CN116474809A - 一种铋纳米颗粒修饰氮化碳光催化剂的制备方法及应用 - Google Patents

一种铋纳米颗粒修饰氮化碳光催化剂的制备方法及应用 Download PDF

Info

Publication number
CN116474809A
CN116474809A CN202310386977.0A CN202310386977A CN116474809A CN 116474809 A CN116474809 A CN 116474809A CN 202310386977 A CN202310386977 A CN 202310386977A CN 116474809 A CN116474809 A CN 116474809A
Authority
CN
China
Prior art keywords
solution
carbon nitride
photocatalyst
bivo
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310386977.0A
Other languages
English (en)
Inventor
王帅军
邓丹
曹迅
蒋齐越
孟祥骏
郑彬
邓涛
李斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202310386977.0A priority Critical patent/CN116474809A/zh
Publication of CN116474809A publication Critical patent/CN116474809A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于半导体光催化剂技术领域,公开了一种铋纳米颗粒修饰氮化碳光催化剂的制备方法及应用。步骤为:利用尿素制备g‑C3N4;将Bi(NO3)3·5H2O溶解在HNO3溶液中,得溶液A,然后将NH4VO3加入NaOH溶液,得溶液B,将溶液B缓慢转移到溶液A中,水热反应,洗涤,干燥,得到BiVO4;将g‑C3N4与KCl、NaCl和BiVO4混合后研磨均匀,煅烧,沸水洗涤、真空干燥,得到铋纳米颗粒修饰氮化碳光催化剂。高度增强的活性归因于氮化碳表面电子‑空穴对的有效分离和表面等离子共振SPR效应的协同贡献。Bi纳米粒子的形成增强了光吸收,促进了作为电子受体的空间电荷分离,缩短了电荷扩散长度,并为通过表面光氧化还原反应生成活性物质保留了更多的活性位点,能够显著增强的光催化降解双酚A的效果。

Description

一种铋纳米颗粒修饰氮化碳光催化剂的制备方法及应用
技术领域
本发明属于半导体光催化剂技术领域,具体涉及一种铋纳米颗粒修饰氮化碳光催化剂的制备方法及应用。
背景技术
基于半导体的光催化具有反应速率快、无二次污染等优点,已被公认为解决环境污染问题的一种有前途的“绿色”技术。该技术的关键和可行性在很大程度上取决于经济、高效和稳定的半导体材料的开发。在众多光催化剂中,聚合物氮化碳(g-C3N4)半导体材料由于具有较强的可见光响应、独特的电子能带结构、优异的热和化学稳定性,在可见光催化领域呈现巨大的应用潜力。然而,常规方法获得的体相g-C3N4,存在表面积小和光生载流子极易复合的问题,限制了其在环境领域的大规模实际应用。
Bi,作为一种典型的半金属材料,是近年来新开发的非贵金属基助催化剂。由于有效质量非常小,平均自由程大,载流子移动性高,受到了广泛的研究关注。最近的研究表明,Bi修饰氮化碳复合材料在光催化降解有机污染物方面具有显著效果。在反应过程中,Bi作为助催化剂,可以改善氮化碳表面上电子-空穴载流子的分离,为光降解反应提供更多的活性位点。其次,Bi表面的等离子体共振(SPR)效应可增强半导体对可见光的吸收和利用。然而,Bi的传统合成过程复杂,且多采用表面活性剂,不利于环境保护。
发明内容
本发明的目的在于,针对背景技术存在的一些缺陷,提出一种新型的铋纳米颗粒修饰氮化碳光催化剂(BiCCN)制备方法,并考察其在可见光下光催化降解双酚A(BPA)的光催化性能。
为了实现上述发明目的,采用的技术方案如下。
一种铋纳米颗粒修饰氮化碳光催化剂的制备方法,包括以下步骤:
步骤1.将装有尿素的坩埚放在马弗炉中进行焙烧,经自然冷却后,得到g-C3N4
步骤2.将Bi(NO3)3·5H2O溶解在HNO3溶液中,记为Bi源溶液A;
然后,将NH4VO3加入NaOH溶液中,标记为V源溶液B;
此后,将溶液B缓慢转移到溶液A中,搅拌30min,将混合物转移到PTFE内衬高压釜中进行水热反应,将得到的黄色固体彻底洗涤并干燥,获得BiVO4
步骤3.将步骤1得到的g-C3N4与KCl、NaCl和步骤2得到的BiVO4混合后研磨均匀,然后放入瓷舟内于管式炉中进行煅烧;煅烧后的产物沸水洗涤后,再经真空干燥,得到铋纳米颗粒修饰氮化碳光催化剂,记为BiCCN-X光催化剂。
进一步的,步骤1中,所述煅烧的温度为550℃,升温速率为5℃/min,煅烧的时间为2h;所述煅烧过程中的气体为空气。
进一步的,步骤2中,所述Bi(NO3)3·5H2O和NH4VO3的摩尔比为1:1;HNO3、NaOH的浓度均为1mol/L;搅拌时间为30min;所述水热反应的温度为180℃,时间为12h;干燥温度为50~70℃,时间为12~24h。
进一步的,步骤3中,所述g-C3N4、KCl、NaCl的质量分别为0.6g:2.64g:3.36g;BiVO4占BiVO4与g-C3N4混合物的质量比为5%~20%,
进一步的,步骤3中,所述煅烧的温度为550℃,升温速率为2.3℃/min,煅烧的时间为4h;所述煅烧过程中的保护气体为氮气;干燥温度为50~70℃,时间为12~24h。
本发明还提供了上述BiCCN-X光催化剂在光催化降解双酚A中的应用。
与现有技术相比,本发明的有益效果为:
1.本发明提供了一种新型的铋纳米颗粒修饰氮化碳光催化剂(BiCCN-X)制备方法,高度增强的活性归因于氮化碳表面电子-空穴对的有效分离和表面等离子共振(SPR)效应的协同贡献。Bi纳米粒子的形成增强了光吸收,促进了作为电子受体的空间电荷分离,缩短了电荷扩散长度,并为通过表面光氧化还原反应生成活性物质保留了更多的活性位点。
2.本发明首次利用KCl、NaCl作为助焊剂辅助合成铋纳米颗粒修饰氮化碳光催化剂,避免了表面活性剂的大量使用,对环境友好。本发明提供的BiCCN-X光催化剂相比于传统的g-C3N4,具有显著增强的光催化降解BPA活性,合成的光催化剂绿色无污染,适合大规模生产。
附图说明
图1为实施例1所制备的BiCCN-X光催化剂的制备流程示意图;
图2为对比例1所制备的g-C3N4(a)和实施例3制备的BiCCN-X光催化剂(b、c、d)透射电子显微镜图;
图3为对比例1所制备的g-C3N4和实施例1、2、3、4制备的BiCCN-X光催化剂的紫外可见漫反射光谱图;
图4为对比例1所制备的g-C3N4和实施例1、2、3、4制备的BiCCN-X光催化剂在可见光下(λ>420nm)对BPA废水的光催化降解速率图;
图5为实施例3所制备的BiCCN-X光催化剂在可见光下(λ>420nm)循环四次的催化降解BPA废水速率图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。但是,不应理解为对本发明的限制。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
对比例:
g-C3N4光催化剂的制备:
称取10g尿素于半封闭坩埚内,并置于马弗炉中,以5℃/min的升温速率升温至550℃,煅烧2h,煅烧结束后自然冷却至室温,即得g-C3N4
BiVO4的制备:
将2.9g Bi(NO3)3·5H2O溶解在30mL 1mol/L的HNO3溶液中,记为Bi源溶液A;
然后,将0.7g NH4VO3加入30mL 1mol/L NaOH溶液中,标记为V源溶液B;
此后,将溶液B缓慢转移到溶液A中,搅拌30min,将混合物转移到PTFE内衬高压釜中180℃进行水热反应12h,最后,将黄色固体彻底洗涤并60℃干燥12h,得到BiVO4
实施例1:
BiCCN-X光催化剂的制备:
称取0.6g g-C3N4与3.36g NaCl、2.64g KCl和31.6mg BiVO4混合研磨,然后在N2气氛下以2.3℃/min的速率加热到550℃,保温四个小时。冷却后,将固体混合物用热水洗涤五次以除去盐和杂质,然后在50℃真空烘箱中干燥12小时,得到最终产品BiCCN-5。
实施例2:
BiCCN-X光催化剂的制备:
称取0.6g g-C3N4与3.36g NaCl、2.64g KCl和66.7mg BiVO4混合研磨,然后在N2气氛下以2.3℃/min的速率加热到550℃,保温四个小时。冷却后,将固体混合物用热水洗涤五次以除去盐和杂质,然后在60℃真空烘箱中干燥18小时,得到最终产品BiCCN-10。
实施例3:
BiCCN-X光催化剂的制备:
称取0.6g g-C3N4与3.36g NaCl、2.64g KCl和105.9mg BiVO4混合研磨,然后在N2气氛下以2.3℃/min的速率加热到550℃,保温四个小时。冷却后,将固体混合物用热水洗涤五次以除去盐和杂质,然后在60℃真空烘箱中干燥24小时,得到最终产品BiCCN-15。
实施例4:
BiCCN-X光催化剂的制备:
称取0.6g g-C3N4与3.36g NaCl、2.64g KCl和150mg BiVO4混合研磨,然后在N2气氛下以2.3℃/min的速率加热到550℃,保温四个小时。冷却后,将固体混合物用热水洗涤五次以除去盐和杂质,然后在70℃真空烘箱中干燥12小时,得到最终产品BiCCN-20。
以实施例3所制备的BiCCN-15进行后续性能测试:
光催化降解双酚A(BPA)的实验过程:
称取0.025g实施例3所制备的光催化剂粉末BiCCN-15添加到含有50mL的BPA溶液中,BPA浓度为10mg/L。在光反应之前,先在黑暗条件下搅拌1h,以达到吸附-解吸平衡。然后进行光反应,反应的同时保持温度为室温。光源打开后,在给定的时间间隔取3mL溶液,使用0.22μm微孔过滤器过滤掉光催化剂粉末后,通过配备UV/Vis检测器(检测波长:275nm)的高效液相色谱仪测定BPA的浓度。
图1为BiCCN-X的合成流程图。由图可知,BiCCN-X通过高温焙烧一步合成。
图2(a)和(b)、(c)、(d)分别为g-C3N4和BiCCN-15的透射电子显微镜图,可以看出,g-C3N4为不规则的块状结构。图2(b-d)的HRTEM图可以观察到,BiCCN-15的表面均匀分散有10nm左右的小颗粒,测量其晶格条纹后,发现0.328、0.227和0.237nm的晶格条纹分别对应于Bi的(012)、(110)和(104)平面,为揭示BiCCN-X光催化剂的形成提供可靠的证据。
图3为g-C3N4和BiCCN-X的紫外可见漫反射光谱图。从图3可知,g-C3N4在460nm显示出可见光吸收边缘。与g-C3N4相比,BiCCN-X纳米复合材料随着Bi纳米颗粒质量百分比的增加,吸收强度逐渐增强。同时,吸收边也呈现红移。增强的光吸收可归因于金属纳米颗粒的SPR效应,这是获得高光催化效率的关键因素。
图4为g-C3N4和BiCCN-X在可见光下对BPA废水的光催化降解速率图。如图4所示,在可见光照射60min内,g-C3N4的降解反应比较缓慢,降解率仅达到了12%。相比之下,BiCCN-15的降解性能显著提高,BPA的降解率达到了96.5%,BiCCN-15性能的提高归因于氮化碳表面电子-空穴对的有效分离和表面等离子共振(SPR)效应的协同贡献。
图5为BiCCN-15的稳定性实验。对BiCCN-15光催化剂进行了4次循环降解实验,以考察其稳定性和可重复使用性。在连续运行4次循环后,BiCCN-15的降解活性没有明显变化,仍然保持较高的光催化性能,说明BiCCN-15是一种稳定的光催化剂,可循环用于BPA废水处理。
应当指出,以上所述具体实施方式可以使本领域的技术人员更全面地理解本发明,但不以任何方式限制本发明。因此,本领域技术人员应当理解,仍然可以对本发明进行修改或者等同替换;而一切不脱离本发明的精神和技术实质的技术方案及其改进,其均应涵盖在本发明专利的保护范围当中。

Claims (7)

1.一种铋纳米颗粒修饰氮化碳光催化剂的制备方法,其特征在于,包括以下步骤:
步骤1.将装有尿素的坩埚放在马弗炉中进行焙烧,经自然冷却后,得到g-C3N4
步骤2.将Bi(NO3)3·5H2O溶解在HNO3溶液中,记为Bi源溶液A;
然后,将NH4VO3加入NaOH溶液中,标记为V源溶液B;
此后,将溶液B缓慢转移到溶液A中,搅拌,将混合物转移到PTFE内衬高压釜中进行水热反应,将得到的黄色固体彻底洗涤并干燥,获得BiVO4
步骤3.将步骤1得到的g-C3N4与KCl、NaCl和步骤2得到的BiVO4混合后研磨均匀,然后放入瓷舟内于管式炉中进行煅烧;煅烧后的产物经沸水洗涤后,再经真空干燥,得到铋纳米颗粒修饰氮化碳光催化剂,记为BiCCN-X光催化剂。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述煅烧的温度为550℃,升温速率为5℃/min,煅烧的时间为2h;所述煅烧过程中的气体为空气。
3.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述Bi(NO3)3·5H2O和NH4VO3的摩尔比为1:1;HNO3溶液、NaOH溶液的浓度均为1mol/L,搅拌时间为30min。
4.根据权利要求1所述的制备方法,其特征在于,步骤2中,水热反应的温度180℃,保温12h;干燥温度为50~70℃,干燥时间为12~24h。
5.根据权利要求1所述的制备方法,其特征在于,步骤3中,g-C3N4、KCl、NaCl的质量比为0.6g:2.64g:3.36g,BiVO4占BiVO4与g-C3N4混合物的质量比为5%~20%。
6.根据权利要求1所述的制备方法,其特征在于,步骤3中,所述煅烧的温度为550℃,升温速率为2.3℃/min,煅烧的时间为4h;所述煅烧过程中的保护气体为氮气,干燥温度为50~70℃,时间为12~24h。
7.根据权利要求1~6任一项所述方法制备的铋纳米颗粒修饰氮化碳光催化剂应用于在光催化条件下降解双酚A中的用途。
CN202310386977.0A 2023-04-12 2023-04-12 一种铋纳米颗粒修饰氮化碳光催化剂的制备方法及应用 Pending CN116474809A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310386977.0A CN116474809A (zh) 2023-04-12 2023-04-12 一种铋纳米颗粒修饰氮化碳光催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310386977.0A CN116474809A (zh) 2023-04-12 2023-04-12 一种铋纳米颗粒修饰氮化碳光催化剂的制备方法及应用

Publications (1)

Publication Number Publication Date
CN116474809A true CN116474809A (zh) 2023-07-25

Family

ID=87226214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310386977.0A Pending CN116474809A (zh) 2023-04-12 2023-04-12 一种铋纳米颗粒修饰氮化碳光催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN116474809A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107262133A (zh) * 2017-08-01 2017-10-20 重庆工商大学 一种基于单分散单质铋和氮化碳的光催化剂的制备办法
CN109985657A (zh) * 2019-04-30 2019-07-09 燕山大学 BiVO4/2D g-C3N4Z型异质结光催化剂的制备方法
CN112058291A (zh) * 2020-07-22 2020-12-11 上海应用技术大学 一种微球状复合可见光催化剂及其快速制备方法和应用
CN112705242A (zh) * 2020-12-30 2021-04-27 上海健康医学院 一种金属铋纳米颗粒修饰多孔氮化碳复合材料及其制备方法和在去除水中抗生素中的应用
CN112774715A (zh) * 2021-01-29 2021-05-11 中山大学 一种钒酸铋高结晶氮化碳异质结光催化剂及其制备方法与应用
CN113828345A (zh) * 2021-11-09 2021-12-24 桂林电子科技大学 一种氯化钠辅助合成氮化碳光催化剂的制备方法与应用
CN114904560A (zh) * 2022-06-21 2022-08-16 武汉大学 一种可光催化降解染料的铋负载碳缺陷氮化碳的制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107262133A (zh) * 2017-08-01 2017-10-20 重庆工商大学 一种基于单分散单质铋和氮化碳的光催化剂的制备办法
CN109985657A (zh) * 2019-04-30 2019-07-09 燕山大学 BiVO4/2D g-C3N4Z型异质结光催化剂的制备方法
CN112058291A (zh) * 2020-07-22 2020-12-11 上海应用技术大学 一种微球状复合可见光催化剂及其快速制备方法和应用
CN112705242A (zh) * 2020-12-30 2021-04-27 上海健康医学院 一种金属铋纳米颗粒修饰多孔氮化碳复合材料及其制备方法和在去除水中抗生素中的应用
CN112774715A (zh) * 2021-01-29 2021-05-11 中山大学 一种钒酸铋高结晶氮化碳异质结光催化剂及其制备方法与应用
CN113828345A (zh) * 2021-11-09 2021-12-24 桂林电子科技大学 一种氯化钠辅助合成氮化碳光催化剂的制备方法与应用
CN114904560A (zh) * 2022-06-21 2022-08-16 武汉大学 一种可光催化降解染料的铋负载碳缺陷氮化碳的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIN ZHENG ET AL.: ""Flux-assisted synthesis of bismuth nanoparticle decorated carbon nitride for efficient photocatalytic degradation of endocrine disrupting compound"", 《DALTON TRANSACTIONS》, vol. 51, 14 November 2022 (2022-11-14) *

Similar Documents

Publication Publication Date Title
Aghdam et al. Precipitation dispersion of various ratios of BiOI/BiOCl nanocomposite over g-C3N4 for promoted visible light nanophotocatalyst used in removal of acid orange 7 from water
CN106914264B (zh) 复合可见光催化剂的制备方法
Gu et al. Facile synthesis of CeO 2 nanoparticle sensitized CdS nanorod photocatalyst with improved visible-light photocatalytic degradation of rhodamine B
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
Yang et al. One step solvothermal synthesis of Bi/BiPO4/Bi2WO6 heterostructure with oxygen vacancies for enhanced photocatalytic performance
Wei et al. Highly efficient photocatalytic activity and mechanism of novel Er3+ and Tb3+ co-doped BiOBr/g-C3N5 towards sulfamethoxazole degradation
Liu et al. Fabrication of highly efficient heterostructured Ag-CeO2/g-C3N4 hybrid photocatalyst with enhanced visible-light photocatalytic activity
CN108927188B (zh) 一种碳酸氧铋光催化剂及其制备方法
CN105944711B (zh) 一种可见光响应的BiVO4/TiO2/石墨烯三元复合光催化剂及其制备方法
CN109126854A (zh) 一种CdS/g-C3N4双纳米片复合光催化剂的制备方法
Wang et al. Synthesis of Bi2WO6/Bi2O3 Composite with Enhanced Photocatalytic Activity by a Facile One‐step Hydrothermal Synthesis Route
CN111330615B (zh) 一种纳米氯氧化铋/氮化碳复合材料及其制备方法和应用
CN111036265A (zh) 一种复合纳米光催化剂CDs-N-BiOCl及其制备方法与应用
CN106693996B (zh) 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用
CN109985618A (zh) 一种H占据BiVO4-OVs的光催化材料、制备方法及其应用
Liu et al. Anchoring Plasmonic Ag@ AgCl Nanocrystals onto ZnCo 2 O 4 Microspheres with Enhanced Visible Photocatalytic Activity
Zhang et al. In situ liquid‐phase growth strategies of g‐C3N4 solar‐driven heterogeneous catalysts for environmental applications
Hu et al. Perovskite-type SrFeO3/g-C3N4 S-scheme photocatalyst for enhanced degradation of Acid Red B
CN104801308A (zh) 一种NiFe2O4/TiO2/海泡石复合光催化剂及其制备方法
CN108502922A (zh) 一种锐钛矿二氧化钛微球及其制备方法
CN108837840B (zh) 一种Ag/g-C3N4修饰钨酸铋混晶复合材料及其制备方法和应用
CN113578313B (zh) 一种锰掺杂软铋矿光催化剂及其制备方法和在同步降解六价铬和有机污染物中的应用
CN110615470A (zh) 一维金属掺杂金红石二氧化钛纳米线及其制备方法
Liu et al. Ternary photocatalysts based on MOF-derived TiO 2 co-decorated with ZnIn 2 S 4 nanosheets and CdS nanoparticles for effective visible light degradation of organic pollutants
CN113058601B (zh) 用于光解水催化制氢的三元复合催化剂的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination