PbZr0.2Ti0.8O3铁电薄膜,其中生长温度为500℃,溅射功率为150W,生长压力为1.5Pa,Ar/O2比为10:1,PbZr0.2Ti0.8O3厚度为120nm,禁带宽度为3.92eV。
实施例4:
本发明所述硅基铁电异质结光电探测器的制备方法与实施例1基本相同,仅有如下区别:步骤(2)中,采用磁控溅射方法,选用PbZr0.4Ti0.6O3靶材制备PbZr0.4Ti0.6O3铁电薄膜,生长温度为450℃,溅射功率为100W,生长压力为3Pa,Ar/O2比为10:1,PbZr0.4Ti0.6O3厚度为150nm,禁带宽度为3.75eV。
综上所述,本发明所述硅基铁电异质结光电探测器能够实现紫外-可见-近红外宽光谱和波长可选择光探测的目的,其在300-900nm宽光谱、300-340nm紫外以及380-900nm可见光-近红外波长下均可进行可选择光探测。并且,所述硅基铁电异质结光电探测器在实际工作中无需结合带通滤光片,大幅简化了器件的尺寸和制造成本,对发展新型多功能光电子器件具有重要意义。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

1.一种硅基铁电异质结光电探测器,其特征在于,所述硅基铁电异质结光电探测器包括Si衬底和Si衬底表面上生长的PbZrxTi1-xO3铁电薄膜,所述Si衬底和PbZrxTi1-xO3铁电薄膜的表面沉积有薄金属电极;其中0<x<1。
2.根据权利要求1所述的硅基铁电异质结光电探测器,其特征在于,所述Si衬底为n或p型Si。
3.根据权利要求1所述的硅基铁电异质结光电探测器,其特征在于,所述PbZrxTi1-xO3铁电薄膜的厚度为10~1000nm。
4.根据权利要求1所述的硅基铁电异质结光电探测器,其特征在于,所述薄金属电极包括钛、金、钼、钨或银中的一种或多种。
5.根据权利要求1所述的硅基铁电异质结光电探测器,其特征在于,所述薄金属电极的沉积厚度为10~40nm;所述薄金属电极的形状为圆形或正方形,面积为0.01~0.15mm2
6.权利要求1~5任一项所述硅基铁电异质结光电探测器的制备方法,其特征在于,具体包括:
在清洗干净的Si衬底表面生长PbZrxTi1-xO3铁电薄膜,然后将部分PbZrxTi1-xO3铁电薄膜刻蚀裸露出Si衬底,分别在Si衬底和PbZrxTi1-xO3铁电薄膜表面沉积薄金属电极,得到所述硅基铁电异质结光电探测器。
7.根据权利要求6所述硅基铁电异质结光电探测器的制备方法,其特征在于,在Si衬底表面上通过磁控溅射法生长PbZrxTi1-xO3铁电薄膜;
所述磁控溅射法生长PbZrxTi1-xO3铁电薄膜的步骤如下:
(1)将PbZrxTi1-xO3靶材和清洗干净的Si衬底放置在磁控溅射生长室中,并将生长室真空抽至10-4Pa以下;
(2)在上述真空环境下对Si衬底进行退火处理,退火温度为300~400℃,退火时间为10~30分钟;
(3)PbZrxTi1-xO3靶材预溅射处理:缓慢通入Ar并调节生长室压力,打开溅射电源,在低功率下溅射PbZrxTi1-xO3靶材,去除PbZrxTi1-xO3靶材表面的污渍;所述预溅射功率为20~100W,预溅射时间为10~30分钟;
(4)溅射生长PbZrxTi1-xO3铁电薄膜:PbZrxTi1-xO3靶材预溅射处理后关闭溅射电源,然后缓慢通入O2并调节生长室压力,打开溅射电源并设定功率值,打开Si衬底表面处挡板进行PbZrxTi1-xO3铁电薄膜的生长,生长结束后关闭Si衬底表面处挡板,关闭溅射电源,关闭衬底加热电源,衬底自然降至室温。
8.根据权利要求7所述硅基铁电异质结光电探测器的制备方法,其特征在于,PbZrxTi1- xO3铁电薄膜生长时,Si衬底温度为400~650℃,溅射功率为50~200W,Ar/O2比为10:1~5:1,生长室压力为0.1~5Pa,生长时间为30~300分钟。
9.根据权利要求6所述硅基铁电异质结光电探测器的制备方法,其特征在于,采用热蒸发法或电子束蒸镀法在Si衬底和PbZrxTi1-xO3铁电薄膜表面镀上薄金属电极;
所述薄金属电极的生长速度为金属电极的厚度为10~40nm。
10.权利要求1~5任一项所述硅基铁电异质结光电探测器在300-900nm宽光谱、300-340nm紫外或380-900nm可见光-近红外波长下可选择光探测中的应用。
CN202310479723.3A 2023-04-28 2023-04-28 一种硅基铁电异质结光电探测器及其制备方法和应用 Pending CN116487467A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310479723.3A CN116487467A (zh) 2023-04-28 2023-04-28 一种硅基铁电异质结光电探测器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310479723.3A CN116487467A (zh) 2023-04-28 2023-04-28 一种硅基铁电异质结光电探测器及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116487467A true CN116487467A (zh) 2023-07-25

Family

ID=87216288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310479723.3A Pending CN116487467A (zh) 2023-04-28 2023-04-28 一种硅基铁电异质结光电探测器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116487467A (zh)

Similar Documents

Publication Publication Date Title
Gall et al. Polycrystalline silicon thin-film solar cells on glass
US7705235B2 (en) Photovoltaic device
JP2012531048A (ja) 半導体光検出構造体
CN110729376B (zh) 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法
Hsu et al. A novel Al and Y codoped ZnO/n-Si heterojunction solar cells fabricated by pulsed laser deposition
CN113964230A (zh) 一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用
CN102110739A (zh) 抗反射层、抗反射表面的制法、及其应用的光电转换装置
CN112234117B (zh) 基于n-GaN/p-GaSe/石墨烯异质结的自驱动超宽光谱光电探测器及制备方法
JP6990764B2 (ja) 太陽電池およびその製造方法
TWI750549B (zh) 一種製備氮化鋁-氧化鋅紫外光檢測電極之方法
CN116487467A (zh) 一种硅基铁电异质结光电探测器及其制备方法和应用
CN111710752A (zh) 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法
JP2003152205A (ja) 光電変換素子及びその製造方法
CN111933738B (zh) 基于分子束外延技术的自成结光电探测器及其制备方法
JP3510443B2 (ja) 光起電力装置の製造方法
CN115000233A (zh) 一种基于硫化亚锡/硒化铟异质结的光电二极管及其制备方法和应用
RU2575972C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ НА ОСНОВЕ GaSb
CN118352425B (zh) 氧化镓/氮化镓异质结双紫外波段探测器及其制备方法
CN113193069A (zh) 一种hBN/BAlN异质结紫外探测器及其制备方法
TWI313026B (en) Multi layer compound semiconductor solar photovoltaic device and its growing method
Liu et al. Performance improvement of co-sputtering AlGaZnO solar-blind photodetectors
CN114823977B (zh) 氧化镓光电探测器的制备方法
CN110718595A (zh) 基于溶液法制备的氧化物-金属复合电子传输层及包括其的晶硅太阳电池
CN118352423A (zh) 梯度内建电场调控肖特基结日盲紫外探测器及其制备方法
CN118434247A (zh) 一种去除卤化物钙钛矿表面缺陷的方法及其在太阳电池中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination