CN116364756A - 一种具有垂直浮空金属环的高压GaN基二极管及其制作方法 - Google Patents

一种具有垂直浮空金属环的高压GaN基二极管及其制作方法 Download PDF

Info

Publication number
CN116364756A
CN116364756A CN202310268407.1A CN202310268407A CN116364756A CN 116364756 A CN116364756 A CN 116364756A CN 202310268407 A CN202310268407 A CN 202310268407A CN 116364756 A CN116364756 A CN 116364756A
Authority
CN
China
Prior art keywords
gan
self
supporting
schottky
transition layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310268407.1A
Other languages
English (en)
Inventor
白俊春
程斌
平加峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Gejing Semiconductor Co ltd
Original Assignee
Shanghai Gejing Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Gejing Semiconductor Co ltd filed Critical Shanghai Gejing Semiconductor Co ltd
Priority to CN202310268407.1A priority Critical patent/CN116364756A/zh
Publication of CN116364756A publication Critical patent/CN116364756A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28581Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66212Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种具有垂直浮空金属环的高压GaN基二极管及其制作方法,所述高压GaN基二极管包括自支撑N+GaN衬底层、N‑GaN渡越层、肖特基金属、肖特基阳极和欧姆金属阴极;所述N‑GaN渡越层设置于自支撑N+GaN衬底层上方,所述肖特基金属设置于N‑GaN渡越层斜侧面上,所述肖特基阳极设置于N‑GaN渡越层顶面上,所述欧姆金属阴极设置于自支撑N+GaN衬底层底面上;本发明通过垂直结构使得器件电流可以垂直流通,使得GaN材料的高击穿特性得到更加充分地体现,相比于横向二极管,具有更高的击穿电压,更适用于商业;利用倾斜MESA结构形成梯形N‑GaN渡越层,有效分散电场,提高击穿电压。

Description

一种具有垂直浮空金属环的高压GaN基二极管及其制作方法
技术领域
本发明涉及微电子大功率器件技术及工艺领域,具体是指一种具有垂直浮空金属环的高压GaN基二极管及其制作方法。
背景技术
作为第三代宽禁带半导体的代表,相较于传统的半导体材料GaN具有禁带宽度大,临界击穿电场强度高,饱和电子迁移率高,抗辐射能力强,热导率高等优势,符合当下新能源发展的潮流,适用于各种高温高压、大功率场景,在电力电子和射频微波领域有着极大的应用潜力。GaN较大的禁带宽度保证了器件能工作于高压场景下,且由于GaN材料具有很高的电子迁移率,使得器件开关频率显著高于传统功率器件,同时,较高的热导率保证了器件在大功率场景下良好的散热能力,提高了高功率高温环境下的可靠性。肖特基二极管作为一种基本的双端器件,具有开启电压低、开关频率高等优点,在整流、检波、限幅等领域具有重要的应用。由于具有高击穿电压,高开关频率,效率高损耗小等优点,GaN基肖特基二极管可取代传统的功率二极管,广泛应用于电源管理、风力发电、太阳能电池、电动汽车等电力电子领域。
现有横向GaN基二极管已经得到了深入细致的研究,并应用在了一些商业产品中,但横向器件中由于异质生长存在晶格失配且位错密度较高的问题,且电流崩塌和自热效应限制了其发展,因而人们对垂直结构器件的兴趣在不断增加:相较于水平器件,垂直结构可以利用垂直方向上的耗尽来实现更高的击穿电压,得到更高的功率密度,且热分布均匀,自热效应不明显,可靠性高。但是现有GaN基垂直二极管存在击穿电压和正向电流密度难以同时提高的问题;一般垂直结构二极管可以通过场板、场限环或浮空金属环结构分散垂直方向上的电场从而提高器件击穿电压,但是这往往会影响N-渡越层中的电流导通,引起电流密度的显著降低。
所以,一种具有垂直浮空金属环的高压GaN基二极管及其制作方法成为人们亟待解决的问题。
发明内容
本发明要解决的技术问题是现有GaN基垂直二极管存在击穿电压和正向电流密度难以同时提高的问题;一般垂直结构二极管可以通过场板、场限环或浮空金属环结构分散垂直方向上的电场从而提高器件击穿电压,但是这往往会影响N-渡越层中的电流导通,引起电流密度的显著降低。
为解决上述技术问题,本发明提供的技术方案为:一种具有垂直浮空金属环的高压GaN基二极管,所述高压GaN基二极管包括自支撑N+GaN衬底层、N-GaN渡越层、肖特基金属、肖特基阳极和欧姆金属阴极;
所述N-GaN渡越层设置于自支撑N+GaN衬底层上方,所述肖特基金属设置于N-GaN渡越层斜侧面上,所述肖特基阳极设置于N-GaN渡越层顶面上,所述欧姆金属阴极设置于自支撑N+GaN衬底层底面上。
进一步的,所述自支撑N+GaN衬底层的厚度为1-4um。
进一步的,所述N-GaN渡越层的厚度为1-3um。
一种具有垂直浮空金属环的高压GaN基二极管的制作方法,包含一种具有垂直浮空金属环的高压GaN基二极管,所述高压GaN基二极管的制作方法如下所示:
步骤1、准备原材料:
选取1-4um厚的自支撑N+GaN材料作为衬底层;
步骤2:外延材料生长:
采用MOCVD工艺,在自支撑N+GaN衬底层上生长3-9um N-GaN渡越层;
步骤3、倾斜MESA台阶处理:
采用ICP刻蚀技术,在所述N-GaN渡越层结构上形成倾斜MESA结构,其中斜坡深度为N-GaN层过刻0.2-1.5um,斜坡宽度为1-3um;
步骤4、欧姆金属电极制作:
在最下层的自支撑N+GaN衬底层底面上淀积欧姆金属阴极;
步骤5、肖特基阳极与肖特基金属制作:
在步骤3刻蚀形成的N-GaN渡越层斜坡上淀积肖特基阳极和肖特基金属。
本发明与现有技术相比的优点在于:本发明通过垂直结构使得器件电流可以垂直流通,使得GaN材料的高击穿特性得到更加充分地体现,相比于横向二极管,具有更高的击穿电压,更适用于商业;利用倾斜MESA结构形成梯形N-GaN渡越层,有效分散电场,提高击穿电压;倾斜MESA结构上加入肖特基金属即垂直浮空金属环,在垂直方向上分散电场,相较于水平浮空金属环,能更显著的提高器件击穿电压;本发明设计合理,值得大力推广。
附图说明
图1是本发明一种具有垂直浮空金属环的高压GaN基二极管的结构示意图。
图2是本发明一种具有垂直浮空金属环的高压GaN基二极管的制备工艺流程示意图。
如图所示:1、自支撑N+GaN衬底层,2、N-GaN渡越层,3、肖特基金属,4、肖特基阳极,5、欧姆金属阴极。
具体实施方式
下面结合附图对本发明一种具有垂直浮空金属环的高压GaN基二极管及其制作方法做进一步的详细说明。
结合附图1-2,对本发明进行详细介绍。
一种具有垂直浮空金属环的高压GaN基二极管,所述高压GaN基二极管包括自支撑N+GaN衬底层1、N-GaN渡越层2、肖特基金属3、肖特基阳极4和欧姆金属阴极5;
所述N-GaN渡越层2设置于自支撑N+GaN衬底层1上方,所述肖特基金属3设置于N-GaN渡越层2斜侧面上,所述肖特基阳极4设置于N-GaN渡越层2顶面上,所述欧姆金属阴极5设置于自支撑N+GaN衬底层1底面上。
所述自支撑N+GaN衬底层1的厚度为1-4um。
所述N-GaN渡越层2的厚度为3-9um。
一种具有垂直浮空金属环的高压GaN基二极管的制作方法,包含一种具有垂直浮空金属环的高压GaN基二极管,所述高压GaN基二极管的制作方法如下所示:
步骤1、准备原材料:
选取1-4um厚的自支撑N+GaN材料作为衬底层;
步骤2:外延材料生长:
采用MOCVD工艺,在自支撑N+GaN衬底层1上生长3-9um N-GaN渡越层2;
步骤3、倾斜MESA台阶处理:
采用ICP刻蚀技术,在所述N-GaN渡越层2结构上形成倾斜MESA结构,其中斜坡深度为N-GaN层过刻0.2-1.5um,斜坡宽度为1-3um;
步骤4、欧姆金属电极制作:
在最下层的自支撑N+GaN衬底层底面上淀积欧姆金属阴极;
步骤5、肖特基阳极与肖特基金属制作:
在步骤3刻蚀形成的N-GaN渡越层2斜坡上淀积肖特基阳极和肖特基金属。
本发明一种具有垂直浮空金属环的高压GaN基二极管及其制作方法的具体实施过程如下:
步骤1、准备原材料
选取1-4um厚的自支撑N+GaN材料作为衬底层;
步骤2、外延材料生长:
在自支撑N+GaN衬底层1材料上,利用MOCVD工艺,生长1-3um的N-GaN渡越层2;
步骤3、倾斜MESA台阶处理:
首先使用电感耦合等离子体化学气相沉积方法沉积200nm厚的SiO2作为硬掩膜,随后以5000转/min的转速在硬掩模表面甩正胶,光刻胶型号为AZ6130,得到厚度为2.5μm的光刻胶掩模,再在温度为80℃的高温烘箱中烘10min,然后采用NSR1755I7A光刻机光刻获得窗口掩膜图形;
接着,显影完成后,将需要刻蚀掉的N-GaN渡越层开出窗口图形,其余地方用光刻胶充当掩膜保护起来;
随后再在温度为80℃的高温烘箱中进行烘胶15min,将光刻胶掩模边缘倒成圆角,有利于后续刻蚀形成倾斜MESA结构;随后使用RIE刻蚀将光刻胶图形转移到SiO2上,由于经过倒角处理,形成的SiO2硬掩模边缘具有一定倾角;
最后将做好硬掩模图形的基片采用ICP98c型感应耦合等离子体刻蚀机在Cl2/BCl3环境下刻蚀,控制总流量为35ml/min,BCl2占比80%,压强为1.33Pa,如此可以在保证刻蚀侧壁平整的同时得到70°左右侧壁倾角的N-GaN渡越层,并且刻蚀掉部分的N+GaN层,形成倾斜MESA结构;刻蚀完成后,用氢氟酸去除硬掩膜SiO2;
步骤4、欧姆金属电极制作:
在材料背面进行阴极欧姆金属淀积,采用Ohmiker-50电子束蒸发台以0.1nm/s的蒸发速率进行阴极制作,阴极金属依次选用Ti/Al/Ni/Au,其中Ti厚度为20nm,Al厚度为160nm,Ni厚度为55nm,Au厚度为45nm;
进行欧姆金属退火:
用RTP500快速热退火炉,在870℃的N2气氛中进行30s的快速热退火,对欧姆接触金属进行合金,完成阴极的制作;
步骤5、肖特基阳极与肖特基金属制作:
首先,在制备倾斜MESA结构的垂直结构基片正面采用甩胶机在5000转/min的转速下甩光刻胶,得到光刻胶掩模厚度0.8μm;
接着,在温度为80℃的高温烘箱中烘10min,采用NSR1755I7A光刻机进行曝光,形成阳极与垂直浮空金属环区域掩模图形;
然后,采用Ohmiker-50电子束蒸发台以0.1nm/s的蒸发速率进行电极制作,金属依次选用Ni/Au,其中Ni厚度为45nm,Au厚度为200nm;金属蒸发完成后进行金属剥离,得到完整的阳极与垂直浮空金属环;其中,浮空金属环宽度为0.5um,间隔为0.5um,与肖特基阳极距离为1um。
本发明通过垂直结构使得器件电流可以垂直流通,使得GaN材料的高击穿特性得到更加充分地体现,相比于横向二极管,具有更高的击穿电压,更适用于商业;利用倾斜MESA结构形成梯形N-GaN渡越层,有效分散电场,提高击穿电压;倾斜MESA结构上加入肖特基金属即垂直浮空金属环,在垂直方向上分散电场,相较于水平浮空金属环,能更显著的提高器件击穿电压;本发明设计合理,值得大力推广。
以上对本发明及其实施方式进行了描述,这种描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (4)

1.一种具有垂直浮空金属环的高压GaN基二极管,其特征在于:所述高压GaN基二极管包括自支撑N+GaN衬底层(1)、N-GaN渡越层(2)、肖特基金属(3)、肖特基阳极(4)和欧姆金属阴极(5);
所述N-GaN渡越层(2)设置于自支撑N+GaN衬底层(1)上方,所述肖特基金属(3)设置于N-GaN渡越层(2)斜侧面上,所述肖特基阳极(4)设置于N-GaN渡越层(2)顶面上,所述欧姆金属阴极(5)设置于自支撑N+GaN衬底层(1)底面上。
2.根据权利要求1所述的一种具有垂直浮空金属环的高压GaN基二极管,其特征在于:所述自支撑N+GaN衬底层(1)的厚度为1-4um。
3.根据权利要求1所述的一种具有垂直浮空金属环的高压GaN基二极管,其特征在于:所述N-GaN渡越层(2)的厚度为1-3um。
4.一种具有垂直浮空金属环的高压GaN基二极管的制作方法,包含权利要求1-3所述的一种具有垂直浮空金属环的高压GaN基二极管,其特征在于:所述高压GaN基二极管的制作方法如下所示:
步骤1、准备原材料:
选取1-4um厚的自支撑N+GaN材料作为衬底层;
步骤2:外延材料生长:
采用MOCVD工艺,在自支撑N+GaN衬底层(1)上生长3-9um N-GaN渡越层(2);
步骤3、倾斜MESA台阶处理:
采用ICP刻蚀技术,在所述N-GaN渡越层(2)结构上形成倾斜MESA结构,其中斜坡深度为N-GaN层过刻0.2-1.5um,斜坡宽度为1-3um;
步骤4、欧姆金属电极制作:
在最下层的自支撑N+GaN衬底层底面上淀积欧姆金属阴极;
步骤5、肖特基阳极与肖特基金属制作:
在步骤3刻蚀形成的N-GaN渡越层(2)斜坡上淀积肖特基阳极和肖特基金属。
CN202310268407.1A 2023-03-20 2023-03-20 一种具有垂直浮空金属环的高压GaN基二极管及其制作方法 Pending CN116364756A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310268407.1A CN116364756A (zh) 2023-03-20 2023-03-20 一种具有垂直浮空金属环的高压GaN基二极管及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310268407.1A CN116364756A (zh) 2023-03-20 2023-03-20 一种具有垂直浮空金属环的高压GaN基二极管及其制作方法

Publications (1)

Publication Number Publication Date
CN116364756A true CN116364756A (zh) 2023-06-30

Family

ID=86935656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310268407.1A Pending CN116364756A (zh) 2023-03-20 2023-03-20 一种具有垂直浮空金属环的高压GaN基二极管及其制作方法

Country Status (1)

Country Link
CN (1) CN116364756A (zh)

Similar Documents

Publication Publication Date Title
CN112038416B (zh) 基于p型NiO薄膜和斜面终端结构的肖特基二极管及其制作方法
CN110518074B (zh) 阴阳极交替的大电流GaN肖特基二极管及其制作方法
CN110931570B (zh) 一种氮化镓肖特基势垒二极管及其制造方法
CN107369720B (zh) 一种p型金刚石高低势垒肖特基二极管及其制备方法
CN112186032A (zh) 一种带场板结构的氧化镓结势垒肖特基二极管
CN108550622A (zh) 一种氮化镓肖特基势垒二极管及其制造方法
CN110993684A (zh) 基于阴阳极环形嵌套的大功率GaN准垂直肖特基二极管及其制备方法
CN113594234B (zh) 一种低开启电压的氧化镓肖特基二极管制备方法
CN109950323A (zh) 极化超结的ⅲ族氮化物二极管器件及其制作方法
CN108206220B (zh) 金刚石肖特基二极管的制备方法
CN116230750A (zh) 一种垂直阶梯场板高压GaN基二极管及其制作方法
CN115312605A (zh) 改善终端边缘峰值电场的氧化镓肖特基二极管及制备方法
CN116364756A (zh) 一种具有垂直浮空金属环的高压GaN基二极管及其制作方法
CN116504805A (zh) 具有垂直AlGaN/GaN结构的高电子迁移率晶体管及其制备方法
CN115377224A (zh) 一种高击穿双极场限环结构的氧化镓肖特基二极管及制备方法
CN115083921A (zh) 氧化镓肖特基二极管制备方法及氧化镓肖特基二极管
CN115312604A (zh) 高耐压低导通电阻的鳍式氧化镓pn二极管及制备方法
CN111129164B (zh) 肖特基二极管及其制备方法
CN110808292B (zh) 一种基于金属檐结构的GaN基完全垂直肖特基变容管及其制备方法
CN209766432U (zh) Mps二极管器件
CN209766431U (zh) Mps二极管器件
CN112038417B (zh) 基于顺电介质的肖特基二极管及其制作方法
CN110729351B (zh) 大功率阴阳极环形叉指GaN准垂直pn结二极管及制备方法
CN116259648A (zh) 一种具有阶梯浮空金属环的高压GaN基二极管及其制作方法
CN116206976A (zh) 具有垂直AlGaN/GaN异质结的高压肖特基二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination