CN116422331A - 用于低浓度瓦斯催化燃烧的整体式催化剂及其制备方法 - Google Patents

用于低浓度瓦斯催化燃烧的整体式催化剂及其制备方法 Download PDF

Info

Publication number
CN116422331A
CN116422331A CN202310427641.4A CN202310427641A CN116422331A CN 116422331 A CN116422331 A CN 116422331A CN 202310427641 A CN202310427641 A CN 202310427641A CN 116422331 A CN116422331 A CN 116422331A
Authority
CN
China
Prior art keywords
carrier
monolithic catalyst
catalytic combustion
concentration gas
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310427641.4A
Other languages
English (en)
Other versions
CN116422331B (zh
Inventor
刘方
贾志轩
翟成
杨丽
宋正昶
曹运齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202310427641.4A priority Critical patent/CN116422331B/zh
Publication of CN116422331A publication Critical patent/CN116422331A/zh
Application granted granted Critical
Publication of CN116422331B publication Critical patent/CN116422331B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于低浓度瓦斯催化燃烧的整体式催化剂及其制备方法,该方法包括步骤如下:以泡沫陶瓷为载体,将载体洗涤烘干后煅烧,得到预处理后的载体;以过渡金属氧化物为活性组分,配置活性组分对应的硝酸盐溶液,再将过渡金属氧化物粉末置于硝酸盐溶液中搅拌后静置,过滤得到预处理后的浸渍溶液;将预处理后的载体浸没在浸渍溶液中1~5min,然后取出以20~60r/min转速翻转干燥30~60min,同时吸收多余水分;重复上一步骤3~5次后,将所得载体烘干后煅烧,然后冷却得到所述整体式催化剂。本发明的活性组分负载均匀、负载量大且不易脱落,能够实现CH4浓度>4%的低浓度瓦斯的直接燃烧利用。

Description

用于低浓度瓦斯催化燃烧的整体式催化剂及其制备方法
技术领域
本发明属于催化剂制备技术领域,具体涉及一种用于低浓度瓦斯催化燃烧的整体式催化剂及其制备方法。
背景技术
煤矿开采过程中伴随有大量的煤层气资源,其中CH4浓度低于30%的瓦斯通常被稀释排放,不仅浪费资源还加重了温室效应,其中对CH4浓度在3~9%的低浓度瓦斯直接利用技术尚不成熟。而催化燃烧技术能有效降低CH4贫燃极限,实现低浓度瓦斯直接燃烧利用,其原理是在催化剂的作用下,降低甲烷起燃温度,降低燃烧活化能,拓宽CH4燃烧的浓度区间,其优势在于较高的反应活性和较低的反应温度,避免了热力型NOx的生成,产物为仅CO2和H2O,避免了二次污染。
催化燃烧技术的核心在于制备高效、廉价、无污染的催化剂。对于低浓度瓦斯的催化燃烧,主流的催化剂以Pt、Pd等贵金属为活性组分,高效但价格昂贵,无法推广。为有效降低成本,开发了复合型过渡金属氧化物、六角铝酸盐、钙钛矿等多元粉体式催化剂或者涂覆式催化剂,而在实际工程应用中,粉体式催化剂存在床层压降较大、催化剂用量大,易发生堵塞等问题;涂覆式催化剂存在涂层易脱落、均匀性难以保证,不耐高温等问题。而开发整体式直接负载催化剂在实际应用中可有效解决上述问题,具有良好的经济、环境、社会效益。
在整体式催化剂制备过程中,常用的是涂覆法和直接浸渍法,直接浸渍法是将活性组分制备成溶液,将载体浸渍在溶液中,通过毛细血管作用将所需活性组分直接负载到载体表面。该技术工艺简单、操作方便。该技术的一般步骤包括:浸渍溶液的配置;将载体浸渍在溶液中进行负载;对负载后的整体式催化剂进行干燥、煅烧。通过一般的浸渍方法获得的整体式催化剂上载率低、均匀性差,导致催化活性差。而且多数过渡金属的盐溶液因金属离子水解而显酸性,导致氧化铝等常用的两性氧化物载体与溶液长时间接触而发生反应,得到的整体式催化剂结构疏松,强度变差,且活性组分负载极易脱落,无法计算负载量。
发明内容
解决的技术问题:针对上述技术问题,本发明提供了一种用于低浓度瓦斯催化燃烧的整体式催化剂及其制备方法,其活性组分负载均匀、负载量大且不易脱落,能够实现CH4浓度>4%的低浓度瓦斯的直接燃烧利用。
技术方案:一种用于低浓度瓦斯催化燃烧的整体式催化剂的制备方法,包括步骤如下:
步骤一、以泡沫陶瓷为载体,将载体洗涤烘干后煅烧,得到预处理后的载体;
步骤二、以过渡金属氧化物为活性组分,配置活性组分对应的硝酸盐溶液,再将过渡金属氧化物粉末置于硝酸盐溶液中搅拌后静置,过滤得到预处理后的浸渍溶液;
步骤三、将预处理后的载体浸没在浸渍溶液中1~5min,然后取出以20~60r/min速翻转干燥30~60min,同时吸收多余水分;
步骤四、重复步骤三3~5次后,将所得载体烘干后煅烧,然后冷却得到所述整体式催化剂。
优选的,所述泡沫陶瓷的材料为氧化铝、碳化硅、氧化锆或堇青石。
优选的,所述过渡金属氧化物为Fe2O3、CuO、MnO2或Co3O4
优选的,所述泡沫陶瓷的孔隙率为80%~85%,孔径为0.5~1.5mm,比表面积80~150m2/g,抗压强度0.8~3Mpa。
优选的,所述载体与活性组分的质量比为(97~99):(1~3)。
优选的,所述步骤二中硝酸盐溶液的浓度为0.2~1.5mol/L。
优选的,所述步骤四中煅烧条件为:以3℃/min升温速率升温至600℃后保持2h。
由上述方法制备得到的用于低浓度瓦斯催化燃烧的整体式催化剂。
有益效果:本方法实现了催化剂活性组分负载的均匀稳定,保证了催化剂的催化活性,使用此负载1%Fe2O3的催化剂能够实现CH4浓度在4%~9%的低浓度瓦斯直接燃烧,且CH4转化率在99%以上,尾气中CO低于800ppm,无NOx排放。
本发明催化剂以泡沫陶瓷为载体,以过渡金属氧化物作为活性成分,采用直接浸渍法,制备的整体式催化剂,避免了粉体式催化剂用量大,易发生堵塞等问题;涂覆式催化剂涂层易脱落、均匀性难以保证,不耐高温等问题。具有成本低、无污染、中温催化性能稳定、分散好、机械强度高、不易脱落等特点,适合煤矿排放的甲烷浓度在4%~9%的瓦斯直接燃烧利用,既有效利用了资源,又缓解了瓦斯大量排放带来的温室效应。
附图说明
图1为氧化铝泡沫陶瓷;
图2为采用直接浸渍+翻转干燥法制备的氧化铁负载量为1%的整体式催化剂;
图3为采用直接浸渍+翻转干燥法制备的氧化铁负载量为1%的整体式催化剂在燃烧反应前后的SEM-EDS图;
图4为采用常规过量浸渍法制备的氧化铁负载量为1%的整体式催化剂;
图5为当量比0.46,负载不同活性组分的催化剂燃烧实验中,甲烷转换率随气体流速变化情况图;
图6为流速0.126m/s,不同负载量的Fe2O3催化剂燃烧实验中,甲烷转换率(实线)和CO排放量(虚线)随当量比变化情况;
实施方式
下面结合附图和具体实施例对本发明作进一步描述。
实施例1
一种用于低浓度瓦斯催化燃烧的整体式催化剂的制备方法,包括步骤如下:
步骤一、以泡沫陶瓷为载体,将载体用去离子水洗涤3次,用烘干箱在105℃下干燥3h,并在600℃下于马弗炉中煅烧2h,去除载体的自由水和结合水,得到预处理后的载体;
步骤二、以过渡金属氧化物为活性组分,根据载体的吸水量和浸渍次数,配置活性组分对应的硝酸盐溶液200mL,浓度为0.2~1.5mol/L,再将10g过渡金属氧化物粉末置于硝酸盐溶液中搅拌均匀后静置30min,过滤得到预处理后的浸渍溶液;
步骤三、将预处理后的载体浸没在浸渍溶液中1min,然后取出置于自动翻面装置中,以20r/min转速上下匀速翻转干燥30min,同时用吸水纸在载体上下两侧吸收多余水分;
步骤四、重复步骤三3~5次后,将所得载体在常温下自然风干3h,然后在烘干箱内105℃烘干3h,置于马弗炉中煅烧,煅烧条件为:以3℃/min升温速率升温至600℃后保持2h,最后冷却至70℃取出,得到所述整体式催化剂。
本发明所述泡沫陶瓷的材料可以为氧化铝、碳化硅、氧化锆或堇青石,所述过渡金属氧化物为Fe2O3、CuO、MnO2或Co3O4,所述载体与活性组分的质量比为(97~99):(1~3)。
如图1所示,本实施例中采用孔隙率为80%~85%,孔径为0.5~1.5mm,比表面积80~150m2/g,抗压强度0.8~3Mpa的氧化铝泡沫陶瓷作为载体。
在本实施例中硝酸盐溶液为0.75mol/L的硝酸铁,制得的整体式催化剂如图2所示,其Fe2O3负载量为1%。燃烧反应前后的SEM-EDS图如图3所示,泡沫陶瓷表面活性组分负载均匀,且经过10小时以上的燃烧实验,催化剂活性组分未脱落且依旧分布均匀。
利用该整体式催化剂在低浓度瓦斯中催化燃烧,其结果如图5~6所示,可见本发明制备的整体式催化剂在流速0.126~0.202m/s,实现了4.5%~4.9%浓度甲烷的稳定燃烧,甲烷转换率在96%以上,CO排放量小于800ppm,无NOx排放。
对比例1
本对比例采用常规的过量浸渍法制备整体式催化剂,制备方法如下:
步骤一、以泡沫陶瓷为载体,将载体用去离子水洗涤3次,用烘干箱在105℃下干燥3h,并在600℃下于马弗炉中煅烧2h,去除载体的自由水和结合水,得到预处理后的载体;
步骤二、以过渡金属氧化物为活性组分,根据载体的吸水量和浸渍次数,配置活性组分对应的硝酸盐溶液200mL,浓度为0.2~1.5mol/L,再将10g过渡金属氧化物粉末置于硝酸盐溶液中搅拌均匀后静置30min,过滤得到预处理后的浸渍溶液;
步骤三、将预处理后的载体浸没在浸渍溶液中6h,然后取出自然风干30min,同时用吸水纸在载体上下两侧吸收多余水分;
步骤四、重复步骤三3~5次后,将所得载体在常温下自然风干3h,然后在烘干箱内105℃烘干3h,置于马弗炉中煅烧,煅烧条件为:以3℃/min升温速率升温至600℃后保持2h,最后冷却至70℃取出,得到所述整体式催化剂如图4所示。
对比例1与实施例1相比,发现常规的过量浸渍法会使Al2O3载体与浸渍溶液反应,制得催化剂颜色较浅,载体质量减少,且表面存在活性组分颗粒,负载不均匀,效果较差。
实施例2
在本实施例中硝酸盐溶液为0.75mol/L的硝酸铜,制得整体式催化剂的CuO负载量为1%,泡沫陶瓷表面活性组分负载均匀。
实施例3
在本实施例中硝酸盐溶液为0.75mol/L的硝酸钴,制得整体式催化剂的Co3O4负载量为1%,泡沫陶瓷表面活性组分负载均匀。
实施例4
在本实施例中硝酸盐溶液为0.5mol/L的硝酸铁,制得整体式催化剂的Fe2O3负载量为0.5%,泡沫陶瓷表面活性组分负载均匀。
实施例5
在本实施例中硝酸盐溶液为1mol/L的硝酸铁,制得整体式催化剂的Fe2O3负载量为1.5%,泡沫陶瓷表面活性组分负载均匀。
如图5所示,实施例1、2、3与空白组的燃烧实验中发现,当量比0.46条件下,过渡金属氧化物Fe2O3、CuO、Co3O4均提高了低流速下的甲烷转换率,其中Fe2O3的效果最好,流速0.126m/s~0.139m/s时,甲烷转换率为99%。
如图6所示,实施例1、4、5中采用不同负载量的Fe2O3催化剂的燃烧实验中发现,负载量过高都会引起甲烷转换率降低和CO排放量升高,负载0.5%和1%Fe2O3的催化剂相差不大,流速0.126m/s,当量比0.45~0.49范围内甲烷转换率均在96%以上,CO低于1000ppm。

Claims (8)

1.一种用于低浓度瓦斯催化燃烧的整体式催化剂的制备方法,其特征在于,包括步骤如下:
步骤一、以泡沫陶瓷为载体,将载体洗涤烘干后煅烧,得到预处理后的载体;
步骤二、以过渡金属氧化物为活性组分,配置活性组分对应的硝酸盐溶液,再将过渡金属氧化物粉末置于硝酸盐溶液中搅拌后静置,过滤得到预处理后的浸渍溶液;
步骤三、将预处理后的载体浸没在浸渍溶液中1~5min,然后取出以20~60r/min转速翻转干燥30~60min,同时吸收多余水分;
步骤四、重复步骤三3~5次后,将所得载体烘干后煅烧,然后冷却得到所述整体式催化剂。
2.根据权利要求1所述的用于低浓度瓦斯催化燃烧的整体式催化剂的制备方法,其特征在于,所述泡沫陶瓷的材料为氧化铝、碳化硅、氧化锆或堇青石。
3.根据权利要求1所述的用于低浓度瓦斯催化燃烧的整体式催化剂的制备方法,其特征在于,所述过渡金属氧化物为Fe2O3、CuO、MnO2或Co3O4
4.根据权利要求1所述的用于低浓度瓦斯催化燃烧的整体式催化剂的制备方法,其特征在于,所述泡沫陶瓷的孔隙率为80%~85%,孔径为0.5~1.5mm,比表面积80~150m2/g,抗压强度0.8~3Mpa。
5.根据权利要求1所述的用于低浓度瓦斯催化燃烧的整体式催化剂的制备方法,其特征在于,所述载体与活性组分的质量比为(97~99):(1~3)。
6.根据权利要求1所述的用于低浓度瓦斯催化燃烧的整体式催化剂的制备方法,其特征在于,所述步骤二中硝酸盐溶液的浓度为0.2~1.5mol/L。
7.根据权利要求1所述的用于低浓度瓦斯催化燃烧的整体式催化剂的制备方法,其特征在于,所述步骤四中煅烧条件为:以3℃/min升温速率升温至600℃后保持2h。
8.由权利要求1~7任一项所述制备方法制得的用于低浓度瓦斯催化燃烧的整体式催化剂。
CN202310427641.4A 2023-04-20 2023-04-20 用于低浓度瓦斯催化燃烧的整体式催化剂及其制备方法 Active CN116422331B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310427641.4A CN116422331B (zh) 2023-04-20 2023-04-20 用于低浓度瓦斯催化燃烧的整体式催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310427641.4A CN116422331B (zh) 2023-04-20 2023-04-20 用于低浓度瓦斯催化燃烧的整体式催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN116422331A true CN116422331A (zh) 2023-07-14
CN116422331B CN116422331B (zh) 2024-04-16

Family

ID=87085190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310427641.4A Active CN116422331B (zh) 2023-04-20 2023-04-20 用于低浓度瓦斯催化燃烧的整体式催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN116422331B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101116815A (zh) * 2007-08-15 2008-02-06 汉能科技有限公司 一种非均布燃烧催化剂及其制备方法
CN101947457A (zh) * 2010-08-31 2011-01-19 西南化工研究设计院 一种乏风瓦斯甲烷燃烧催化剂及其制备方法
WO2012122735A1 (zh) * 2011-03-17 2012-09-20 大连理工大学 一种含铬轻烃燃烧催化剂及制备方法
CN103706374A (zh) * 2013-12-30 2014-04-09 国家安全生产监督管理总局信息研究院 一种通风瓦斯甲烷氧化整体式催化剂及其制备方法
CN104971729A (zh) * 2015-07-10 2015-10-14 上海纳米技术及应用国家工程研究中心有限公司 一种丙烷催化燃烧整体式催化剂及其制备方法
CN109603872A (zh) * 2018-12-13 2019-04-12 西安建筑科技大学 一种整体式蜂窝状催化剂及其制备和应用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101116815A (zh) * 2007-08-15 2008-02-06 汉能科技有限公司 一种非均布燃烧催化剂及其制备方法
CN101947457A (zh) * 2010-08-31 2011-01-19 西南化工研究设计院 一种乏风瓦斯甲烷燃烧催化剂及其制备方法
WO2012122735A1 (zh) * 2011-03-17 2012-09-20 大连理工大学 一种含铬轻烃燃烧催化剂及制备方法
CN103706374A (zh) * 2013-12-30 2014-04-09 国家安全生产监督管理总局信息研究院 一种通风瓦斯甲烷氧化整体式催化剂及其制备方法
CN104971729A (zh) * 2015-07-10 2015-10-14 上海纳米技术及应用国家工程研究中心有限公司 一种丙烷催化燃烧整体式催化剂及其制备方法
CN109603872A (zh) * 2018-12-13 2019-04-12 西安建筑科技大学 一种整体式蜂窝状催化剂及其制备和应用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵然等: ""稀土尾矿基整体催化剂的制备及其低浓度甲烷催化燃烧性能"", 《中国稀土学报》, vol. 40, no. 3, pages 406 - 415 *

Also Published As

Publication number Publication date
CN116422331B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
CN108355668B (zh) 一种甲烷化催化剂及其制备方法和应用
CN110560056B (zh) 通用小型汽油机尾气催化剂及其制备方法
CN106268740B (zh) 一种用于液氮洗尾气中低浓度可燃组分缺氧燃烧的负载型催化剂及其制备方法和应用
CN106732647A (zh) 一种钙钛矿型甲烷燃烧催化剂及其制备方法与应用
CN107519911B (zh) 一种利用有机小分子添加剂制备镍基催化剂及其在甲烷化反应中的应用
CN106944093B (zh) 一种钙钛矿型蜂窝整体式甲烷催化燃烧催化剂及其制备方法
CN105618061A (zh) 一种浆态床二氧化碳甲烷化双金属催化剂及其制法和应用
CN111644175A (zh) 一种Ni-煤矸石灰催化剂及其制备方法和在焦油蒸汽重整反应中的应用
CN110787789A (zh) 一种用于二氧化碳加氢制甲醇的催化剂的制备及其应用
CN110743561A (zh) 低温脱硝催化剂及其制备方法
CN111151245B (zh) 一种以生物质活性炭为载体的金纳米花的催化剂及其制备方法和应用
CN114939420A (zh) 一种含氧化钴载体的钯基催化剂及其制备方法与应用
CN102728377B (zh) 一种稀土钙钛矿型催化剂及其制备方法
CN116422331B (zh) 用于低浓度瓦斯催化燃烧的整体式催化剂及其制备方法
CN110721683B (zh) 用于液氮洗尾气临氧条件氧化的催化剂及制备方法和用途
CN110548521A (zh) 一种高性能的低温nh3-scr催化剂及其制法和用途
JP5897722B2 (ja) 二酸化炭素メタン化触媒の調製方法
CN101767041A (zh) 一种烟气除硝催化剂的制备方法
CN112473683B (zh) 一种基于梯度孔结构的粉末烧结过滤催化材料及其制备方法
CN113694920A (zh) 一种堇青石基scr催化剂及制备方法和应用
CN113042038A (zh) 一种钯铂催化剂、其制备方法及应用
CN1247447C (zh) 一种天然气部分氧化制备合成气的催化剂及其制备方法
CN116393137B (zh) 一种高湿烧结烟气用催化剂及其制备方法和应用
CN111185189A (zh) 一种制备蛋黄-蛋清型scr脱硝催化剂的方法与应用
CN114939419B (zh) 一种含硅掺杂氧化镍载体的钯基催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant