CN116425553A - 一种原位气相沉积制备隔热氮化硼泡沫的制备方法 - Google Patents

一种原位气相沉积制备隔热氮化硼泡沫的制备方法 Download PDF

Info

Publication number
CN116425553A
CN116425553A CN202310098187.2A CN202310098187A CN116425553A CN 116425553 A CN116425553 A CN 116425553A CN 202310098187 A CN202310098187 A CN 202310098187A CN 116425553 A CN116425553 A CN 116425553A
Authority
CN
China
Prior art keywords
boron nitride
nitride foam
foam
heat
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310098187.2A
Other languages
English (en)
Other versions
CN116425553B (zh
Inventor
吕维扬
甄建政
张�杰
唐辰阳
姚玉元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202310098187.2A priority Critical patent/CN116425553B/zh
Publication of CN116425553A publication Critical patent/CN116425553A/zh
Application granted granted Critical
Publication of CN116425553B publication Critical patent/CN116425553B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0032Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors one of the precursor materials being a monolithic element having approximately the same dimensions as the final article, e.g. a paper sheet which after carbonisation will react with silicon to form a porous silicon carbide porous body
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种隔热氮化硼泡沫的制备方法,属于无机高温隔热材料领域。本发明是以三聚氰胺泡沫为模板,以富含氮源的三聚氰胺泡沫模板本身为氮源,在CVD炉中进行烧制,得粗产品;然后再将粗产品置于马弗炉中,在400‑800℃条件下空烧,以去除残留的碳,得到氮化硼泡沫。本发明的优点是首先通过化学气相沉积法将硼源沉积到模板上,然后在高温条件下,沉积的硼源物质与模板本身的氮源发生反应,原位生成氮化硼,并依托模板良好的结构,复刻得到结构性能较好的隔热氮化硼泡沫材料。所述隔热氮化硼泡沫,具有的优异的高温抗氧化能力和化学稳定性。该方法为泡沫材料的制备提供了新思路和研究基础。

Description

一种原位气相沉积制备隔热氮化硼泡沫的制备方法
技术领域
本发明涉及一种隔热氮化硼泡沫的制备方法,属于无机高温隔热材料领域。
背景技术
氮化硼泡沫以氮化硼为骨架,具有三维多孔网络结构,由于其优异的高温抗氧化能力、机械强度、电绝缘性和化学稳定性,有望在隔热、吸附、储氢和催化领域呈现更广阔的发展前景。
近年来,氮化硼泡沫材料的制备受到国内外越来越多的科研工作者的关注。例如,Cao等人采用可控高温氮化法制备了一系列高度多孔的BN泡沫材料,以氮化硼块状吸附剂替代粉状吸附剂,弥补了BN粉末在实际吸附应用中的缺点(Cao C,Yang J,Fu k.ChemicalEngineering Journal,2021,422)。该法所制的氮化硼泡沫材料具有丰富的微孔和优异的抗压强度,可用作多功能吸附剂,但其制备工艺繁琐,还需严格控制前驱体的压缩程度才可进行有效氮化,不适合工业化、产业化生产。
此外,三维结构氮化硼也可以通过化学气相沉积的方式制备,具体的是以类似于泡沫金属的材料为模板,在模板表面沉积一层氮化硼,之后在经过化学蚀刻的方式除去模板得到三维结构氮化硼。例如发明专利CN103232027A“一种三维氮化硼泡沫及其制备方法”,以硼烷氨络合物为原料,泡沫金属作为模板,采用化学气相沉积法经高温热解并在模板表面裂解、沉积形成三维氮化硼薄膜网络结构,再经高分子聚合物保护后使用强酸腐蚀液去除金属模板,最后经高温去除聚合物层后得到三维氮化硼泡沫。这种氮化硼泡沫材料的合成工艺极为复杂,氮化硼泡沫的形成依赖于金属泡沫的引入,并且合成过程中大量使用高分子聚合物、腐蚀液等易引入杂质的有害化学药品,最重要的是在这一制备方法过程中,一旦金属模板被氮化硼结构覆盖,会由于金属表面饱和而过早终止沉积过程,只能在模板的外表面形成一层氮化硼薄层,这对氮化硼泡沫结构的稳定性是极为不利的。总的来说,仍需寻找制备氮化硼泡沫材料的简单工艺。
发明内容
本发明针对上述问题,提出了一种工艺简单、绿色环保、价格低廉的路线来制备隔热氮化硼泡沫的方法。本发明中的隔热氮化硼泡沫是以三聚氰胺海绵为模板,以富含氮元素的三聚氰胺海绵模板本身为氮源,以含硼化合物为硼源,通过简单化学气相沉积和原位生长的方法即可得到轻质隔热的氮化硼泡沫材料。该方法为泡沫材料的制备提供了新思路和研究基础,具有极大的实际应用前景。
一种工艺简单、绿色环保、价格低廉的路线来制备隔热氮化硼泡沫的方法,其具体步骤如下:
(1)将三聚氰胺海绵切块并置于酸性溶液浸泡,之后经去离子水和乙醇洗涤,干燥后备用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以富含硼元素的物质为硼源,以惰性气体为载气,以1-15℃/min的升温速率升温至450-1900℃,在此温度下反应1-10小时,得粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在400-800℃条件下空烧2-8h,以去除残留的碳,得到氮化硼泡沫。
作为优选,步骤(1)中所述的酸性溶液是氢氟酸、硫酸、盐酸、次氯酸、醋酸中的一种,浓度为1-10mol/L,浸泡的目的是去除海绵表面的杂质。
作为优选,步骤(1)中所述的三聚氰胺海绵经过水和醇多次清洗,直至清洗液为中性。
作为优选,步骤(1)中所述的干燥方法为真空干燥、真空冷冻干燥或鼓风干燥中的一种。
作为优选,步骤(2)中所述的硼源是硼酸、苯硼酸、硼氨烷、硼砂、四氟硼酸铵、氧化硼中的一种或多种。
作为优选,步骤(2)中所述的惰性气体是氮气、氩气或氨气中的一种。
作为优选,步骤(3)中所述的马弗炉的升温速率为1-10℃/min。
与现有技术相比,本发明具有的有益效果是:
(1)三聚氰胺海绵模板富含氮元素,可以直接作为氮源,在高温条件下直接与沉积的含硼物质反应,原位生成氮化硼,并且依托三聚氰胺海绵较好的骨架结构,可以复刻出结构性能较好的氮化硼泡沫。
(2)这一技术路线相对目前公开报道的化学气相沉积法制备的氮化硼泡沫而言具,工艺更简单,而且绿色环保。
具体实施方式
下面结合具体实例,进一步阐述本发明。这些实施案例仅用于说明本发明而不用于限制本发明的范围。此外,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明做各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1:
(1)将经过浓度为1mol/L的氢氟酸浸泡2h的三聚氰胺海绵,经醇水多次洗涤至中性,干燥后待用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以硼氨烷为硼源,以氮气为载气,以10℃/min的升温速率升温至500℃,在此温度下反应2小时,然后以5℃/min的升温速度升温至1200℃,在此温度下保温4h,得到粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在600℃条件下空烧4h,以去除残留的碳,得到氮化硼泡沫。
通过上述方法制备的轻量隔热氮化硼泡沫,其体积密度为0.25g/cm3,孔隙率为89%,使用温度可达到1100℃,热导率为0.08W/(m·K)。
实施例2:
(1)将经过浓度为1mol/L的氢氟酸浸泡2h的三聚氰胺海绵,经醇水多次洗涤至中性,干燥后待用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以硼氨烷为硼源,以氮气为载气,以10℃/min的升温速率升温至500℃,在此温度下反应4小时,然后以5℃/min的升温速度升温至1200℃,在此温度下保温4h,得到粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在600℃条件下空烧4h,以去除残留的碳,得到氮化硼泡沫。
通过上述方法制备的轻量隔热氮化硼泡沫,其体积密度为0.26g/cm3,孔隙率为84%,使用温度可达到1050℃,热导率为0.09W/(m·K)。
实施例3:
(1)将经过浓度为1mol/L的氢氟酸浸泡2h的三聚氰胺海绵,经醇水多次洗涤至中性,干燥后待用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以硼氨烷为硼源,以氮气为载气,以10℃/min的升温速率升温至500℃,在此温度下反应2小时,然后以5℃/min的升温速度升温至1400℃,在此温度下保温4h,得到粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在600℃条件下空烧4h,以去除残留的碳,得到氮化硼泡沫。
通过上述方法制备的轻量隔热氮化硼泡沫,其体积密度为0.22g/cm3,孔隙率为88%,使用温度可达到1150℃,热导率为0.06W/(m·K)。
实施例4:
(1)将经过浓度为1mol/L的氢氟酸浸泡2h的三聚氰胺海绵,经醇水多次洗涤至中性,干燥后待用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以硼氨烷为硼源,以氮气为载气,以10℃/min的升温速率升温至350℃,在此温度下反应2小时,然后以5℃/min的升温速度升温至1200℃,在此温度下保温4h,得到粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在600℃条件下空烧4h,以去除残留的碳,得到氮化硼泡沫。
通过上述方法制备的轻量隔热氮化硼泡沫,其体积密度为0.21g/cm3,孔隙率为87%,使用温度可达到900℃,热导率为0.06W/(m·K)。
实施例5:
(1)将经过浓度为1mol/L的氢氟酸浸泡2h的三聚氰胺海绵,经醇水多次洗涤至中性,干燥后待用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以硼氨烷为硼源,以氨气为载气,以10℃/min的升温速率升温至500℃,在此温度下反应2小时,然后以5℃/min的升温速度升温至1200℃,在此温度下保温4h,得到粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在600℃条件下空烧4h,以去除残留的碳,得到氮化硼泡沫。
通过上述方法制备的轻量隔热氮化硼泡沫,其体积密度为0.26g/cm3,孔隙率为86%,使用温度可达到950℃,热导率为0.09W/(m·K)。
实施例6:
(1)将经过浓度为1mol/L的氢氟酸浸泡2h的三聚氰胺海绵,经醇水多次洗涤至中性,干燥后待用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以硼氨烷为硼源,以氩气为载气,以10℃/min的升温速率升温至500℃,在此温度下反应2小时,然后以5℃/min的升温速度升温至1200℃,在此温度下保温4h,得到粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在600℃条件下空烧4h,以去除残留的碳,得到氮化硼泡沫。
通过上述方法制备的轻量隔热氮化硼泡沫,其体积密度为0.31g/cm3,孔隙率为80%,使用温度可达到1000℃,热导率为0.11W/(m·K)。
实施例7:
(1)将经过浓度为1mol/L的氢氟酸浸泡2h的三聚氰胺海绵,经醇水多次洗涤至中性,干燥后待用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以硼氨烷为硼源,以氮气为载气,以10℃/min的升温速率升温至500℃,在此温度下反应2小时,然后以5℃/min的升温速度升温至1200℃,在此温度下保温4h,得到粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在800℃条件下空烧4h,以去除残留的碳,得到氮化硼泡沫。
通过上述方法制备的轻量隔热氮化硼泡沫,其体积密度为0.21g/cm3,孔隙率为86%,使用温度可达到1000℃,热导率为0.07W/(m·K)。
实施例8:
(1)将经过浓度为1mol/L的氢氟酸浸泡2h的三聚氰胺海绵,经醇水多次洗涤至中性,干燥后待用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以硼氨烷为硼源,以氮气为载气,以10℃/min的升温速率升温至600℃,在此温度下反应6小时,然后以5℃/min的升温速度升温至1200℃,在此温度下保温4h,得到粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在600℃条件下空烧4h,以去除残留的碳,得到氮化硼泡沫。
通过上述方法制备的轻量隔热氮化硼泡沫,其体积密度为0.4g/cm3,孔隙率为75%,使用温度可达到1050℃,热导率为0.14W/(m·K)。
实施例9:
(1)将经过浓度为1mol/L的氢氟酸浸泡2h的三聚氰胺海绵,经醇水多次洗涤至中性,干燥后待用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以硼氨烷为硼源,以氮气为载气,以10℃/min的升温速率升温至500℃,在此温度下反应2小时,然后以5℃/min的升温速度升温至1200℃,在此温度下保温8h,得到粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在600℃条件下空烧4h,以去除残留的碳,得到氮化硼泡沫。
通过上述方法制备的轻量隔热氮化硼泡沫,其体积密度为0.24g/cm3,孔隙率为87%,使用温度可达到1150℃,热导率为0.1W/(m·K)。
实施例10:
(1)将经过浓度为1mol/L的氢氟酸浸泡2h的三聚氰胺海绵,经醇水多次洗涤至中性,干燥后待用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以苯硼酸为硼源,以氮气为载气,以10℃/min的升温速率升温至500℃,在此温度下反应2小时,然后以5℃/min的升温速度升温至1200℃,在此温度下保温4h,得到粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在600℃条件下空烧4h,以去除残留的碳,得到氮化硼泡沫。
通过上述方法制备的轻量隔热氮化硼泡沫,其体积密度为0.38/cm3,孔隙率为77%,使用温度可达到800℃,热导率为0.12W/(m·K)。
对比例1:
(1)将经过浓度为1mol/L的氢氟酸浸泡2h的三聚氰胺海绵,经醇水多次洗涤至中性,干燥后待用;
(2)将步骤(1)获得的海绵转移至CVD炉中,不添加硼源,以氮气为载气,以10℃/min的升温速率升温至500℃,在此温度下反应2小时,然后以5℃/min的升温速度升温至1200℃,在此温度下保温4h,得到粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在600℃条件下空烧4h,以去除残留的碳。
通过上述方法无法制备出氮化硼泡沫材料,在马弗炉中样品被空烧变成二氧化碳,说明硼源的引入是形成氮化硼的关键。
对比例2:
(1)将经过浓度为1mol/L的氢氟酸浸泡2h的三聚氰胺海绵,经醇水多次洗涤至中性,干燥后待用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以硼氨烷为硼源,以氮气为载气,以10℃/min的升温速率升温至500℃,在此温度下反应2小时,然后以5℃/min的升温速度升温至1200℃,在此温度下保温4h,得到粗产品;
通过上述方法制备的轻量隔热氮化硼泡沫,其体积密度为1.5g/cm3,孔隙率为55%,使用温度可达到500℃,热导率为1.1W/(m·K)。对比例说明未经空烧的氮化硼泡沫材料由于残留的碳对其体积密度、孔隙率、热导率产生不利的影响。
性能评价
(1)隔热性
隔热性参照GB/T22588-2008标准,测定隔热材料的热导率。
根据上述提出的评价标准对所述的实例进行测试,测试结果如表1所示。
表1
Figure SMS_1
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (7)

1.一种原位气相沉积制备隔热氮化硼泡沫的制备方法,其特征在于,以三聚氰胺海绵为模板,以富含氮元素的三聚氰胺海绵模板本身为氮源,以含硼化合物为硼源,通过化学气相沉积和原位生长的方法即可得到轻质隔热的氮化硼泡沫材料,包括如下步骤:
(1)将三聚氰胺海绵干燥后备用;
(2)将步骤(1)获得的海绵转移至CVD炉中,并以富含硼元素的物质为硼源进行烧制,得粗产品;
(3)将步骤(2)制得的粗产品置于马弗炉中,在400-800℃条件下空烧,以去除残留的碳,得到氮化硼泡沫。
2.根据权利要求1所述的一种原位气相沉积制备隔热氮化硼泡沫的制备方法,其特征在于,所述的硼源是硼酸、苯硼酸、硼氨烷、硼砂、四氟硼酸铵、或氧化硼中的一种或多种。
3.根据权利要求1所述一种原位气相沉积制备隔热氮化硼泡沫的制备方法,其特征在于,步骤(1)中三聚氰胺海绵进行酸性溶液浸泡,再经去离子水和乙醇洗涤;所述的酸性溶液是氢氟酸、硫酸、盐酸、次氯酸、或醋酸中的一种,浓度为1-10mol/L。
4.根据权利要求3所述一种原位气相沉积制备隔热氮化硼泡沫的制备方法,其特征在于,步骤(1)中所述的三聚氰胺海绵经过去离子水和乙醇洗涤,直至清洗液为中性。
5.根据权利要求1所述一种原位气相沉积制备隔热氮化硼泡沫的制备方法,其特征在于,步骤(1)中所述的干燥方法为真空干燥、真空冷冻干燥或鼓风干燥中的一种。
6.根据权利要求1所述一种原位气相沉积制备隔热氮化硼泡沫的制备方法,其特征在于,步骤(2)中在CVD炉中进行烧制时,以氮气、氩气或氨气中的一种惰性气体为载气,以1-15℃/min的升温速率升温至450-1900℃,在此温度下反应1-10h。
7.根据权利要求1所述一种原位气相沉积制备隔热氮化硼泡沫的制备方法,其特征在于,步骤(3)中所述的马弗炉的升温速率为1-10℃/min,空烧2-8h。
CN202310098187.2A 2023-02-10 2023-02-10 一种原位气相沉积制备隔热氮化硼泡沫的制备方法 Active CN116425553B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310098187.2A CN116425553B (zh) 2023-02-10 2023-02-10 一种原位气相沉积制备隔热氮化硼泡沫的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310098187.2A CN116425553B (zh) 2023-02-10 2023-02-10 一种原位气相沉积制备隔热氮化硼泡沫的制备方法

Publications (2)

Publication Number Publication Date
CN116425553A true CN116425553A (zh) 2023-07-14
CN116425553B CN116425553B (zh) 2024-10-22

Family

ID=87086164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310098187.2A Active CN116425553B (zh) 2023-02-10 2023-02-10 一种原位气相沉积制备隔热氮化硼泡沫的制备方法

Country Status (1)

Country Link
CN (1) CN116425553B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964403A (zh) * 2014-04-08 2014-08-06 南京航空航天大学 三维多孔六方氮化硼的制备方法
CN106495109A (zh) * 2016-11-02 2017-03-15 河北工业大学 一种泡沫状氮化硼块体材料制备方法
CN107159129A (zh) * 2017-05-22 2017-09-15 江苏大学 一种pdms构筑超疏水三聚氰胺海绵碳材料的一步制备法及用途
CN107245159A (zh) * 2017-05-22 2017-10-13 江苏大学 一种二氧化硅构筑超疏水三聚氰胺海绵的制备方法及用途
CN108516839A (zh) * 2018-07-03 2018-09-11 辽宁大学 一种氮化硼泡沫的制备方法及应用
WO2018236847A1 (en) * 2017-06-19 2018-12-27 Rogers Corporation BORON NITRIDE FOAM, PROCESSES FOR PRODUCING THE SAME, AND ARTICLES CONTAINING THE SAME OF BORE NITRIDE FOAM
US20190093217A1 (en) * 2016-03-09 2019-03-28 Nanyang Technological University Chemical vapor deposition process to build 3d foam-like structures
CN109534306A (zh) * 2018-12-27 2019-03-29 沈阳大学 基于尿素氮源制备球形六方氮化硼粉体的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964403A (zh) * 2014-04-08 2014-08-06 南京航空航天大学 三维多孔六方氮化硼的制备方法
US20190093217A1 (en) * 2016-03-09 2019-03-28 Nanyang Technological University Chemical vapor deposition process to build 3d foam-like structures
CN106495109A (zh) * 2016-11-02 2017-03-15 河北工业大学 一种泡沫状氮化硼块体材料制备方法
CN107159129A (zh) * 2017-05-22 2017-09-15 江苏大学 一种pdms构筑超疏水三聚氰胺海绵碳材料的一步制备法及用途
CN107245159A (zh) * 2017-05-22 2017-10-13 江苏大学 一种二氧化硅构筑超疏水三聚氰胺海绵的制备方法及用途
WO2018236847A1 (en) * 2017-06-19 2018-12-27 Rogers Corporation BORON NITRIDE FOAM, PROCESSES FOR PRODUCING THE SAME, AND ARTICLES CONTAINING THE SAME OF BORE NITRIDE FOAM
CN108516839A (zh) * 2018-07-03 2018-09-11 辽宁大学 一种氮化硼泡沫的制备方法及应用
CN109534306A (zh) * 2018-12-27 2019-03-29 沈阳大学 基于尿素氮源制备球形六方氮化硼粉体的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUN XIONG, ET AL.: ""Macroscopic 3D boron nitride monolith for efficient adsorptive desulfurization"", 《FUEL》, pages 1 - 6 *

Also Published As

Publication number Publication date
CN116425553B (zh) 2024-10-22

Similar Documents

Publication Publication Date Title
CN105502359B (zh) 一种低成本多孔石墨烯的制备方法
CN108383098B (zh) 多种杂原子共掺杂的中空多孔碳材料、其制备方法及其应用
CN109289888B (zh) 一种硼掺杂多孔氮化碳材料的制备方法
US9869422B2 (en) Method for preparing bulk C—AlN composite aerogel with high strength and high temperature resistance
CN107128902B (zh) 一种网络状石墨烯纳米材料及其制备方法和应用
CN103193497A (zh) 一种抗硅侵蚀粘连的碳/碳复合材料制品及其制备方法
CN104478475B (zh) 一种耐高温高强度SiC包覆碳泡沫复合隔热材料及其制备方法
CN110517900B (zh) 一种超级电容器用氮掺杂低温碳纳米纤维电极材料的制备方法
CN106744783A (zh) 一种石墨化空心炭微球的制备方法
CN112299410B (zh) 一种高纯度、高电导率的多孔炭和制备方法
CN109110759A (zh) 一种氮、硼共掺杂多孔碳材料的制备方法
CN111441104A (zh) 一种由碳纤维制备CSiNB四元纤维的方法
CN111841592A (zh) 一种利用Ti基MOF原位衍生合成TiO2-Ti3C2Tx复合光催化剂及其应用
CN107265416A (zh) 热解氮化硼材料的制备方法
CN107522266B (zh) 分级多孔碳材料电容型脱盐电极材料的制备方法
CN114538408A (zh) 一种微氧热解制备高电催化活性生物炭的方法
CN110615424B (zh) 一种氮磷掺杂多孔碳材料及其制备方法和应用
CN116425553B (zh) 一种原位气相沉积制备隔热氮化硼泡沫的制备方法
CN115259878A (zh) 一种抽滤掺杂工艺
CN107459028B (zh) 一种杂原子掺杂的碳气凝胶及其制备方法
CN116514556B (zh) 一种轻量隔热氮化硼泡沫的制备方法
CN103449408A (zh) 一种硼掺杂石墨烯及其制备方法
CN115975251A (zh) 一种保温隔热纤维素气凝胶复合材料的制备方法
CN106242571A (zh) 一种碳化钛储氢材料的制备方法
CN113173616B (zh) 一种三维一体光热转换材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant