CN116444262A - 一种高性能Bi2223前驱粉末的制备方法 - Google Patents

一种高性能Bi2223前驱粉末的制备方法 Download PDF

Info

Publication number
CN116444262A
CN116444262A CN202310475533.4A CN202310475533A CN116444262A CN 116444262 A CN116444262 A CN 116444262A CN 202310475533 A CN202310475533 A CN 202310475533A CN 116444262 A CN116444262 A CN 116444262A
Authority
CN
China
Prior art keywords
powder
performance
precursor powder
pyrolysis
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310475533.4A
Other languages
English (en)
Other versions
CN116444262B (zh
Inventor
金利华
刘国庆
马小波
张胜楠
冯建情
刘学谦
邵柏淘
李建峰
张平祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute for Non Ferrous Metal Research
Original Assignee
Northwest Institute for Non Ferrous Metal Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute for Non Ferrous Metal Research filed Critical Northwest Institute for Non Ferrous Metal Research
Priority to CN202310475533.4A priority Critical patent/CN116444262B/zh
Publication of CN116444262A publication Critical patent/CN116444262A/zh
Application granted granted Critical
Publication of CN116444262B publication Critical patent/CN116444262B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

本发明公开了一种高性能Bi2223前驱粉末的制备方法,该方法包括:一、以氧化铋、硝酸铅、碳酸锶、碳酸钙、无氧铜为原料,配制Bi2223热解粉末和Pb3321或Pb3221热解粉末;二、将Pb3321或Pb3221热解粉末与Bi2223热解粉末混合后研磨,经热处理得到Bi2223前驱粉末。本发明在Bi2223前驱粉末中引入Pb3321或Pb3221粉末,促使Bi2223带材在热处理时Pb更容易进入Bi2223晶格中,提高Bi2223前驱粉末的均匀性和反应活性及转化效率,并调节Bi2223带材在后退火时析出小尺寸点状Pb3321相或Pb3221相,提升Bi2223前驱粉末的综合性能及其带材性能。

Description

一种高性能Bi2223前驱粉末的制备方法
技术领域
本发明属于高温超导材料技术领域,具体涉及一种高性能Bi2223前驱粉末的制备方法。
背景技术
(Bi,Pb)2Sr2Ca2Cu3Ox(Bi2223)在77K具有良好的载流性能,是重要的实用化高温超导材料。Bi2223高温超导材料可以采用粉末装管法加工成千米级长带,满足实用化要求。在Bi2223高温超导材料制备过程中,前驱粉末、加工和热处理是影响带材性能的三个主要关键因素。其中前驱粉末的性质尤其重要,是影响带材性能的核心因素。Bi2223芯丝中的前驱粉末的特性决定了最终芯丝的反应速度、超导相含量、超导晶粒的排布、微裂纹等,进而影响到带材的性能。
为了提升Bi2223前驱粉末的综合性能,研究人员通过多种方法制备前驱粉末,例如共沉淀方法,固相烧结法,喷雾干燥法等。通过改变元素化学计量比的方式,优化粉末中的元素比例,提高前驱粉末的性能;优化前驱粉末的热处理工艺参数等,提升前驱粉末的相纯度等;以及通过传统共沉淀方法分别合成Bi2212和CaCuO2粉末相混合,制备Bi2223前驱粉末,这些方法部分改善了前驱粉末的性能。但是,当较大范围改变元素比例时,出现不可控制的第二相,例如碱土铜酸盐相(AEC),铅酸钙相(Ca2PbO4)等。铅酸钙具有较高的熔化反应温度,导致Bi2223带材在热处理过程中Pb难以进入Bi2223的晶格,Bi2223的成相率降低。同时,Bi2223带材的热处理过程中,AEC颗粒的尺寸容易发生长大情况,阻碍超导电流传输。因此,传统制备方法较难控制热处理过程中芯丝的微液相的形成,难以调节Bi2223反应速率,难以调控第二相的种类和尺寸,前驱粉末的性能难以进一步提升。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种高性能Bi2223前驱粉末的制备方法。本发明通过在Bi2223前驱粉末中引入Pb3321粉末或者Pb3221粉末,使得Bi2223带材在热处理过程中Pb更加容易进入Bi2223晶格中,提高Bi2223前驱粉末的均匀性和反应活性及转化效率,Bi2223带材在后退火过程中析出形成小尺寸点状Pb3321相或Pb3221相,可以提升Bi2223带材的磁通钉扎性能,进一步提升Bi2223前驱粉末的综合性能,解决了第二相种类难控制及尺寸较大导致Bi2223带材的性能降低的难题。
为解决上述技术问题,本发明采用的技术方案为:一种高性能Bi2223前驱粉末的制备方法,其特征在于,该方法包括以下步骤:
步骤一、以氧化铋、硝酸铅、碳酸锶、碳酸钙、无氧铜为原料,按照金属离子比例Bi:Pb:Sr:Ca:Cu=1.8:0.3:1.9:2:3选择原料溶解于硝酸溶液中,经喷雾热解得到(Bi1.8Pb0.3)Sr1.9Ca2Cu3Oy即Bi2223热解粉末,同时按照金属离子比例Pb:Bi:Sr:Ca:Cu=3:0.5:2.5:2:1选择原料溶解于硝酸溶液中,经喷雾热解得到Pb3(Bi0.5Sr2.5)Ca2CuOx即Pb3321热解粉末,或者按照金属离子比例Pb:Bi:Sr:Ca:Cu=2.5:0.5:2:2:1选择原料溶解于硝酸溶液中,经喷雾热解得到(Pb2.5Bi0.5)Sr2Ca2CuOz即Pb3221热解粉末;
步骤二、将步骤一中得到的Pb3321热解粉末或Pb3221热解粉末与Bi2223热解粉末按照0.01~0.03:1的质量比混合后研磨,经热处理得到Bi2223前驱粉末。
上述的一种高性能Bi2223前驱粉末的制备方法,其特征在于,步骤二中所述热处理的温度为790℃,时间为10h~60h,采用的气氛为氧氩混合气,其中氧气的体积百分比为7.5%。
上述的一种高性能Bi2223前驱粉末的制备方法,其特征在于,采用粉末装管法将步骤二中得到的Bi2223前驱粉末装管后加工,经轧制得到Bi2223带材,再经热处理得到高性能Bi2223多芯带材。
上述的一种高性能Bi2223前驱粉末的制备方法,其特征在于,将Bi2223前驱粉末装入Ag管中,经拉拔加工得到单芯线,然后将单芯线截断后组装到AgMn包套中,经拉拔加工得到37芯线,再经轧制得到37芯的高性能Bi2223带材。
本发明与现有技术相比具有以下优点:
1、与传统前驱粉末中形成的高熔点Ca2PbO4第二相相比,本发明在Bi2223前驱粉末中引入Pb3321粉末或者Pb3221粉末,在热处理初期阶段,由于Pb3321或者Pb3221粉末的熔点更低,可以精确控制反应过程中的微液相,促使Pb更加容易进入Bi2223晶格中,提高Bi2223前驱粉末的均匀性和反应活性及转化效率;在热处理末期后退火阶段,部分Pb又会从Bi2223晶粒中析出,在局域元素配比调节的情况下,形成小尺寸点状Pb3321相或者Pb3221相第二相,小尺寸的第二相可以提升Bi2223带材的磁通钉扎性能,从而提升Bi2223前驱粉末的综合性能。
2、传统方法中直接改变溶液元素比例,非常容易在前驱粉末中形成其他杂相,同时在后续热处理过程中形成大尺寸颗粒而影响超导电流传输。与之相比较,本发明通过在Bi2223前驱粉末中引入Pb3321粉末或者Pb3221粉末,形成部分元素富集区域,且热处理反应过程中形成微液相促进Bi2223晶粒生长,并在降温过程中析出形成小尺寸的第二相,解决传统大尺寸第二相抑制Bi2223性能的问题,提升Bi2223前驱粉末的综合性能。
下面通过实施例对本发明的技术方案作进一步的详细描述。
具体实施方式
实施例1
本实施例包括以下步骤:
步骤一、以氧化铋、硝酸铅、碳酸锶、碳酸钙、无氧铜为原料,按照金属离子比例Bi:Pb:Sr:Ca:Cu=1.8:0.3:1.9:2:3选择原料溶解于硝酸溶液中,经喷雾热解得到(Bi1.8Pb0.3)Sr1.9Ca2Cu3Oy即Bi2223热解粉末,同时按照金属离子比例Pb:Bi:Sr:Ca:Cu=3:0.5:2.5:2:1选择原料溶解于硝酸溶液中,经喷雾热解得到Pb3(Bi0.5Sr2.5)Ca2CuOx即Pb3321热解粉末;
步骤二、将步骤一中得到的Pb3321热解粉末与Bi2223热解粉末按照0.01:1的质量比混合后研磨,经热处理得到Bi2223前驱粉末;所述热处理的温度为790℃,时间为10h,采用的气氛为氧氩混合气,其中氧气的体积百分比为7.5%;
步骤三、采用粉末装管法将步骤二中得到的Bi2223前驱粉末装入Ag管中,经拉拔加工得到单芯线,然后将单芯线截断后组装到AgMn包套中,经拉拔加工得到37芯线,再经轧制得到37芯的高性能Bi2223带材。
经检测,本实施例得到的Bi2223前驱粉末中含有质量分数1%的Pb3321相,且加工得到的37芯的高性能Bi2223带材在液氮温度下临界电流为120A,具有优异的超导性能。
实施例2
本实施例包括以下步骤:
步骤一、以氧化铋、硝酸铅、碳酸锶、碳酸钙、无氧铜为原料,按照金属离子比例Bi:Pb:Sr:Ca:Cu=1.8:0.3:1.9:2:3选择原料溶解于硝酸溶液中,经喷雾热解得到(Bi1.8Pb0.3)Sr1.9Ca2Cu3Oy即Bi2223热解粉末,同时按照金属离子比例Pb:Bi:Sr:Ca:Cu=2.5:0.5:2:2:1选择原料溶解于硝酸溶液中,经喷雾热解得到(Pb2.5Bi0.5)Sr2Ca2CuOz即Pb3221热解粉末;
步骤二、将步骤一中得到的Pb3221热解粉末与Bi2223热解粉末按照0.02:1的质量比混合后研磨,经热处理得到Bi2223前驱粉末;所述热处理的温度为790℃,时间为30h,采用的气氛为氧氩混合气,其中氧气的体积百分比为7.5%;
步骤三、采用粉末装管法将步骤二中得到的Bi2223前驱粉末装入Ag管中,经拉拔加工得到单芯线,然后将单芯线截断后组装到AgMn包套中,经拉拔加工得到37芯线,再经轧制得到37芯的高性能Bi2223带材。
经检测,本实施例得到的Bi2223前驱粉末中含有质量分数2%的Pb3221相,且加工得到的37芯的高性能Bi2223带材在液氮温度下临界电流为140A,具有优异的超导性能。
实施例3
本实施例包括以下步骤:
步骤一、以氧化铋、硝酸铅、碳酸锶、碳酸钙、无氧铜为原料,按照金属离子比例Bi:Pb:Sr:Ca:Cu=1.8:0.3:1.9:2:3选择原料溶解于硝酸溶液中,经喷雾热解得到(Bi1.8Pb0.3)Sr1.9Ca2Cu3Oy即Bi2223热解粉末,同时按照金属离子比例Pb:Bi:Sr:Ca:Cu=2.5:0.5:2:2:1选择原料溶解于硝酸溶液中,经喷雾热解得到(Pb2.5Bi0.5)Sr2Ca2CuOz即Pb3221热解粉末;
步骤二、将步骤一中得到的Pb3221热解粉末与Bi2223热解粉末按照0.03:1的质量比混合后研磨,经热处理得到Bi2223前驱粉末;所述热处理的温度为790℃,时间为60h,采用的气氛为氧氩混合气,其中氧气的体积百分比为7.5%;
步骤三、采用粉末装管法将步骤二中得到的Bi2223前驱粉末装入Ag管中,经拉拔加工得到单芯线,然后将单芯线截断后组装到AgMn包套中,经拉拔加工得到37芯线,再经轧制得到37芯的高性能Bi2223带材。
经检测,本实施例得到的Bi2223前驱粉末中含有质量分数3%的Pb3221相,且加工得到的37芯的高性能Bi2223带材在液氮温度下临界电流为130A,具有优异的超导性能。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (4)

1.一种高性能Bi2223前驱粉末的制备方法,其特征在于,该方法包括以下步骤:
步骤一、以氧化铋、硝酸铅、碳酸锶、碳酸钙、无氧铜为原料,按照金属离子比例Bi:Pb:Sr:Ca:Cu=1.8:0.3:1.9:2:3选择原料溶解于硝酸溶液中,经喷雾热解得到(Bi1.8Pb0.3)Sr1.9Ca2Cu3Oy即Bi2223热解粉末,同时按照金属离子比例Pb:Bi:Sr:Ca:Cu=3:0.5:2.5:2:1选择原料溶解于硝酸溶液中,经喷雾热解得到Pb3(Bi0.5Sr2.5)Ca2CuOx即Pb3321热解粉末,或者按照金属离子比例Pb:Bi:Sr:Ca:Cu=2.5:0.5:2:2:1选择原料溶解于硝酸溶液中,经喷雾热解得到(Pb2.5Bi0.5)Sr2Ca2CuOz即Pb3221热解粉末;
步骤二、将步骤一中得到的Pb3321热解粉末或Pb3221热解粉末与Bi2223热解粉末按照0.01~0.03:1的质量比混合后研磨,经热处理得到Bi2223前驱粉末。
2.根据权利要求1所述的一种高性能Bi2223前驱粉末的制备方法,其特征在于,步骤二中所述热处理的温度为790℃,时间为10h~60h,采用的气氛为氧氩混合气,其中氧气的体积百分比为7.5%。
3.根据权利要求1所述的一种高性能Bi2223前驱粉末的制备方法,其特征在于,采用粉末装管法将步骤二中得到的Bi2223前驱粉末装管后加工,经轧制得到Bi2223带材,再经热处理得到高性能Bi2223多芯带材。
4.根据权利要求3所述的一种高性能Bi2223前驱粉末的制备方法,其特征在于,将Bi2223前驱粉末装入Ag管中,经拉拔加工得到单芯线,然后将单芯线截断后组装到AgMn包套中,经拉拔加工得到37芯线,再经轧制得到37芯的高性能Bi2223带材。
CN202310475533.4A 2023-04-28 2023-04-28 一种高性能Bi2223前驱粉末的制备方法 Active CN116444262B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310475533.4A CN116444262B (zh) 2023-04-28 2023-04-28 一种高性能Bi2223前驱粉末的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310475533.4A CN116444262B (zh) 2023-04-28 2023-04-28 一种高性能Bi2223前驱粉末的制备方法

Publications (2)

Publication Number Publication Date
CN116444262A true CN116444262A (zh) 2023-07-18
CN116444262B CN116444262B (zh) 2024-08-16

Family

ID=87133635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310475533.4A Active CN116444262B (zh) 2023-04-28 2023-04-28 一种高性能Bi2223前驱粉末的制备方法

Country Status (1)

Country Link
CN (1) CN116444262B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701395A (zh) * 2003-06-26 2005-11-23 住友电气工业株式会社 铋基氧化物超导线材及其制备方法
JP2006082992A (ja) * 2004-09-14 2006-03-30 Sumitomo Electric Ind Ltd 原料粉末の製造方法
JP2007149416A (ja) * 2005-11-25 2007-06-14 Sumitomo Electric Ind Ltd 酸化物超電導材料およびその製造方法ならびに超電導線材、超電導機器
JP2007214070A (ja) * 2006-02-13 2007-08-23 Sumitomo Electric Ind Ltd 超電導線材およびその製造方法ならびに超電導機器
CN102503402A (zh) * 2011-09-19 2012-06-20 北京英纳超导技术有限公司 一种铋系超导粉的制备方法
CN103896576A (zh) * 2014-03-06 2014-07-02 北京英纳超导技术有限公司 一种改性铋系超导粉及其制备方法
CN113593765A (zh) * 2021-07-06 2021-11-02 西部超导材料科技股份有限公司 一种铋系高温超导线/带材的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701395A (zh) * 2003-06-26 2005-11-23 住友电气工业株式会社 铋基氧化物超导线材及其制备方法
JP2006082992A (ja) * 2004-09-14 2006-03-30 Sumitomo Electric Ind Ltd 原料粉末の製造方法
JP2007149416A (ja) * 2005-11-25 2007-06-14 Sumitomo Electric Ind Ltd 酸化物超電導材料およびその製造方法ならびに超電導線材、超電導機器
JP2007214070A (ja) * 2006-02-13 2007-08-23 Sumitomo Electric Ind Ltd 超電導線材およびその製造方法ならびに超電導機器
CN102503402A (zh) * 2011-09-19 2012-06-20 北京英纳超导技术有限公司 一种铋系超导粉的制备方法
CN103896576A (zh) * 2014-03-06 2014-07-02 北京英纳超导技术有限公司 一种改性铋系超导粉及其制备方法
CN113593765A (zh) * 2021-07-06 2021-11-02 西部超导材料科技股份有限公司 一种铋系高温超导线/带材的制备方法

Also Published As

Publication number Publication date
CN116444262B (zh) 2024-08-16

Similar Documents

Publication Publication Date Title
CN113345640B (zh) 一种Fe(Se,Te)超导线材的制备方法
CN109727720A (zh) 一种Bi2212高温超导粉末的制备方法
CN116444262B (zh) 一种高性能Bi2223前驱粉末的制备方法
JP4111240B1 (ja) 酸化物超電導材料およびその製造方法ならびに超電導線材、超電導機器
JP4706309B2 (ja) ビスマス系酸化物超伝導体の製造方法および超電導線
CN102000815B (zh) 一种FeAs粉体的负压固相反应制备方法
CN110853830A (zh) 一种Bi-2212多芯超导线材的制备方法
Lu et al. Effect of SnO, MgO and Ag2O mix-doping on the formation and superconducting properties of Bi-2223 Ag/tapes
CN107935041A (zh) 一种铋系超导前驱粉末的制备方法
CN109786025B (zh) 一种改性铋系超导体的制备方法
CA2572848A1 (en) Method for producing superconducting wire
WO2001012557A9 (en) A Pb-Bi-Sr-Ca-Cu-OXIDE POWDER MIX WITH ENHANCED REACTIVITY AND PROCESS FOR ITS MANUFACTURE
KR20060023947A (ko) 비스무트계 산화물 초전도 선재 및 그의 제조방법
JPH06176637A (ja) Bi系酸化物超電導線の製造方法
JP4141666B2 (ja) 酸化物高温超伝導体針状結晶の製造方法
CN114974723B (zh) 一种第二相可控的Bi-2212超导粉末的制备方法
US6599862B2 (en) Method for preparing bismuth-based high temperature superconductors
JP5196368B2 (ja) 酸化物超伝導体とその製造方法
JP4513473B2 (ja) 原料粉末の製造方法
JPH061616A (ja) Bi系酸化物超電導体の製造方法
CN116487109A (zh) 一种ypbco线带材的制备方法
JP4215180B2 (ja) Bi系2223酸化物超電導体製造に用いる仮焼粉の製造方法及びBi系2223酸化物超電導体の製造方法。
CN114822991A (zh) 一种Fe(Se,Te)超导线材的制备方法
JPH04334819A (ja) Bi系酸化物超電導線の製造方法
JPH06162843A (ja) Bi系酸化物超電導導体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant