CN116462184A - 一种微米级碳管网的制备方法及产品 - Google Patents

一种微米级碳管网的制备方法及产品 Download PDF

Info

Publication number
CN116462184A
CN116462184A CN202310334245.7A CN202310334245A CN116462184A CN 116462184 A CN116462184 A CN 116462184A CN 202310334245 A CN202310334245 A CN 202310334245A CN 116462184 A CN116462184 A CN 116462184A
Authority
CN
China
Prior art keywords
carbon
pipe network
foam
micron
ferrocene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310334245.7A
Other languages
English (en)
Inventor
龙胡
史铁林
王成晖
周洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202310334245.7A priority Critical patent/CN116462184A/zh
Publication of CN116462184A publication Critical patent/CN116462184A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明属于碳材料相关技术领域,并公开了一种微米级碳管网的制备方法及产品。该方法包括下列步骤:S1对碳源和催化剂加热,使其在泡沫金属表面进行化学气相沉积,以此在所述泡沫金属表面形成包覆碳纳米管的多层石墨薄片,其中,所述催化剂含有二茂铁;S2所述表面有包覆碳纳米管的多层石墨薄片的泡沫金属浸泡于蚀刻溶液中,以此蚀刻掉所述泡沫金属,干燥后获得所需的微米级碳管网。通过本发明,提供一种不依赖生物底材的微米级碳管网制造方法,其具有结构可控性高、易于反向填充或挂覆功能基团等优点。

Description

一种微米级碳管网的制备方法及产品
技术领域
本发明属于碳材料相关技术领域,更具体地,涉及一种微米级碳管网的制备方法及产品。
背景技术
微纳级碳管网结构化学稳定性好、比表面积高、微观上呈现三维联通,部分碳网结构更具有电荷传导优良等特点,因此在电池、催化剂等多种领域拥有亮眼的表现。为了各自领域的特征需求,多种多样的微纳级碳管网制造方法被开发出来,制造出的碳网形态、尺寸、特征也各不相同。
CN113336210A公开了一种使用生物基底制造微纳级碳网的方法,其使用处理过的油菜花作为前驱体,通过各种化学原料在微波水热条件下进行充分的化学反应,再经过高温热处理过程调控多孔碳材料表面的化学态和电子性质,最终原位合成出了复合有磷酸铁的碳网结构材料,碳网管外径约0.5μm。
CN112978713A公开了一种使用高分子纤维材料为基底制造微纳级碳管的方法,其首先通过静电纺丝得到含高分子材料的纳米纤维丝,通过纳米纤维中大量带有负电荷的基团和带有正电荷基团的有机物单体间的相互吸引,有机物单体能够在纳米纤维丝的表面优先进行聚合,从而均匀的对纳米纤维表面进行聚合包覆,再通过溶剂将纳米纤维材料溶解、高温烧结而得到中空的纳微米级碳管,内径在0.1~4μm之间。
现有微纳级碳管网制造方法多集中于结合网状生物底材制造和制造碳微米管后纠缠组网,前一类方法制备的碳管网结构依赖于生物底材,可控性较差,碳以外杂质多,后一类方法碳管之间连通性不佳。综述所述,现有技术仍缺乏一种易于人工控制结构、碳管间互联互通、易于反向填充或挂覆功能基团的微米级碳管网制造方法。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种微米级碳管网的制备方法及产品,解决碳管网结构依赖于生物底材、碳管之间连通性不佳的问题,且具有易于反向填充或挂覆功能基团的优点。
为实现上述目的,按照本发明的一个方面,提供了一种微米级碳管网的制备方法,该方法包括下列步骤:
S1对碳源和催化剂加热,使其在泡沫金属表面进行化学气相沉积,以此在所述泡沫金属表面形成包覆碳纳米管的多层石墨薄片,其中,所述催化剂含有二茂铁;
S2所述表面有包覆碳纳米管的多层石墨薄片的泡沫金属浸泡于蚀刻溶液中,以此蚀刻掉所述泡沫金属,干燥后获得所需的微米级碳管网。
进一步优选地,在步骤S1之前,需要对所述泡沫金属进行预处理,该预处理包括清洗和浸泡,所述清洗用于去除所述泡沫金属表面的氧化层,所述浸泡用于在所述泡沫金属表面附着一层二茂铁。
进一步优选地,所述浸泡按照下列步骤进行:将清洗后的泡沫金属浸泡在二茂铁的悬浊液中,该悬浊液中所述二茂铁的重量比为10%~20%。
进一步优选地,在步骤S1中,在化学沉积过程中,所述碳源和催化剂在前温区,温度为130℃~140℃,所述泡沫金属在后温区,温度为640℃~660℃,前温区焙烧时间为0.5h~1h,后温区的焙烧时间大于前温区焙烧时间。
进一步优选地,在步骤S1中,在化学沉积过程中,所述催化气体为氢气。
进一步优选地,在步骤S1中,所述碳源为二茂铁、乙烯、乙炔、二甲苯、甲烷、一氧化碳等有机物中至少一种。
进一步优选地,在步骤S1中,所述催化剂为二茂铁。
进一步优选地,在步骤S1中,所述泡沫金属为泡沫镍、泡沫铁、泡沫铁镍、泡沫不锈钢、泡沫铜等泡沫金属中的至少一种。
进一步优选地,在步骤S1中,在步骤S2中,所述蚀刻溶液为高浓度氯化铁溶液、稀盐酸中的至少一种。
按照本发明的另一个方面,提供了一种上述所述的制备方法获得的微米级碳管网,该微米级碳管网是由中空碳管形成的网状结构,该中空碳管的管壁由包覆有碳纳米管的多层石墨薄片组成。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具备下列有益效果:
1.本发明中选取泡沫金属作为载体,不同目数的泡沫金属网决定微米级碳管网的微观尺寸,泡沫金属易于裁剪,可塑性高,力学性能优良,方便制成各种形貌,以此决定微米级碳管网的宏观尺寸,从而解决碳管网结构依赖于生物底材、碳管之间连通性不佳的问题;
2.本发明中选取的催化剂为二茂铁,二茂铁的化学组分和性质使其在碳网的制造中具有优秀的表现,其在100℃以上会升华,从而被气流吹送至泡沫金属位置,约400℃以上会分解,分解出的铁可作为催化颗粒,催化碳源气体分解,生长碳纳米管,碳可以作为碳源的补充,制备完毕后,残余的铁会在蚀刻溶液中同时被蚀刻掉,不会引入杂质;
3.本发明中采用的泡沫金属本身所含有的铁、铜等元素对碳纳米管、多层石墨的化学气相沉积具有催化作用,有利于所述微米级碳管网的生长;
4.本发明在化学沉积过程中,高温下碳源气体在泡沫金属表面受催化作用解离,碳吸附于泡沫金属表面形成初层石墨烯,同时二茂铁中铁元素吸附在碳层上形成生长基点,催化碳源气体分解生长碳纳米管,整个焙烧过程中,石墨烯和碳纳米管的生长过程同时发生,最终形成包覆有碳纳米管的多层石墨薄片结构。
附图说明
图1是按照本发明的优选实施例所构建的微米级碳管网的制备方法的流程图;
图2是按照本发明的优选实施例1所构建的微米级碳管网SEM图;
图3是按照本发明的优选实施例1所构建的微米级碳管网网壁石墨片SEM图;
图4是按照本发明的优选实施例1所构建的微米级碳管网网壁包覆的碳纳米管SEM图;
图5是按照本发明的优选实施例1所构建的微米级碳管网Raman图;
图6是按照本发明的优选实施例2所构建的微米级碳管网SEM图;
图7是按照本发明的优选实施例3所构建的微米级碳管网SEM图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,一种微米级碳管网的制造方法,该方法包括:
S1对碳源和催化剂加热,使其在泡沫金属表面进行化学气相沉积,以此在泡沫金属表面形成包覆碳纳米管的多层石墨薄片,其中,催化剂含有二茂铁;具体地:
(1)将预处理后的泡沫金属置于多段管式炉后温区,将碳源及催化剂置于多段管式炉前温区,泡沫金属包括泡沫镍、泡沫铁中的至少一种,碳源及催化剂包括二茂铁;
(2)密闭管式炉后通入保护气体及催化气体进行焙烧,得到生长有碳网的泡沫金属,保护气体包括氩气,催化气体包括氢气,氢气可以促进碳纳米管的生长;
S2将生长有碳网的泡沫金属浸泡于蚀刻溶液中蚀刻掉金属基底,清洗干燥后获得微米级碳管网,蚀刻溶液包括高浓度氯化铁溶液、稀盐酸中的至少一种。
作为优选,步骤(1)中预处理流程包括清洗和浸泡。
作为优选,清洗包括将泡沫金属在酸性溶液中清洗,去除表面杂质和氧化层,然后先后在纯水和乙醇中超声清洗。
作为优选,酸性溶液包括稀盐酸。
作为优选,浸泡包括于二茂铁悬浊液中浸泡,悬浊液中液体包括乙醇,二茂铁所占重量比为10%~20%。通过浸泡后在泡沫金属表面附着一层二茂铁后后期形成的碳管网的结构更好,其中的机理和原因有待进一步的研究,但实验验证按照上述步骤执行效果更优异。
作为优选,步骤(1)中碳源及催化剂的类型及添加方法多种多样,包括直接放置二茂铁粉末、焙烧阶段持续通入二茂铁-二甲苯溶液、焙烧阶段持续通入甲烷、乙烯等有机物蒸汽与二茂铁蒸汽等,考虑成品质量、操作难度、安全系数、成本等,优选直接放置二茂铁粉末;
作为优选,步骤(2)中管式炉内压力为0.02~0.08Mpa,氧气含量为0.1%以下,保护气体与催化气体体积比为(100~120):1,气体流量为900~1100sccm,后温区焙烧温度为640~660℃,后温区达到焙烧温度后,前温区以5~10℃/min的升温速率从室温升至焙烧温度,前温区焙烧温度为130~140℃,前温区焙烧0.5~1h后停止加热,自然冷却,前温区冷却至100℃以下后,后温区开始自然冷却。所用管式炉内径42mm,在优选气体流量下可以较好地将碳源和催化气体送至泡沫金属位置,同时不影响化学气相沉积过程。考虑二茂铁的升华温度,同时又避免升华过快,前温区优选焙烧温度为130~140℃。前温区升温速率越快越好,但考虑温度控制难度,防止前温区温度失控过高,优选升温速率5~10℃/min。化学气相沉积时间过长会导致碳网过厚,同时生成过多不定型碳影响结构,优选前温区焙烧时间为0.5~1h。
作为优选,步骤(3)中干燥流程优选冷冻干燥。
一种上述方法制备得到的微米级碳管网,微米级碳管网以多层纳米级石墨薄片为骨架,包埋碳纳米管,以内径为50~100μm的中空碳管组成网状结构,中空碳管的壁厚不大于500nm。
本发明采用化学气相沉积法在预处理后的泡沫金属基底表面生长碳结构,通过蚀刻掉基底获得微米级碳管网,所获得的碳网壁中包覆有大量碳纳米管,在兼具化学稳定性好、比表面积高、微观上呈现三维联通等优点外,更具有导电性能好,形态可塑性高等优点。
本发明以泡沫金属为基底,其生产技术成熟,成本低廉,由于制造出的微纳级碳管网宏观、微观形态均取决于基底形态,因此具有极强的可塑性;本发明制造的微纳级碳管网内径相对较大,有利于反向填充增强结构或挂覆功能性基团,从而获得新的特性,应用拓展潜力大;本发明制造的微纳级碳管网内包覆有大量碳纳米管,在提高结构强度和改良导电性能方面有较大优势。
下面将结合具体的实施例进一步说明本发明。
实施例1
一种微米级碳管网,通过以下步骤制造而成:
(1)准备工作:裁剪一块20×10×1mm的泡沫镍,置于室温下稀盐酸中数秒,蚀去表面层,纯水洗净后置于纯水中超声清洗5分钟,再转移至无水乙醇中超声清洗5分钟,取出后于15wt%的二茂铁-乙醇悬浊液中浸泡10分钟后,放入石英舟,另取适量二茂铁粉末置于另一石英舟。将置有二茂铁粉末的石英舟推至多段管式炉的前温区,置有泡沫镍的石英舟推至后温区,接好管式炉进气口和排气口,确认气密性。将管式炉抽真空,而后通入高纯氩气至常压,反复操作至炉内氧气含量低于0.1%。
(2)参数设置:本实施例焙烧温度和气体流量均为程序控制,升温过程为程控匀速加热,参数设置如表1、表2所示
表1实施例1采用的温度参数设置
表2实施例1采用的气体流量参数设置
0-25min(sccm) 25-80min(sccm) 80-180min(sccm)
氩气 500 981 500
氢气 0 9 0
(3)后加工:配置1mol/L的氯化铁溶液,待管式炉冷却至室温后,将生长有碳网的泡沫镍浸于其中,80℃油浴加热10小时,此时泡沫镍基底已完全蚀刻。使用载玻片将碳管网抬出后浸入纯水中充分浸泡,然后再次抬出,换新的纯水再次浸泡,重复操作至洗净残余氯化铁。而后将碳管网从水中抬出,冷冻干燥,即可获得所述微米级碳管网。
如图2所示,碳管中空,碳管网互联互通,碳管内径为约50μm,壁厚不大于500nm。如图3所示,对碳管断面施加外力破坏后,碳管壁分散为多层薄片状。如图4所示,在分散的薄片结构间隙观察到絮状物。如图5所示,通过拉曼光谱推断,图3中片状物应为石墨薄片,图4中絮状物应为碳纳米管。
实施例2
本实施例与实施例1条件基本相似,不同之处在于,预处理中的悬浊液中二茂铁的重量比为10%,泡沫金属为泡沫铁镍,前温区焙烧温度为140℃,焙烧时间为40min;后温区的温度为640℃,焙烧时间大于40min。
如图6所示,可见互联互通碳管网,与实施例1所得碳网相似。
实施例3
本实施例与实施例1条件基本相似,不同之处在于,预处理中的悬浊液中二茂铁的重量比为20%,泡沫金属为泡沫不锈钢,前温区焙烧温度为135℃,焙烧时间为50min;后温区的温度为660℃,焙烧时间大于50min。
如图7所示,可见互联互通碳管网,本实施例延长前温区焙烧时间,使碳网壁相较于实施例1所得碳网网壁明显加厚。
实施例4
本实施例与实施例1条件基本相似,不同之处在于,预处理中的悬浊液中二茂铁的重量比为14%,泡沫金属为泡沫铁镍,前温区焙烧温度为132℃,焙烧时间为60min;后温区的温度为645℃,焙烧时间大于60min。
实施例5
本实施例与实施例1条件基本相似,不同之处在于,预处理中的悬浊液中二茂铁的重量比为16%,泡沫金属为泡沫铜,前温区焙烧温度为133℃,焙烧时间为50min;后温区的温度为655℃,焙烧时间大于60min。
实施例6
本实施例与实施例1条件基本相似,不同之处在于,预处理中的悬浊液中二茂铁的重量比为17%,泡沫金属为泡沫铁,前温区焙烧温度为134℃,焙烧时间为60min;后温区的温度为643℃,焙烧时间大于60min。
实施例7
本实施例与实施例1条件基本相似,不同之处在于,预处理中的悬浊液中二茂铁的重量比为18%,泡沫金属为泡沫不锈钢,前温区焙烧温度为135℃,焙烧时间为45min;后温区的温度为650℃,焙烧时间大于60min。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种微米级碳管网的制备方法,其特征在于,该方法包括下列步骤:
S1对碳源和催化剂加热,使其在泡沫金属表面进行化学气相沉积,以此在所述泡沫金属表面形成包覆碳纳米管的多层石墨薄片,其中,所述催化剂含有二茂铁;
S2所述表面有包覆碳纳米管的多层石墨薄片的泡沫金属浸泡于蚀刻溶液中,以此蚀刻掉所述泡沫金属,干燥后获得所需的微米级碳管网。
2.如权利要求1所述的一种微米级碳管网的制备方法,其特征在于,在步骤S1之前,需要对所述泡沫金属进行预处理,该预处理包括清洗和浸泡,所述清洗用于去除所述泡沫金属表面的氧化层,所述浸泡用于在所述泡沫金属表面附着一层二茂铁。
3.如权利要求2所述的一种微米级碳管网的制备方法,其特征在于,所述浸泡按照下列步骤进行:将清洗后的泡沫金属浸泡在二茂铁的悬浊液中,该悬浊液中所述二茂铁的重量比为10%~20%。
4.如权利要求1或2所述的一种微米级碳管网的制备方法,其特征在于,在步骤S1中,在化学沉积过程中,所述碳源和催化剂在前温区,温度为130℃~140℃,所述泡沫金属在后温区,温度为640℃~660℃,前温区焙烧时间为0.5h~1h,后温区的焙烧时间大于前温区焙烧时间。
5.如权利要求4所述的一种微米级碳管网的制备方法,其特征在于,在步骤S1中,在化学沉积过程中,所述催化气体为氢气。
6.如权利要求1或2所述的一种微米级碳管网的制备方法,其特征在于,在步骤S1中,所述碳源为二茂铁、乙烯、乙炔、二甲苯、甲烷、一氧化碳等有机物中至少一种。
7.如权利要求6所述的一种微米级碳管网的制备方法,其特征在于,在步骤S1中,所述催化剂为二茂铁。
8.如权利要求1或2所述的一种微米级碳管网的制备方法,其特征在于,在步骤S1中,所述泡沫金属为泡沫镍、泡沫铁、泡沫铁镍、泡沫不锈钢、泡沫铜等泡沫金属中的至少一种。
9.如权利要求1或2所述的一种微米级碳管网的制备方法,其特征在于,在步骤S1中,在步骤S2中,所述蚀刻溶液为高浓度氯化铁溶液、稀盐酸中的至少一种。
10.如权利要求1-9任一项所述的制备方法获得的微米级碳管网,其特征在于,该微米级碳管网是由中空碳管形成的网状结构,该中空碳管的管壁由包覆有碳纳米管的多层石墨薄片组成。
CN202310334245.7A 2023-03-31 2023-03-31 一种微米级碳管网的制备方法及产品 Pending CN116462184A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310334245.7A CN116462184A (zh) 2023-03-31 2023-03-31 一种微米级碳管网的制备方法及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310334245.7A CN116462184A (zh) 2023-03-31 2023-03-31 一种微米级碳管网的制备方法及产品

Publications (1)

Publication Number Publication Date
CN116462184A true CN116462184A (zh) 2023-07-21

Family

ID=87174445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310334245.7A Pending CN116462184A (zh) 2023-03-31 2023-03-31 一种微米级碳管网的制备方法及产品

Country Status (1)

Country Link
CN (1) CN116462184A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103738953A (zh) * 2013-12-23 2014-04-23 大连理工大学 一种碳纳米管-石墨烯复合泡沫的制备方法
CN108264038A (zh) * 2018-02-26 2018-07-10 陕西科技大学 一种简捷批量制备大尺寸碳纳米管/石墨烯杂化体的方法
US20190375639A1 (en) * 2018-06-08 2019-12-12 Trimtabs Ltd Process for reuse of plastic through the conversion to carbon nanomaterials
CN114908338A (zh) * 2021-02-07 2022-08-16 北京大学 自支撑薄膜上沉积碳纳米管泡沫的设备与方法
CN115340084A (zh) * 2022-08-11 2022-11-15 中国计量大学 一种采用无氢气化学气相沉积制备碳纳米管的方法
CN115832217A (zh) * 2022-11-07 2023-03-21 柔电(武汉)科技有限公司 一种可用于二次电池的金属锂复合负极及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103738953A (zh) * 2013-12-23 2014-04-23 大连理工大学 一种碳纳米管-石墨烯复合泡沫的制备方法
CN108264038A (zh) * 2018-02-26 2018-07-10 陕西科技大学 一种简捷批量制备大尺寸碳纳米管/石墨烯杂化体的方法
US20190375639A1 (en) * 2018-06-08 2019-12-12 Trimtabs Ltd Process for reuse of plastic through the conversion to carbon nanomaterials
CN114908338A (zh) * 2021-02-07 2022-08-16 北京大学 自支撑薄膜上沉积碳纳米管泡沫的设备与方法
CN115340084A (zh) * 2022-08-11 2022-11-15 中国计量大学 一种采用无氢气化学气相沉积制备碳纳米管的方法
CN115832217A (zh) * 2022-11-07 2023-03-21 柔电(武汉)科技有限公司 一种可用于二次电池的金属锂复合负极及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. RIZWAN MALIK ET AL: "A Novel Experimental Approach to Compatible Carbon Nanofiber Diffusion around Circular Carbon Micro-Post Surfaces", DEFECT AND DIFFUSION FORUM, vol. 316, 17 May 2011 (2011-05-17), pages 31 - 36 *
M. V. LOMAKIN ET AL: "RAMAN SPECTRA OF SINGLE-WALLED CARBON NANOTUBES SYNTHESIZED BY AEROSOL CVD-METHOD USING FERROCENE AND CuNi NANOPARTICLES", RUSSIAN PHYSICS JOURNAL, vol. 58, no. 5, 30 September 2015 (2015-09-30), pages 658 - 662 *

Similar Documents

Publication Publication Date Title
AU2020102002A4 (en) Preparation method of graphene-carbon nanotube hybrid sponge
CN109437157B (zh) 一种单壁碳纳米管的浮动催化剂化学气相沉积方法
CN106866148B (zh) SiC纳米线原位增强的SiCf/SiC复合材料及其制备方法
CN110148760B (zh) 一种多孔碳-碳纳米管复合材料及其制备方法和应用
CN104386668B (zh) 一种镍纳米催化制备螺旋碳纳米材料的方法
CN1545486A (zh) 碳纳米管的制备
CN107673332B (zh) 一种利用复合金属模板制备大面积3d石墨烯的方法
CN111235636B (zh) 一种枝状SiC晶须的制备方法
CN105645375A (zh) 一种在纳米多孔铜上直接生长多孔碳纳米管的方法
CN113831131B (zh) 碳泡沫原位生长碳纳米管复合电磁屏蔽材料及其制备方法
CN110615424B (zh) 一种氮磷掺杂多孔碳材料及其制备方法和应用
CN116462184A (zh) 一种微米级碳管网的制备方法及产品
CN117342540A (zh) 一种炭气凝胶-热解炭复合材料及其制备方法
KR100974234B1 (ko) 셀룰로우스 섬유의 열처리를 통한 탄소를 지지체로 이용한 탄화물-탄소나노튜브 구조체의 합성방법과 탄화물-탄소나노튜브 구조체를 이용한 탄소나노튜브 필터
CN105271179B (zh) 利用氮掺杂模板制备多孔壁碳纳米笼的方法
CN111470489A (zh) 一种将单壁碳纳米管转化为双壁碳纳米管的转化方法
CN107857250B (zh) 一种蜜胺泡沫原位生长碳纳米管复合超疏水材料及其制备方法
CN109371505B (zh) 一种生物质基螺旋状碳纤维及其制备方法
CN112194115A (zh) 一种中空纳米碳球的制备方法及中空纳米碳球
KR100995388B1 (ko) 템플릿을 이용한 탄소나노튜브의 직경제어방법
CN103508438A (zh) 一种在纳米多孔铜上直接生长竹节状碳纳米管的方法
CN113998681A (zh) 利用3d打印制备碳纳米管-碳复合泡沫材料的制备方法及其应用
CN111943169B (zh) 剥离法制备不含金属的碳纳米纤维
CN109226740B (zh) 一种铱纳米粒子及其在催化生长碳纳米管中的应用
CN111724997A (zh) 一种导电织物/聚苯胺复合材料电极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination