CN116344750A - 一种锂离子电池硅碳薄膜负极材料及其制备方法 - Google Patents

一种锂离子电池硅碳薄膜负极材料及其制备方法 Download PDF

Info

Publication number
CN116344750A
CN116344750A CN202310214245.3A CN202310214245A CN116344750A CN 116344750 A CN116344750 A CN 116344750A CN 202310214245 A CN202310214245 A CN 202310214245A CN 116344750 A CN116344750 A CN 116344750A
Authority
CN
China
Prior art keywords
silicon
current collector
lithium ion
carbon
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310214245.3A
Other languages
English (en)
Inventor
高鹏
黄民权
李才巨
易健宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202310214245.3A priority Critical patent/CN116344750A/zh
Publication of CN116344750A publication Critical patent/CN116344750A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种锂离子电池硅碳薄膜负极材料及其制备方法,属于锂离子电池负极材料制备领域。本发明通过调控粗糙集流体微观表面状态,集流体粗糙度Ra为200nm~1500nm;在室温下真空环境中采用磁控溅射技术,以高纯石墨靶和高纯本征硅靶为溅射源,在微观表面形貌为树状、山丘、线状特征的粗糙集流体上制备出3~9层硅碳交替堆垛结构,碳薄膜作为第一层溅射在集流体上;本发明制备的锂离子电池硅碳薄膜负极材料,硅层和碳层为非晶结构,与集流体之间有良好的结合力,较高的充电比容量,良好的循环性能;本发明操作简单,在锂离子电池负极材料领域具有广泛的应用前景。

Description

一种锂离子电池硅碳薄膜负极材料及其制备方法
技术领域
本发明涉及一种锂离子电池硅碳薄膜负极材料及其制备方法,属于锂离子电池负极材料制备技术领域。
背景技术
商业负极材料石墨比容量仅为372mAh/g,已经逐渐不能满足目前工业和生活的需求。硅具有目前已知最高的理论质量比容量(4200mAh/g),具有地表储量丰富,以及较低的脱锂平台,安全性能优于商业负极材料石墨负极等优点,被认为是未来最具潜力的可商业化锂离子电池负极材料之一。
目前基于磁控溅射技术制备硅基负极材料主要采取的手段对硅基负极材料结构工艺设计;例如专利文献号为CN112670453B公开了一种硅基叠层负极材料及其制备方法和应用的方法,专利文献号为CN104993115B公开了一种锂电池siCO-si梯度薄膜电极体系及制备方法。然而由于磁控溅射属于气相沉积技术对集流体表面形貌也会更为敏感,不同的集流体表面形貌结构也会对硅基薄膜负极材料在锂化循环过程中稳定性都不相同。
发明人通过研究发现,通过在不同的粗糙度范围内调控粗糙集流体表面树状、山丘、线状特征的微观形貌,采用合适的溅射工艺参数制备得到多层碳硅交替堆垛结构以及非晶态的硅碳组织,能够有效提高硅与集流体的结合力,缓解硅在锂化过程中体积膨胀造成的结构应力,具有良好的循环性能、导电性、较高的放电比容量。
发明内容
本发明针对背景技术中的硅碳负极材料目前存在的技术问题,提供高循环性能、高容量的一种锂离子电池硅碳薄膜负极材料及其制备方法,具体包括以下步骤:
(1)对粗糙集流体进行表面清洁处理,去除污垢、杂质,自然晾干;
(2)以石墨靶材用直流磁控溅射技术在粗糙集流体表面上溅射第一层碳膜,以硅靶材为溅射靶材,利用射频磁控溅射技术在继续溅射一层硅,之后再交替溅射碳层和硅层,硅碳交替溅射层数为3~9层,同时,上述石墨靶材和硅靶溅射过程中,SiC衬底将顺时针旋转,使硅层和碳层均匀分布在沉积粗糙集流体上。
优选的,本发明所述石墨靶材的纯度≥99.99%,所述硅靶材的纯度≥99.99%。
优选的,本发明所述粗糙集流体为铜箔,厚度为5μm~30μm,集流体粗糙度Ra为200nm~1500nm;如微观树状形貌特征(粗糙度Ra为1500nm~450nm)、微观山丘形貌特征(粗糙度Ra为1500nm~450nm)、微观线状形貌特征(粗糙度Ra为600nm~200nm)。
优选的,本发明所述集流体清洁表面处理步骤为:将集流体放入装有酒精的烧杯中超声波清洗60s后晾干,送入磁控溅射副腔室,接着使用Ar+等离子束对集流体表面进行清理表面杂质,优选条件为:真空度7mTorr,Ar气流量为240sccm,溅射功率为100w,溅射时间为30s,温度25℃。
优选的,本发明所述磁控溅射的工艺参数条件为:磁控溅射真空腔体内工作气体为高纯氩气,氩气流量为180~280sccm,真空度为5~9mTorr,工作温度为25℃;样品台旋转速度为5-20r\min。
优选的,本发明步骤(2)中石墨靶溅射功率为20-100w,溅射时间为100s~600s;硅靶溅射功率为20-100w,溅射时间为600s~5000s。
本发明的另一目的在于提供一种锂离子电池硅碳薄膜负极材料。
本发明内容与现有技术相比,具有如下优势:
(1)本发明基于磁控溅射技术制备的负极材料,较传统制备负极材料方式而言,可以无需添加导电剂和粘结剂等成分,提高负极材料的能量密度;同时省去了涂布、真空烘干的工艺流程,简化了制备负极材料的工艺流程。
(2)本发明旨在调控粗糙集流体表面微观形貌,利用射频磁控溅射技术和直流磁控溅射技术制备得到的硅碳负极材料;特殊的微观表面形貌结构具有更大可溅射面积,能够沉积更多的活性物质,提高负极电极的能量密度,增强硅层和碳层对集流体的结合力,提高硅碳多层负极材料的循环稳定性。
(3)本发明采用上述工艺参数所制备硅碳多层结构薄膜负极材料,硅层和碳层均为非晶状态;由于非晶状态下硅各向同性的性能特征协同硅碳多层结构的设计,可以大大缓解硅碳多层结构薄膜负极材料在循环过程中的体积膨胀,提高了硅碳多层负极材料在锂化过程中结构的稳定性。
附图说明
图1为本发明实例1和对比例1中所选集流体上负极材料的SEM形貌结构示意图。
图2为本发明实例1中所选集流体上负极材料的拉曼光谱图。
图3为本发明实例1、2、3和对比例1中所选集流体上负极材料的循环性能图。
具体实施方式具体
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明;应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明所提供一种在微观表面形貌为树状、山丘、线状特征的粗糙集流体上生产硅碳薄膜负极材料及其制备方法,旨在提高硅碳薄膜负极材料在充放电过程中循环性能。
本发明实施例中硅靶为纯度99.999%的本征硅靶,石墨靶材纯度为99.999%;硅靶溅射优选射频电源溅射,石墨靶材优选直流电源溅射。
实施例1
一种锂离子电池硅碳薄膜负极材料及其制备方法,具体包括以下步骤:
(1)对溅射基底铜箔裁剪为70mm*70mm的大小,放入酒精中进行超声波60s,自然晾干;使用Ar气离子束对硅靶和碳靶分别对其以合适功率进行30s的预溅射,去除其表面的氧化物等杂物;其中,硅靶材射频溅射所选功率为50w,石墨靶材所选功率为30w。
(2)真空常温环境中,通入氩气,使用石墨靶材在粗糙度Ra为632nm,厚度为9μm,表面微观形貌为山丘特征的铜箔粗糙面上,直流溅射第一层较薄的碳层;同时,溅射基底铜箔以5r\min的转速旋转,将溅射沉积均匀化;溅射条件为:真空度为7mTorr,硅靶溅射时氩气流量为270sccm,石墨靶材溅射时氩气流量为250sccm,温度为25℃。
(3)以硅靶为溅射源在碳层上继续溅射第二层硅层,之后重复使用石墨靶和硅靶交替溅射,得到5层硅碳交替的结构,获得硅碳薄膜负极材料;第一层较薄碳层溅射时间为180s;2~5层溅射的硅层的溅射时间为1800s,碳层溅射时间为450s。
本实施例制备得到的5层硅碳薄膜负极材料,进行组装为锂离子电池,具体操作如下,使用纽扣电池2016作为评估负极材料的模具,在一个氧含量和水含量均小于0.1ppm,充满氩气的手套箱中进行组装,电解液采用1mol/L的LiPF6和EC:DEC:DMC按体积比为1:1:1配好的混合溶液,采用Celgard 2500作为隔膜,金属锂片作为对电极和参比电极,在手套箱中组装为纽扣电池;将上述制备所得的2016纽扣电池进行长循环测试,测试电流密度为0.2C,充放电压为0~1.5V循环100圈后,仍有高达近放电比容量2176mAh/g,容量保持率为81.4%。
实施例2
一种锂离子电池硅碳薄膜负极材料及其制备方法,具体包括以下步骤:
(1)对溅射基底铜箔裁剪为70mm*70mm的大小,放入酒精中进行超声波60s,自然晾干;使用Ar气离子束对硅靶和碳靶分别对其以合适功率进行30s的预溅射,去除其表面的氧化物等杂物;硅靶材射频溅射所选功率为70w,石墨靶材所选功率为40w。
(2)真空常温环境中,通入氩气,使用石墨靶材在粗糙度Ra为984nm,厚度为18μm,表面微观形貌为树状特征的铜箔粗糙面上,直流溅射第一层较薄的碳层;同时,溅射基底铜箔以10r\min的转速旋转,将溅射沉积均匀化;真空度为9mTorr,硅靶溅射时氩气流量为280sccm,石墨靶材溅射时氩气流量为220sccm,温度为25℃。
(3)以硅靶为溅射源在碳层上继续溅射第二层硅层,之后重复使用石墨靶和硅靶交替溅射,得到3层硅碳交替的结构,获得硅碳薄膜负极材料;第一层较薄碳层溅射时间为400s;2~3层溅射硅层的溅射时间为1600s,碳层溅射时间为380s。
本实施例制备得到的3层硅碳薄膜负极材料,进行组装为锂离子电池,具体操作如下,使用纽扣电池2016作为评估负极材料的模具,在一个氧含量和水含量均小于0.1ppm,充满氩气的手套箱中进行组装,电解液采用1mol/L的LiPF6和EC:DEC:DMC按体积比为1:1:1配好的混合溶液,采用Celgard 2500作为隔膜,金属锂片作为对电极和参比电极,在手套箱中组装为纽扣电池;将上述制备所得的2016纽扣电池进行长循环测试,测试电流密度为0.2C,测试电压为0~1.5V循环100圈后,仍有高达近放电比容量2187mAh/g,容量保持率为76.3%。
实施例3
一种锂离子电池硅碳薄膜负极材料及其制备方法,具体包括以下步骤:
(1)对溅射基底铜箔裁剪为70mm*70mm的大小,放入酒精中进行超声波60s,自然晾干;使用Ar气离子束对硅靶和碳靶分别对其以合适功率进行30s的预溅射,去除其表面的氧化物等杂物;硅靶材射频溅射所选功率为50w,石墨靶材所选功率为30w。
(2)真空常温环境中,通入氩气,使用石墨靶材在粗糙度Ra为365nm,厚度为9μm,表面微观形貌为线状特征的铜箔粗糙面上,直流溅射第一层较薄的碳层。同时,溅射基底铜箔以15r\min的转速旋转,将溅射沉积均匀化。真空度为7mTorr,硅靶溅射时氩气流量为270sccm,石墨靶材溅射时氩气流量为250sccm,温度为25℃。
(3)以硅靶为溅射源在碳层上继续溅射第二层硅层,之后重复使用石墨靶和硅靶交替溅射,得到9层硅碳交替的结构,获得硅碳薄膜负极材料;第一层较薄碳层溅射时间为180s;所述溅射的硅层的溅射时间为1800s,碳层溅射时间为450s。
本实施例制备得到的9层硅碳薄膜负极材料,进行组装为锂离子电池,具体操作如下,使用纽扣电池2016作为评估负极材料的模具,在一个氧含量和水含量均小于0.1ppm,充满氩气的手套箱中进行组装,电解液采用1mol/L的LiPF6和EC:DEC:DMC按体积比为1:1:1配好的混合溶液,采用Celgard 2500作为隔膜,金属锂片作为对电极和参比电极,在手套箱中组装为纽扣电池;将上述制备所得的2016纽扣电池进行长循环测试,测试电流密度为0.2C,测试电压为0~1.5V循环100圈后,充电比容量近2130mAh/g,容量保持率为88.5%。
对比实施例1
一种锂离子电池硅碳薄膜负极材料及其制备方法,具体包括以下步骤:
(1)对溅射基底铜箔裁剪为70mm*70mm的大小,放入酒精中进行超声波60s,自然晾干。
(2)使用Ar气离子束对硅靶以100w功率进行30s的预溅射,去除其表面的氧化物等杂物;真空度为7mTorr,硅靶溅射时氩气流量为270sccm,石墨靶材溅射时氩气流量为250sccm,温度为25℃,硅靶材所选功率为50w。
(3)在真空常温环境中,通入氩气,使用硅靶材在粗糙度Ra为80nm,厚度为9μm的铜箔光滑面上射频溅射沉积硅层,获得纯硅薄膜负极材料。同时,溅射基底铜箔以10r\min的转速旋转,将溅射沉积均匀化;所述溅射的硅层的溅射时间为4500s。
基于上述制备方案中得到的纯硅薄膜负极材料,进行组装为锂离子电池,具体操作如下,使用纽扣电池2016作为评估负极材料的模具,在一个氧含量和水含量均小于0.1ppm,充满氩气的手套箱中进行组装,电解液采用1mol/L的LiPF6和EC:DEC:DMC按体积比为1:1:1配好的混合溶液,采用Celgard 2500作为隔膜,金属锂片作为对电极和参比电极,在手套箱中组装为纽扣电池。将上述制备所得的2016纽扣电池进行长循环测试,测试电流密度为0.2C,测试电压为0~1.5V循环100圈后,充电比容量近111.68mAh/g,容量保持率为4%。
图1为上述实施例1集流体SEM形貌示意图,表明硅层和碳层完全的附着于集流体表面山丘状的微观形貌,集流体皱褶不平表面形貌特征可以为硅层和碳层提供巨大的可溅射比表面积,提高硅碳沉积的可负载量,还有利于增强硅层和碳层与集流体的结合力。
图2为上述实施例1中在粗糙集流体上制备的硅碳薄膜负极材料的拉曼光谱示意图,表明在激光532nm的测试波长下,拉曼图谱中并未出现尖锐的晶体特定峰型,硅碳多层负极材料溅射的硅和碳都为非晶状态,非晶性能各向同性的特征,有利于缓冲硅在锂化过程中的体积膨胀效应,提高充放电过程中硅碳薄膜结构的稳定性。
图3为本发明实例1、2、3和对比例1中制备的硅碳薄膜负极材料循环性能图。从图中可以看出,实例1、2、3在循环100圈后比容量和容量保持率都显著高于对比例1,这表明本发明制备的锂离子电池硅碳薄膜负极材料,在锂化充放电过程中具有良好的循环性能和容量保持率以及较高的充电比容量。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种锂离子电池硅碳薄膜负极材料的制备方法,其特征在于,具体包括以下步骤:
(1)对粗糙集流体进行表面清洁处理,去除污垢、杂质,自然晾干;
(2)以石墨靶材用直流磁控溅射技术在粗糙集流体表面上溅射第一层碳膜,以硅靶材为溅射靶材,利用射频磁控溅射技术在继续溅射一层硅,之后再交替溅射碳层和硅层,硅碳交替溅射层数为3~9层。
2.根据权利要求1所述锂离子电池硅碳薄膜负极材料的制备方法,其特征在于:所述石墨靶材的纯度≥99.99%,所述硅靶材的纯度≥99.99%。
3.根据权利要求1或2所述锂离子电池硅碳薄膜负极材料的制备方法,其特征在于:所述粗糙集流体为铜箔,厚度为5μm~30μm,集流体粗糙度Ra为200nm~1500nm,粗糙集流体表面微观形貌为树状、山丘、线状特征。
4.根据权利要求3所述锂离子电池硅碳薄膜负极材料的制备方法,其特征在于:所述集流体清洁表面处理步骤为:将集流体放入装有酒精的烧杯中超声波清洗60s后晾干,送入磁控溅射副腔室,接着使用Ar+等离子束对集流体表面进行清理表面杂质。
5.根据权利要求4所述锂离子电池硅碳薄膜负极材料的制备方法,其特征在于:磁控溅射的工艺参数条件为:磁控溅射真空腔体内工作气体为高纯氩气,氩气流量为180~280sccm,真空度为5~9mTorr,工作温度为25℃;样品台旋转速度为5-20r\min。
6.根据权利要求1或5所述锂离子电池硅碳薄膜负极材料的制备方法,其特征在于:步骤(2)中石墨靶溅射功率为20-100w,溅射时间为100s~600s;硅靶溅射功率为20-100w,溅射时间为600s~5000s。
7.根据权利要求1~6任意一项所方法所述制备的锂离子电池硅碳薄膜负极材料。
CN202310214245.3A 2023-03-08 2023-03-08 一种锂离子电池硅碳薄膜负极材料及其制备方法 Pending CN116344750A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310214245.3A CN116344750A (zh) 2023-03-08 2023-03-08 一种锂离子电池硅碳薄膜负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310214245.3A CN116344750A (zh) 2023-03-08 2023-03-08 一种锂离子电池硅碳薄膜负极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116344750A true CN116344750A (zh) 2023-06-27

Family

ID=86879942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310214245.3A Pending CN116344750A (zh) 2023-03-08 2023-03-08 一种锂离子电池硅碳薄膜负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116344750A (zh)

Similar Documents

Publication Publication Date Title
JP7383749B2 (ja) リチウム金属アノードのための、カルコゲナイドを用いたエクスシトゥ固体電解質界面修飾
CN103474632B (zh) 一种用于锂电池的负极材料及其制备方法和应用
CN111653727B (zh) 一种预锂化硅基薄膜负极材料及其制备方法
KR101071485B1 (ko) 리튬 이차 전지
WO2001029918A1 (fr) Electrode pour accumulateur au lithium et accumulateur au lithium
CN110444751B (zh) Li-Si-N纳米复合薄膜及其制备方法、负极结构及锂电池
Hwang et al. Electrochemical characterization of a Ge-based composite film fabricated as an anode material using magnetron sputtering for lithium ion batteries
CN106684325A (zh) 一种铌掺杂二氧化锡薄膜锂离子电池负极极片及其制备方法,锂离子电池
CN101339989A (zh) 锂离子电池负极用铝锡合金薄膜及其制备方法
CN112151759A (zh) 锂金属负极、制备方法及锂离子电池
CN113066963B (zh) 一种全固态薄膜锂电池正极薄膜的制造方法及锂电池
JP2012164481A (ja) 非水電解質二次電池及びその製造方法
JP4183395B2 (ja) リチウム二次電池用電極の製造方法
CN103924198A (zh) 一种采用电子束蒸镀技术制备石墨烯导电薄膜的方法及其应用
CN109825807B (zh) 厚度可控的锂金属负极多孔Zn集流体的气相合成方法
CN114975863B (zh) 黑磷负极、其制备方法及锂离子电池
CN116344750A (zh) 一种锂离子电池硅碳薄膜负极材料及其制备方法
CN108899470A (zh) 一种Li-S电池正极片夹层结构及其制备方法
CN113151790B (zh) 离子/电子共导体薄膜及其制备方法、固态电池及电动车
CN110931743B (zh) 复合电极材料及其制备方法与应用
CN113067099A (zh) 复合型锂电池隔膜及其制备方法、锂电池及电子装置
CN109301200B (zh) 掺铝氧化锌改性三维铜/锂金属负极材料的制备方法
CN113097449B (zh) 一种三明治结构硅基薄膜电极体系及其制备方法
CN109167061A (zh) 一种全固态薄膜锂离子电池3d薄膜负极及其制备方法
CN112159956B (zh) 一种以Cu箔为基片的岛状Al薄膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination