CN116396074A - 一种低损耗介电材料及其制备方法和应用 - Google Patents

一种低损耗介电材料及其制备方法和应用 Download PDF

Info

Publication number
CN116396074A
CN116396074A CN202310372802.4A CN202310372802A CN116396074A CN 116396074 A CN116396074 A CN 116396074A CN 202310372802 A CN202310372802 A CN 202310372802A CN 116396074 A CN116396074 A CN 116396074A
Authority
CN
China
Prior art keywords
low
dielectric material
powder
loss dielectric
bazr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310372802.4A
Other languages
English (en)
Inventor
邵辉
崔德威
吴敏
苗健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202310372802.4A priority Critical patent/CN116396074A/zh
Publication of CN116396074A publication Critical patent/CN116396074A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

本发明公开了一种低损耗介电材料及其制备方法和应用。该低损耗介电材料按重量百分比包括BaZr(BO3)2陶瓷60~80%、BaB2O4 15w~35%,H‑LaF2S玻璃助烧剂0~5%。本发明以BaZr(BO3)2为主晶相,引入低烧结温度的BaB2O4可以降低材料烧结温度同时也补充烧结过程中挥发的硼源,最终在添加一定量的玻璃助烧剂后可以将烧结温度降低至850℃,符合LTCC陶瓷材料的要求。

Description

一种低损耗介电材料及其制备方法和应用
技术领域
本发明涉及一种低损耗介电材料及其制备方法,属于微波介质陶瓷领技术领域。
背景技术
随着通信技术的不断发展,特别是5G技术的商业化使用以来,使无线通信深入到人们生活的各个领域,给人们生活带来便利的同时也对通信器件的性能提出了更高的要求。低温共烧陶瓷(Low Temperature Co-fired Ceramic,简称LTCC)使用多层共烧的工艺可以将无源器件集成到介质基板中并在较低的烧结温度(950℃)下与金银等导体共烧,在简化制备工艺的同时提高了器件的可靠性。
钡基陶瓷具有较高的结构稳定性和较低的介电损耗在微波介质陶瓷材料领域受到了广泛的关注。在二元体系钡基微波介质陶瓷中,低介电常数的Ba3(VO4)2具有较高的品质因数(Q×f=40000GHz)被在LTCC领域有一定应用,但制备过程中的原料V2O5具有较大的毒性会对人体造成危害。中介电常数的BaZrO3陶瓷和高介电常数的BaTiO3陶瓷的烧结温度较高(分别为1600℃和1400℃)为满足LTCC工艺的要求需要添加较多的玻璃相(约30wt%)来降低其烧结温度,这也会导致介电性能的下降。三元体系的Ba[(Mg1/3Ta2/3)]O3,和BaO-Ln2O3-TiO2同样面临烧结温度较高难以在LTCC领域应用的问题。因此急需寻找一种新的钡基材料,在保证较高品质因数的前提下,尽可能降低烧结温度以却保其能够在LTCC领域得以应用。
发明内容
发明目的:本发明的第一目的是提供一种低损耗介电材料;本发明的第二目的是提供一种该低损耗介电材料的制备方法;本发明的第三目的是提供该低损耗介电材料在制备低温共烧陶瓷中的应用。
技术方案:本发明的一种低损耗介电材料,所述低损耗介电材料按重量百分比包括BaZr(BO3)2 60~80%、BaB2O4 15w~35%,H-LaF2S玻璃助烧剂0~5%。
进一步地,所述低损耗介电材料按重量百分比计包括BaZr(BO3)2 65~72%、BaB2O4 23~30%、H-LaF2S 1-5%。
本发明所述低损耗介电材料的其制备方法,包含如下步骤:
(1)将原料BaCO3、H3BO3、ZrO2按照化学式BaZr(BO3)2的化学计量比称重混合,得到粉料一;
(2)将粉料一球磨,烘干,预烧,得到BaZr(BO3)2粉料;
(3)将BaZr(BO3)2粉料、BaB2O4、H-LaF2S玻璃助烧剂混合球磨,烘干,造粒,压片,排胶,烧结,得到低损耗介电材料。
进一步地,步骤(2)中,所述球磨时转速为100-130转/min,所述球磨的时间为2-4h。
进一步地,步骤(2)中,所述烘干在温度为110-150℃下烘干至恒重。
进一步地,步骤(2)中,所述预烧的温度为900-1050℃,预烧的时间为1.5-3.5h。
进一步地,步骤(3)中,所述球磨时转速为100-130转/min,所述球磨的时间为4-7h。
进一步地,步骤(3)中,所述排胶的温度为420-460℃排胶的时间为120-180min。
进一步地,步骤(3)中,所述烧结的温度为850℃-950℃,烧结的时间为2-3.5h。
本发明还包括所述低损耗介电材料在LTCC中的应用。
机理:低烧结温度的BaB2O4加入后可以降低BaZr(BO3)2的烧结温度并提升品质因数,在加入H-LaF2S玻璃助烧剂后由于液相烧结机制可以在低温烧结时促进陶瓷晶粒的生长进一步降低了烧结温度使其符合LTCC领域的要求。
有益效果:与现有技术相比,本发明具有如下显著优点:
(1)本发明将BaZr(BO3)2材料用于微波介质陶瓷领域在加入低烧结温度的BaB2O4后可以抑制烧结过程中的硼元素挥发,同时将材料烧结温度降低至900℃,在加入一定量的玻璃助烧剂后可以使烧结温度降低至850℃符合LTCC工艺要求。
(2)本发明的BaZr(BO3)2陶瓷具有较低的介电常数9-13,品质因数高于20000GHz,可以用于介质基板,天线,滤波器等微波器件的制造。
附图说明
图1为实施例2制备的BaZr(BO3)2的XRD图谱。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1
(1)按照化学式BaZr(BO3)2来称量11.105g BaCO3、6.934g ZrO2、8.085gH3BO3进行配料混合,共得到25g粉料一;
(2)将粉料一与去离子水、氧化锆球按照1:3:3的质量比放入尼龙球磨罐中,以120转/min中的转速在行星式球磨机上球磨3h。将球磨后的粉料放入120℃的烘箱中进行烘干至恒重,并将烘干恒重的粉料研磨至完全过60目筛,将过筛后的粉料放入马弗炉中以5℃/min的升温速率升至900℃,并保温3h,得到BaZr(BO3)2粉料。
(3)将预烧好的BaZr(BO3)2粉料与BaB2O4和H-LaF2S玻璃助烧剂(购于成都晶华光电科技股份有限公司)按照质量比6.5:3.5:0的比例分别称取13gBaZr(BO3)2粉料和7gBaB2O4进行配料混合,将配好的粉料与去离子水和锆球按照1:3:3的质量比配料并将粉料放入尼龙罐中,以120转/min的转速在行星式球磨机上球磨6h。将球磨好的粉料放入120℃的烘箱中进行烘干至恒重。将烘干后的粉料加入10%质量分数的PVA溶液进行造粒。将造粒后的粉料在压片机上压制成直径为13mm的生坯。将压制好的生坯放入马弗炉中进行排胶和烧结,其中烧结温度为900℃,保温时间为3h,得到低损耗介电材料。
对本实施例制备得到的得到低损耗介电材料使用谐振腔法测得样品的微波特性,结果见表3。
实施例2-5
实施例2-5制备过程同实施例1,具体差别为步骤(2)中预烧温度,步骤(3)中烧结温度,保温时间和BaZr(BO3)2粉料、BaB2O4和H-LaF2S玻璃助烧剂的质量比例不同,具体参数见表1。
表1实施例1-5关键参数
Figure BDA0004169194650000031
实施例1-5主要目的是展现BaB2O4对BaZr(BO3)2烧结的影响,由表1可以看出,当BaZr(BO3)2预烧粉料:BaB2O4:H-LaF2S玻璃助烧剂为8.5:1.5:0时,烧结温度已经到达1000℃,由于1000℃的烧结温度对于LTCC工艺仍相对较高,故接下来实施例选择玻璃助烧剂来继续降低烧结温度。
对实施例2预烧后的BaZr(BO3)2粉料材料进行XRD分析,结果如图1所示,由图1可以看出,在900℃预烧,仅有BaZr(BO3)2相存在,无其他杂相存在,说明在该温度下原料已经完全反应生产BaZr(BO3)2。实施例6
(1)按照化学式BaZr(BO3)2来称量11.105g BaCO3,6.934g ZrO2-、8.085gH3BO3进行配料混合,共得到25g粉料一;
(2)将称好的粉料一与去离子水、锆球按照1:3:3的质量比放入尼龙球磨罐中,以120转/min中的转速在行星式球磨机上球磨3h。将球磨后的粉料放入120℃的烘箱中进行烘干至恒重,并将烘干恒重的粉料过60目筛,将过筛后的粉料放入马弗炉中以5℃/min的升温速率升至900℃,并保温3h,得到BaZr(BO3)2粉料。
(3)将预烧好的BaZr(BO3)2粉料与BaB2O4和H-LaF2S玻璃助烧剂按照质量比6.0:3.5:0.5的比例分别称取13gBaZr(BO3)2粉料和6g BaB2O4,1g玻璃助烧剂(H-LaF2S)进行配料混合,将配好的粉料与去离子水和锆球按照1:3:3的质量比配料并将粉料放入尼龙罐中,以120转/min的转速在行星式球磨机上球磨6h。将球磨好的粉料放入120℃的烘箱中进行烘干至恒重。将烘干后的粉料加入10%质量分数的PVA溶液进行造粒。将造粒后的粉料在压片机上压制成直径为13mm的生坯。将压制好的生坯放入马弗炉中进行排胶和烧结,其中烧结温度为890℃,保温时间为3h,得到低损耗介电材料。
对本实施例制备得到的得到低损耗介电材料使用谐振腔法测得样品的微波特性,结果见表3。
实施例7-10
实施例7-10制备过程同实施例1,具体差别为预烧温度,烧结温度,保温时间和BaZr(BO3)2预烧粉料BaB2O4和H-LaF2S玻璃助烧剂的质量比例不同,故实施例以表格的方式呈现。
表2实施例6-10关键参数
Figure BDA0004169194650000041
由表2分析可知,H-LaF2S玻璃助烧剂的引入降低了整体烧结温度,对比实施例6与表1中的实施例1可知烧结温度从910℃降低至850℃说明H-LaF2S玻璃助烧剂在烧结过程中的液相烧结作用促进了陶瓷晶粒的生长有助于整体组分的致密烧结。
为更好说明本发明的有益效果设以下对比例:
对比例1
(1)按照化学式BaZr(BO3)2来称量11.105g BaCO3、6.934g ZrO2、8.1H3BO3进行配料混合,共得到25g粉料一;
(2)将称好的粉料一与去离子水、锆球按照1:3:3的质量比放入尼龙球磨罐中,以120转/min中的转速在行星式球磨机上球磨3h。将球磨后的粉料放入120℃的烘箱中进行烘干至恒重,并将烘干恒重的粉料过60目筛,将过筛后的粉料放入马弗炉中以5℃/min的升温速率升至900℃,并保温3h,得到BaZr(BO3)2预烧粉料。
(3)将预烧好的BaZr(BO3)2粉料与BaB2O4和H-LaF2S玻璃助烧剂按照质量比1:0:0的比例分别称取20gBaZr(BO3)2粉料和0g BaB2O4进行配料,将配好的粉料与去离子水和锆球按照1:3:3的质量比配料并将粉料放入尼龙罐中,以120转/min的转速在行星式球磨机上球磨6h。将球磨好的粉料放入120℃的烘箱中进行烘干至恒重。将烘干恒重后的粉料加入10%质量分数的PVA溶液进行造粒。将造粒后的粉料在压片机上压制成直径为13mm的生坯。将压制好的生坯放入马弗炉中进行排胶和烧结,其中烧结温度为1200℃,保温时间为3h,得到低损耗介电材料。
对本对比例制备得到的得到低损耗介电材料使用谐振腔法测得样品的微波特性,结果见表3。
对比例2
(1)按照化学式BaZr(BO3)2来称量11.105g BaCO3、6.934g ZrO2、8.085gH3BO3进行配料混合,共得到25g粉料一;
(2)将称好的粉料一与去离子水、锆球按照1:3:3的质量比放入尼龙球磨罐中,以120转/min中的转速在行星式球磨机上球磨3h。将球磨后的粉料放入120℃的烘箱中进行烘干至恒重,并将烘干恒重的粉料过60目筛,将过筛后的粉料放入马弗炉中以5℃/min的升温速率升至900℃,并保温3h,得到BaZr(BO3)2粉料。
(3)将预烧好的BaZr(BO3)2粉料与BaB2O4和H-LaF2S玻璃助烧剂按照质量比8:0:2的比例分别称取16gBaZr(BO3)2粉料和0g BaB2O4和4gH-LaF2S玻璃助烧剂进行配料混合,将配好的粉料与去离子水和锆球按照1:3:3的质量比配料并将粉料放入尼龙罐中,以120转/min的转速在行星式球磨机上球磨6h。将球磨好的粉料放入120℃的烘箱中进行烘干至恒重。将烘干恒重后的粉料加入10%质量分数的PVA溶液进行造粒。将造粒后的粉料在压片机上压制成直径为13mm的生坯。将压制好的生坯放入马弗炉中进行排胶和烧结,其中烧结温度为960℃,保温时间为3h,得到低损耗介电材料。
对本对比例制备得到的得到低损耗介电材料使用谐振腔法测得样品的微波特性,结果见表3。
表3实施例与对比例介电性能
Figure BDA0004169194650000061
由表3中对比例1和实施例5可以看出,单纯的BaZr(BO3)2陶瓷品质因数(Q×f)相对较低,且谐振频率温度系数也较高,在BaB2O4引入后陶瓷品质因数有一定的提升,在对比例1到实施例实施例5中BaB2O4的添加使Q×f从25420GHz增加到42120GHz。从对比例2可以看到当添加较多H-LaF2S玻璃助烧剂时烧结温度虽然能降到960℃但是会恶化介电性能。因此需要BaB2O4和H-LaF2S玻璃共同添加以降低烧结温度和调整介电性能。

Claims (10)

1.一种低损耗介电材料,其特征在于,所述低损耗介电材料按重量百分比包括BaZr(BO3)2 60~80%、BaB2O4 15w~35%,H-LaF2S玻璃助烧剂0~5%。
2.根据权利要求1所述低损耗介电材料,其特征在于,所述低损耗介电材料按重量百分比计包括BaZr(BO3)2 65~72%、BaB2O4 23~30%,H-LaF2S玻璃助烧剂1~5%。
3.权利要求1或2所述低损耗介电材料的其制备方法,其特征在于,包含如下步骤:
(1)将原料BaCO3、H3BO3、ZrO2按照化学式BaZr(BO3)2的化学计量比称重混合,得到粉料一;
(2)将粉料一球磨,烘干,预烧,得到BaZr(BO3)2粉料;
(3)将BaZr(BO3)2粉料、BaB2O4、H-LaF2S玻璃助烧剂混合球磨,烘干,造粒,压片,排胶、烧结,得到低损耗介电材料。
4.根据权利要求3所述的低损耗介电材料的其制备方法,其特征在于,步骤(2)中,所述球磨时转速为100-130转/min,所述球磨的时间为2-4h。
5.根据权利要求3所述的低损耗介电材料的其制备方法,其特征在于,步骤(2)中,所述烘干在温度为110-150℃下烘干至恒重。
6.根据权利要求3所述的低损耗介电材料的其制备方法,其特征在于,步骤(2)中,所述预烧的温度为900-1050℃,预烧的时间为1.5-3.5h。
7.根据权利要求3所述的低损耗介电材料的其制备方法,其特征在于,步骤(3)中,所述球磨时转速为100-130转/min,所述球磨的时间为4-7h。
8.根据权利要求3所述的低损耗介电材料的其制备方法,其特征在于,步骤(3)中,所述烘干在温度为110-150℃下烘干至恒重,所述排胶的温度为420-460℃,排胶的时间为120-180min。
9.根据权利要求3所述的低损耗介电材料的其制备方法,其特征在于,步骤(3)中,所述烧结的温度为850℃-950℃,烧结的时间为2-3.5h。
10.权利要求1或2所述低损耗介电材料在LTCC中的应用。
CN202310372802.4A 2023-04-10 2023-04-10 一种低损耗介电材料及其制备方法和应用 Pending CN116396074A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310372802.4A CN116396074A (zh) 2023-04-10 2023-04-10 一种低损耗介电材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310372802.4A CN116396074A (zh) 2023-04-10 2023-04-10 一种低损耗介电材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116396074A true CN116396074A (zh) 2023-07-07

Family

ID=87015603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310372802.4A Pending CN116396074A (zh) 2023-04-10 2023-04-10 一种低损耗介电材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116396074A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141837A (ja) * 1987-11-27 1989-06-02 Shoei Kagaku Kogyo Kk 回路基板用誘電体材料
CN101583579A (zh) * 2006-11-30 2009-11-18 韩国窑业技术院 无玻璃微波介电陶瓷及其制法
CN104987071A (zh) * 2015-07-24 2015-10-21 天津大学 一种低温烧结中介电常数微波介质陶瓷材料
CN113292995A (zh) * 2021-05-19 2021-08-24 中山大学 一种Sm3+离子激活硼酸镥钡橙红色荧光粉及其制备方法和应用
CN115124340A (zh) * 2022-06-29 2022-09-30 安徽大学 一种中介低损耗低温共烧陶瓷材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141837A (ja) * 1987-11-27 1989-06-02 Shoei Kagaku Kogyo Kk 回路基板用誘電体材料
CN101583579A (zh) * 2006-11-30 2009-11-18 韩国窑业技术院 无玻璃微波介电陶瓷及其制法
CN104987071A (zh) * 2015-07-24 2015-10-21 天津大学 一种低温烧结中介电常数微波介质陶瓷材料
CN113292995A (zh) * 2021-05-19 2021-08-24 中山大学 一种Sm3+离子激活硼酸镥钡橙红色荧光粉及其制备方法和应用
CN115124340A (zh) * 2022-06-29 2022-09-30 安徽大学 一种中介低损耗低温共烧陶瓷材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JI-MI YOON ET AL.: "《Sintering behavior and microwave dielectric characteristics of BaO–Sm2O3–4TiO2 ceramics with B2O3 and BaB2O4 addition》", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》, no. 26, pages 2129 - 2133 *

Similar Documents

Publication Publication Date Title
EP1153896A1 (en) Dielectric ceramic composition, method for producing the same and device for communication apparatus using the same
WO2001083395A1 (en) Low temperature sinterable and low loss dielectric ceramic compositions and method thereof
CN106007703B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN107986774B (zh) 低温烧结高介电常数微波介质陶瓷材料及其制备方法
JPH0640767A (ja) 低温焼成用誘電体磁器組成物の製造法
CN104108929B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
JP2003531097A (ja) 低温焼結低損失高周波用誘電体セラミックス組成物およびその製造方法
CN100457678C (zh) 一种介电可调的陶瓷材料及其制备方法
CN112851346B (zh) 超低损耗铌酸锆镁体系微波介质陶瓷材料及制备方法
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN108147809B (zh) 中低温烧结钡-钛系微波介质材料及制备方法
CN111943671A (zh) 一种宽烧结温区低损耗微波介质陶瓷及其制备方法
CN102584208A (zh) 可低温烧结微波介电陶瓷BiZn2VO4及其制备方法
CN108218406A (zh) 低介电常数低损耗的低温共烧陶瓷材料及其制备方法
CN114804897A (zh) 一种陶瓷用烧结助剂及制法、锆酸锌微波介质陶瓷及制法
JP2014141366A (ja) BaO−MgO−Ta2O5系酸化物を基盤とする誘電性磁器組成物、および、当該組成物から製造された高いQ値を有するマイクロ波誘電共振器
CN107382314A (zh) 一种钡基复合钙钛矿结构的微波介质陶瓷
CN116396074A (zh) 一种低损耗介电材料及其制备方法和应用
CN106587991B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
JP3216967B2 (ja) 低温焼成誘電体磁器及びその製造方法
CN104944937A (zh) 一种ZnAl2O4/Li4Ti5O12微波介质陶瓷材料及其制备方法
JPH1072258A (ja) 誘電体セラミック組成物
CN111825445B (zh) 一种高介电常数微波介质陶瓷材料、制备及其应用
CN102531568A (zh) 可低温烧结微波介电陶瓷LiBa4Bi3O11及其制备方法
CN106966722A (zh) 一种低温烧结高品质因数铌酸镧系微波介质陶瓷

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination