CN116425549B - 一种基于纳米炭黑消耗层和反应熔渗制备硅化石墨及方法 - Google Patents

一种基于纳米炭黑消耗层和反应熔渗制备硅化石墨及方法 Download PDF

Info

Publication number
CN116425549B
CN116425549B CN202310466824.7A CN202310466824A CN116425549B CN 116425549 B CN116425549 B CN 116425549B CN 202310466824 A CN202310466824 A CN 202310466824A CN 116425549 B CN116425549 B CN 116425549B
Authority
CN
China
Prior art keywords
carbon black
particles
graphite
green body
siliconized graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310466824.7A
Other languages
English (en)
Other versions
CN116425549A (zh
Inventor
王继平
曾雨轲
薛蓉
苏鹏
肖志超
夏鸿雁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202310466824.7A priority Critical patent/CN116425549B/zh
Publication of CN116425549A publication Critical patent/CN116425549A/zh
Application granted granted Critical
Publication of CN116425549B publication Critical patent/CN116425549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种基于纳米炭黑消耗层和反应熔渗制备硅化石墨及方法,通过石墨粉与热固性树脂进行混合,固化炭化得到复合碳颗粒,采用复合碳颗粒和纳米炭黑为碳源,PVA溶液为粘结剂,通过模压成型得到生坯,生坯干燥,在真空电阻炉中进行反应熔渗,得到碳含量和致密度较高的硅化石墨材料。本发明解决了现有的反应烧结硅化石墨材料所存在的石墨相含量低所引起的自润滑性能差的问题,制备出高碳相含量的硅化石墨复合材料,大幅提高了反应烧结硅化石墨复合材料的自润滑性能,该硅化石墨复合材料在化工、冶金及航空航天、核能等领域具有广泛的应用前景。

Description

一种基于纳米炭黑消耗层和反应熔渗制备硅化石墨及方法
技术领域
本发明属于无机非金属材料制备的技术领域,特别涉及了一种通过构建纳米炭黑消耗层和反应熔渗制备硅化石墨及方法。
背景技术
具有充足石墨含量的硅化石墨复合材料将不仅具有碳化硅相的高硬度、高耐磨性及抗高温氧化性,还具有碳/石墨材料相良好的自润滑性、热传导能力、低的热膨胀系数和良好的抗热震性等优点。反应熔渗法因其具有成型简单、烧结温度低、一次烧结致密、烧结速度快、近净尺寸等优点而常被用于碳化硅基复合材料的制备。但由于高温下硅碳反应十分剧烈,一般的石墨碳源极易与液硅反应生成碳化硅,从而导致硅化石墨材料中碳相含量较少。因此反应熔渗法制备硅化石墨材料的关键在于如何有效保留硅化石墨材料中的碳相,使其发挥自润滑性能。
发明内容
为解决现有技术中存在的上述缺陷,本发明的目的在于提供一种保留反应熔渗法制备硅化石墨材料中碳相,低成本、有效的碳源的处理方法,从而实现高碳含量的硅化石墨的制备。
本发明是通过下述技术方案来实现的。
根据本发明的一个方面,提供了一种基于纳米炭黑消耗层和反应熔渗制备硅化石墨的方法,包括:
(1)将石墨粉与热固性树脂进行机械混合,经固化,炭化,破碎后得到大尺寸的复合碳颗粒;
(2)以乙醇为溶剂,将复合碳颗粒、纳米炭黑进行混合球磨,将混合球磨后的浆料干燥,得到复合碳源;
(3)将PVA溶液与复合碳源混合,纳米炭黑均匀附着在大尺寸的复合碳颗粒表面,形成一层连续且相对致密的纳米炭黑消耗层;
(4)将混合均匀的原料成型,得到生坯;
(5)采用硅颗粒包埋生坯进行反应熔渗,液态硅渗入生坯中生成碳化硅,冷却至室温,得到硅化石墨。
根据本发明的示例性实施方式,石墨粉与热固性树脂按照质量百分比45-70%:30-55%机械混合。
根据本发明的示例性实施方式,所述热固性树脂为呋喃、糠酮或酚醛树脂中至少一种。
根据本发明的示例性实施方式,固化工艺包括:先60-90℃固化1-2h,再升温至150-200℃固化1-5h;炭化工艺包括:在氮气或氩气气氛条件下,800-1000℃炭化1-5h。
根据本发明的示例性实施方式,所述复合碳颗粒与纳米炭黑的质量百分比为(75-95):(5-25)。
根据本发明的示例性实施方式,球磨球料比为3-4:1,转速为300-500rpm,球磨时间4-10h;混合浆料干燥温度为40℃-60℃,干燥时间为4-8h。
根据本发明的示例性实施方式,所述PVA溶液的质量浓度为3-5wt.%,PVA溶液添加量为复合碳源的2-10wt.%。
根据本发明的示例性实施方式,将原料进行模压获得生坯,模压压力为8-10MPa,保压时间为30-60s。
根据本发明的示例性实施方式,采用硅颗粒包埋生坯进行反应熔渗,将生坯放在硅颗粒上,再加入一层硅颗粒使得生坯被硅颗粒完全包埋,在真空电阻炉中进行反应熔渗,烧结温度为1500-1550℃,保温时间为20-60min,硅颗粒的尺寸为0.5~4mm,硅颗粒的重量是生坯总重量的2-3倍。
根据本发明的另一方面,提供了一种所述基于纳米炭黑消耗层和反应熔渗制备方法得到的硅化石墨。
本发明由于采取以上技术方案,其具有以下有益效果:
1.本发明采用石墨与热固性树脂混合后,经固化、炭化、球磨和破碎工艺,在大尺寸复合碳颗粒的表面制备了连续致密的高反应活性的纳米炭黑消耗层。
2.本发明采用硅颗粒包埋生坯进行反应熔渗,使得硅颗粒熔融为液态并完全渗入生坯,先与复合碳颗粒表面的纳米炭黑消耗层接触,在极短时间内迅速形成一层致密且连续的碳化硅壳,阻止硅碳进一步反应,从而实现低成本制备高致密、低气孔和高碳含量的硅化石墨,提高了材料的自润滑性能。
3.制备方法中生产周期相对较短,且不需要经历长时间的高温等高能耗工艺。制备得到的硅化石墨材料十分致密,碳含量较高,在化工、冶金及航空航天、核能等领域具有广泛的应用前景。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的不当限定,在附图中:
图1是实施例制备的硅化石墨的XRD图;
图2是实施例制备的硅化石墨的SEM图;
图3对比例1制备的硅化石墨的XRD图;
图4是比例1制备的硅化石墨的SEM图。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
本发明实施例提供的一种基于纳米炭黑消耗层和反应熔渗制备硅化石墨的方法,包括以下制备步骤:
步骤1,将石墨粉与热固性树脂按照质量百分比45-70%:30-55%进行机械混合,经固化,炭化,破碎后得到大尺寸的复合碳颗粒。固化工艺包括:先在60-90℃固化1-2h,再升温至150-200℃固化1-5h;炭化工艺包括:在氮气或氩气气氛条件下,800-1000℃炭化1-5h。其中热固性树脂主要为呋喃、糠酮和酚醛树脂其中至少一种。
步骤1中,经机械混合后,石墨与热固性树脂均匀分布,并且热固性树脂经两段固化可以提高树脂的交联程度,在高温炭化后可以残碳率更高的树脂炭,经破碎后可以得到由树脂炭均匀包覆石墨的大尺寸复合碳颗粒。
步骤2,以乙醇为溶剂,将复合碳颗粒、纳米炭黑按照质量百分比为75-95%:5-25%进行混合球磨,球料比3-4:1,转速300-500rpm,球磨时间4-10h,将混合好的浆料放入烘箱中进行干燥,混合浆料干燥温度为40-60℃,干燥时间为4-8h,得到复合碳源。
步骤3,以3-5wt.%的PVA溶液作为粘结剂与复合碳源进行混合,PVA溶液的添加量为复合碳源的2-10wt.%。
步骤2和3中,通过球磨和干燥,将纳米炭黑与复合碳颗粒混合均匀,使得纳米炭黑高度弥散分布在大尺寸的复合碳颗粒周围,然后纳米炭黑在粘结剂的作用下均匀附着在大尺寸的复合碳颗粒表面,形成一层连续且相对致密的纳米炭黑。
由于采用的纳米炭黑比表面积高,具有很高的反应性,在反应时可以对复合碳颗粒可以起到保护效果。
通过进一步优化复合碳颗粒与纳米炭黑的比例,提高纳米炭黑在复合碳颗粒表面的附着效果,提高保护效果。
步骤4,将混合均匀的原料进行模压成型成生坯,压力为8-10MPa,保压时间30-60s。
步骤4中,通过模压成型可以制成具有一定强度和孔隙率的生坯,保证后续反应熔渗时液相硅可以成功渗入并不开裂。
步骤5,将生坯放在硅颗粒上,再加入一层硅颗粒使得生坯被硅颗粒完全包埋,将其在真空电阻炉中进行反应熔渗,烧结温度为1500-1550℃,反应时间为20-60min,硅颗粒的尺寸为0.5-4mm,硅颗粒的重量是生坯总重量的2-3倍。由于烧结温度高于硅的熔点,使液态硅渗入生坯中与碳反应生成碳化硅,未反应的石墨相保留下来,试样随炉冷却至室温,即得到硅化石墨材料。
步骤5中,采用反应熔渗法制备硅化石墨,工艺简单,制备周期短,可以有效减少制备成本。
生坯被硅颗粒完全包埋,使得液相硅更好渗入生坯,制备高致密的硅化石墨。
烧结温度为远大于硅熔点(1410℃),可以有效减小液相硅的粘度,提高流动性,便于液相硅完全渗入生坯,制备高致密的硅化石墨。
所得到的硅化石墨的碳含量为35-45vol.%,密度2.5-2.7g·cm-3,开气孔率小于2%。
下面通过具体实施例来进一步说明本发明。
实施例1:
1)将石墨粉与酚醛树脂进行机械混合(质量百分比45:55),经固化(固化条件70℃/2h+150℃/5h),炭化(炭化条件:1000℃/2h,氮气或氩气气氛),破碎后的得到大尺寸复合碳颗粒;
2)按照重量百分比复合碳颗粒:纳米炭黑=95:5,将所有原料与无水乙醇放入密封的塑料罐中球磨5h,球料比3:1,转速为400转/分,然后将球磨后的浆料到入烘箱中的托盘进行干燥,烘箱温度为40℃,干燥8h,干燥好的复合碳源进行干磨过60目筛网;
3)加入5wt.%的PVA溶液作为粘结剂,和复合碳源进行混合,PVA溶液的重量为复合碳源的8wt.%;
4)将混合均匀的原料放入模具中进行压制,压力为10MPa,保压时间30s;
5)将压制成型的生坯放在硅颗粒上,再加入一层硅颗粒使得生坯被硅颗粒完全包埋,将其在真空电阻炉中进行反应熔渗,烧结温度为1550℃,保温时间为20min。硅颗粒的尺寸为4mm,硅颗粒的重量是生坯总重量的2.5倍。
通过该工艺制备的硅化石墨材料的碳含量为33.94vol.%,密度为2.72g/cm3,开气孔率1.9%,利用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)对所得到的产物进行表征。图1是产物的XRD图谱,产物的主要成分为SiC、Si和C。图2为产物的背散射照片,可以很清楚地看到黑色的碳相,白色的硅相以及灰色的碳化硅相。
实施例2:
1)将石墨粉与酚醛树脂进行机械混合(质量百分比50:50),经固化(固化条件60℃/1.5h+180℃/3h),炭化(炭化条件:800℃/5h,氮气或氩气气氛),破碎后的得到复合碳颗粒;
2)按照碳源重量百分比复合碳颗粒:纳米炭黑=90:10,将所有原料与无水乙醇放入密封的塑料罐中球磨10h,球料比4:1,转速为300转/分,然后将球磨后的浆料到入烘箱中的托盘进行干燥,烘箱温度为60℃干燥4h,干燥好的复合碳源进行干磨过60目筛网;
3)加入3wt.%的PVA溶液作为粘结剂,和复合碳源进行混合,PVA溶液的重量为复合碳源的10wt.%;
4)将混合均匀的原料放入模具中进行压制,压力为8MPa,保压时间40s;
5)将压制成型的生坯放在硅颗粒上,再加入一层硅颗粒使得生坯被硅颗粒完全包埋,将其在真空电阻炉中进行反应熔渗,烧结温度为1540℃,保温时间为40min。硅颗粒的尺寸为3mm,硅颗粒的重量是生坯总重量的3倍。
通过该工艺制备的硅化石墨材料的碳含量为43.03vol.%,密度为2.53g/cm3,开气孔率0.73%。其它结果同实施例1。
实施例3:
1)将石墨粉与酚醛树脂进行机械混合(质量百分比55:45),经固化(固化条件80℃/2h+170℃/4h),炭化(炭化条件:900℃/2h,氮气或氩气气氛),破碎后的得到复合碳颗粒;
2)按照碳源重量百分比复合碳颗粒:纳米炭黑=85:15,将所有原料与无水乙醇放入密封的塑料罐中球磨5h,球料比3:1,转速为400转/分,然后将球磨后的浆料到入烘箱中的托盘进行干燥,烘箱温度为40℃干燥8h,干燥好的复合碳源进行干磨过60目筛网;
3)加入4wt.%的PVA溶液作为粘结剂,和复合碳源进行混合,PVA溶液的重量为复合碳源的5wt.%;
4)将混合均匀的原料放入模具中进行压制,压力为9MPa,保压时间30s;
5)将压制成型的生坯放在硅颗粒上,再加入一层硅颗粒使得生坯被硅颗粒完全包埋,将其在真空电阻炉中进行反应熔渗,烧结温度为1530℃,保温时间为30min。硅颗粒的尺寸为2mm,硅颗粒的重量是生坯总重量的2倍。
通过该工艺制备的硅化石墨材料的碳含量为41.64vol.%,密度为2.61g/cm3,开气孔率0.6%。
实施例4:
1)将石墨粉与呋喃树脂进行机械混合(质量百分比60:40),经固化(固化条件90℃/1h+190℃/1h),炭化(炭化条件:1000℃/1h,氮气或氩气气氛),破碎后的得到复合碳颗粒;
2)按照碳源重量百分比复合碳颗粒:纳米炭黑=80:20,将所有原料与无水乙醇放入密封的塑料罐中球磨4h,球料比3:1,转速为500转/分,然后将球磨后的浆料到入烘箱中的托盘进行干燥,烘箱温度为50℃干燥6h,干燥好的复合碳源进行干磨过60目筛网;
3)加入5wt.%的PVA溶液作为粘结剂,和复合碳源进行混合,PVA溶液的重量为复合碳源的2wt.%;
4)将混合均匀的原料放入模具中进行压制,压力为10MPa,保压时间35s;
5)将压制成型的生坯放在硅颗粒上,再加入一层硅颗粒使得生坯被硅颗粒完全包埋,将其在真空电阻炉中进行反应熔渗,烧结温度为1520℃,保温时间为60min。硅颗粒的尺寸为2mm,硅颗粒的重量是生坯总重量的2.5倍。
通过该工艺制备的硅化石墨材料的碳含量为41.02vol.%,密度为2.64g/cm3,开气孔率1.1%。
实施例5:
1)将石墨粉与糠酮树脂进行机械混合(质量百分比70:30),经固化(固化条件80℃/1.5h+200℃/2h),炭化(炭化条件:850℃/4h,氮气或氩气气氛),破碎后的得到复合碳颗粒;
2)按照碳源重量百分比复合碳颗粒:纳米炭黑=75:25,将所有原料与无水乙醇放入密封的塑料罐中球磨4h,球料比4:1,转速为500转/分,然后将球磨后的浆料到入烘箱中的托盘进行干燥,烘箱温度为60℃干燥4h,干燥好的复合碳源进行干磨过60目筛网;
3)加入4wt.%的PVA溶液作为粘结剂,和复合碳源进行混合,PVA溶液的重量为复合碳源的3wt.%;
4)将混合均匀的原料放入模具中进行压制,压力为8MPa,保压时间35s;
5)将压制成型的生坯放在硅颗粒上,再加入一层硅颗粒使得生坯被硅颗粒完全包埋,将其在真空电阻炉中进行反应熔渗,烧结温度为1500℃,保温时间为55min。硅颗粒的尺寸为1mm,硅颗粒的重量是生坯总重量的2.5倍。
通过该工艺制备的硅化石墨材料的碳含量为38.48vol.%,密度为2.69g/cm3,开气孔率1.71%。
对比例1
直接采用石墨粉作为反应的碳源,不添加热固性树脂和纳米炭黑,其他工艺参数与实施例1相同,最终得到的硅化石墨材料的碳含量几乎为0vol.%,密度为2.83g/cm3,开气孔率0.9%。从产物的XRD图谱,产物的主要成分为SiC、Si。产物的背散射照片,仅能看到白色的硅相以及灰色的碳化硅相。
对比例2
采用制备的复合碳颗粒作为反应的碳源,不添加纳米炭黑,其他工艺参数与实施例1相同。最终得到的硅化石墨的碳含量为33.62vol.%,密度为2.67g/cm3,开气孔率0.5%,。
从以上实施例1-5和对比例1-2可以看出,采用本发明方法制备得到的硅化石墨能够有效控制硅化石墨中的碳含量不低于34vol.%,密度为2.5-2.7g/cm3,开气孔率小于2%。
实施例中硅化石墨比对比例中硅化石墨的碳含量有显著提高,其中实施例1相较于对比例2提高了0.32%;实施例2相较于对比例2提高了9.41%;实施例3相较于对比例2提高了8.02%;实施例4相较于对比例2提高了7.4%。实施例5相较于对比例2提高了4.86%。这是由于在反应熔渗时,复合碳颗粒表面的高反应活性纳米炭黑优先与液相硅反应,形成一层连续且相对致密的碳化硅壳,阻止硅碳进一步反应,起到保护复合碳颗粒的作用,使更多的碳相保留。
进一步分析可知,如图3和图4所示,对比例1硅化石墨几乎无碳相,这是因为石墨粒径相对较小,很容易全部与硅反应形成碳化硅,而且由于无碳相,密度也相对较大。
进一步分析可知,对比例2比对比例1的硅化石墨的碳含量提高了33.62%,这是因为石墨被致密的树脂炭包覆,在反应熔渗中也能形成致密的碳化硅层阻止硅碳的进一步反应,也能有效提高硅化石墨中碳相的含量。
本发明制备得到的硅化石墨材料具有良好的自润滑性能,适用于在化工、冶金及航空航天、核能等领域应用。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (7)

1.一种基于纳米炭黑消耗层和反应熔渗制备硅化石墨的方法,其特征在于包括:
(1)按照质量百分比45-70%:30-55%将石墨粉与热固性树脂进行机械混合,经固化、炭化,破碎后得到大尺寸的复合碳颗粒;
所述热固性树脂为呋喃树脂、糠酮树脂或酚醛树脂中至少一种;
(2)以乙醇为溶剂,将复合碳颗粒、纳米炭黑进行混合球磨,将混合球磨后的浆料干燥,得到复合碳源;
所述复合碳颗粒与纳米炭黑的质量百分比为(75-90):(10-25);
(3)将PVA溶液与复合碳源混合,纳米炭黑均匀附着在大尺寸的复合碳颗粒表面,形成一层连续且相对致密的纳米炭黑消耗层;
(4)将混合均匀的原料模压成型,得到生坯;
(5)采用硅颗粒包埋生坯进行反应熔渗,液态硅渗入生坯中生成碳化硅,冷却至室温,得到硅化石墨。
2.根据权利要求1所述的基于纳米炭黑消耗层和反应熔渗制备硅化石墨的方法,其特征在于,固化工艺包括:先60-90℃固化1-2h,再升温至150-200℃固化1-5h;炭化工艺包括:在氮气或氩气气氛条件下,800-1000℃炭化1-5h。
3.根据权利要求1所述的基于纳米炭黑消耗层和反应熔渗制备硅化石墨的方法,其特征在于,球磨球料比为3-4:1,转速为300-500rpm,球磨时间4-10h;混合浆料干燥温度为40-60℃,干燥时间为4-8h。
4.根据权利要求1所述的基于纳米炭黑消耗层和反应熔渗制备硅化石墨的方法,其特征在于,所述PVA溶液的质量浓度为3-5wt.%,PVA溶液添加量为复合碳源的2-10wt.%。
5.根据权利要求1所述的基于纳米炭黑消耗层和反应熔渗制备硅化石墨的方法,其特征在于,将原料进行模压获得生坯,模压压力为8-10MPa,保压时间为30-60s。
6.根据权利要求1所述的基于纳米炭黑消耗层和反应熔渗制备硅化石墨的方法,其特征在于,将生坯放在硅颗粒上,再加入一层硅颗粒使得生坯被硅颗粒完全包埋,在真空电阻炉中进行反应熔渗,烧结温度为1500-1550℃,保温时间为20-60min,硅颗粒的尺寸为0.5~4mm,硅颗粒的重量是生坯总重量的2-3倍。
7.一种如权利要求1-6任一项所述基于纳米炭黑消耗层和反应熔渗制备方法得到的硅化石墨。
CN202310466824.7A 2023-04-26 2023-04-26 一种基于纳米炭黑消耗层和反应熔渗制备硅化石墨及方法 Active CN116425549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310466824.7A CN116425549B (zh) 2023-04-26 2023-04-26 一种基于纳米炭黑消耗层和反应熔渗制备硅化石墨及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310466824.7A CN116425549B (zh) 2023-04-26 2023-04-26 一种基于纳米炭黑消耗层和反应熔渗制备硅化石墨及方法

Publications (2)

Publication Number Publication Date
CN116425549A CN116425549A (zh) 2023-07-14
CN116425549B true CN116425549B (zh) 2024-01-26

Family

ID=87087182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310466824.7A Active CN116425549B (zh) 2023-04-26 2023-04-26 一种基于纳米炭黑消耗层和反应熔渗制备硅化石墨及方法

Country Status (1)

Country Link
CN (1) CN116425549B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1394106A (en) * 1972-08-12 1975-05-14 Tarabanov A S Method of preparing an antifriction material
KR20130107892A (ko) * 2012-03-23 2013-10-02 강원대학교산학협력단 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN110394566A (zh) * 2019-08-07 2019-11-01 西安石油大学 一种双层核壳结构铸造碳化钨颗粒焊条及制备方法
CN113788703A (zh) * 2021-10-26 2021-12-14 西安交通大学 通过碳源改性和反应熔渗制备硅化石墨的方法及硅化石墨

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1394106A (en) * 1972-08-12 1975-05-14 Tarabanov A S Method of preparing an antifriction material
KR20130107892A (ko) * 2012-03-23 2013-10-02 강원대학교산학협력단 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN110394566A (zh) * 2019-08-07 2019-11-01 西安石油大学 一种双层核壳结构铸造碳化钨颗粒焊条及制备方法
CN113788703A (zh) * 2021-10-26 2021-12-14 西安交通大学 通过碳源改性和反应熔渗制备硅化石墨的方法及硅化石墨

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Potency of Different Carbon Sources in Reduction of Microsilica to Synthesize SiC from Mechanically Activated Powder Mixtures;Jamshidi, Amin;International Journal of Applied Ceramic Technology;第13卷(第5期);937-947 *
不同组成硅化石墨复合材料的摩擦磨损性能;王梓璇;《机械工程材料》;第46卷(第10期);21-26 *
纳米碳颗粒/碳化硅陶瓷基复合材料的氧化行为;陆有军;王燕民;吴澜尔;黄振坤;;硅酸盐学报(第10期);1431-1436 *

Also Published As

Publication number Publication date
CN116425549A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
CN109534834B (zh) 一种可陶瓷化酚醛树脂及其制备方法和用途
CN105130438B (zh) 一种基于反应烧结制备碳化硼陶瓷复合材料的方法
CN113788703B (zh) 通过碳源改性和反应熔渗制备硅化石墨的方法及硅化石墨
CN111675541A (zh) 一种含碳max相材料的制备方法
CN108610049B (zh) 各向同性石墨材料,其制造方法及其应用
CN112441835A (zh) 一种高强高密炭素材料及其制备方法和应用
CN114907144B (zh) 一种一步法制备SiC-C复合高温涂层的方法
CN113666748B (zh) 一种石墨材料的制备方法及石墨材料
CN107311686B (zh) 一种石墨电极的制备工艺
CN112935249B (zh) 一种金刚石/金属基复合材料的高效制备方法
CN113233899A (zh) B4C/石墨预制体渗硅反应生成B4C-SiC-Si复合材料及其制备方法
CN113582700B (zh) 一种低成本硼化钛陶瓷复合材料的制备方法
JP4484004B2 (ja) セラミックス基複合部材の製造方法
CN110256093A (zh) 一种降低熔渗工艺制备SiCf/SiC复合材料中残余硅含量的方法
CN112723891B (zh) 一种镧钙复合六硼化物多晶阴极材料及其制备方法
CN116425549B (zh) 一种基于纳米炭黑消耗层和反应熔渗制备硅化石墨及方法
CN117658641A (zh) 一种基于选区激光3D打印和两步烧结制备高致密SiC陶瓷的方法
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN104911384B (zh) 一种钨基难熔碳化物复合材料的低温制备方法
CN112194497A (zh) 一种低温热压高温无压两步法烧结制备c/c复合材料的方法
CN113213936B (zh) 一种陶瓷粉掺杂改性自烧结石墨复合材料的制备方法
CN112047737B (zh) 一种面向带有微结构特征的碳化硅基陶瓷的熔渗方法
CN113087530A (zh) 一种基于ZrB2非平衡态合金化修饰的高阻氧涂层及制备方法
CN112853144A (zh) 一种金刚石/石墨烯/金属的复合材料的制备方法
CN116715524A (zh) 一种基于纳米炭黑和树脂浸渍制备高碳硅化石墨及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant