CN116334556A - 一种聚合物复合铜箔铜种子层的制备方法 - Google Patents

一种聚合物复合铜箔铜种子层的制备方法 Download PDF

Info

Publication number
CN116334556A
CN116334556A CN202310243169.9A CN202310243169A CN116334556A CN 116334556 A CN116334556 A CN 116334556A CN 202310243169 A CN202310243169 A CN 202310243169A CN 116334556 A CN116334556 A CN 116334556A
Authority
CN
China
Prior art keywords
seed layer
copper seed
polymer
copper foil
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310243169.9A
Other languages
English (en)
Other versions
CN116334556B (zh
Inventor
张俊彦
张广安
张兴凯
王福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202310243169.9A priority Critical patent/CN116334556B/zh
Publication of CN116334556A publication Critical patent/CN116334556A/zh
Application granted granted Critical
Publication of CN116334556B publication Critical patent/CN116334556B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了涉及聚合物复合铜箔技术领域的一种聚合物复合铜箔铜种子层的制备方法,步骤1,采用高能量非金属离子束,对聚合物薄膜的表面进行刻蚀活化,得到活化后的聚合物薄膜;步骤2,采用磁控溅射,在活化后的聚合物薄膜的表面沉积金属离子,形成聚合物‑金属互穿网络结构;步骤3,在聚合物‑金属互穿网络结构表面沉积纳米厚度的铜种子层,通过低基底偏压、还原性气氛、低沉积气压和磁场增强实现高导电铜种子层的择优取向快速沉积。本发明提供的铜种子层具有高的结合强度、优异的导电性能和抗氧化性能,所属制备方法具有较高沉积速率,可进一步提高生产效率。

Description

一种聚合物复合铜箔铜种子层的制备方法
技术领域
本发明涉及聚合物复合铜箔技术领域,具体是一种聚合物复合铜箔铜种子层的制备方法。
背景技术
锂电铜箔是锂电池负极集流体的核心材料。随着电子产品微型化、尖端化发展,以及新能源汽车对动力的续航能力、安全性能提出更高要求,锂离子电池也朝着高容量、高密度方向发展,对电池相关材料的要求也随之提高,对高性能锂电铜箔材料的需求越来越强烈。聚合物复合铜箔作为新一代锂电铜箔,具有能量密度高、安全性高、使用寿命长、兼容性好、降本空间大的优点,顺应锂电行业发展趋势。由于电解铜箔工艺成本对铜材原料依赖度较高,且在应对电池安全性和能量密度提升方面存在瓶颈,致使更安全、更高能量密度和低成本成为行业发展方向,为聚合物复合铜箔新材料的产业化提供了创新的空间。
聚合物复合铜箔基本结构是以2-4μm厚的聚合物基材(聚丙烯、聚对苯二甲酸乙二醇酯PET等)作为支撑体,在其两侧沉积约为1-2μm厚的铜薄膜,属于典型的“金属导电层-聚合物支撑层-金属导电层”三明治结构复合集流体。聚合物复合铜箔的主要制备思路是通过磁控溅射技术先在聚合物基材表面沉积0.02-0.08μm厚的铜种子层,然后再通过电镀将铜种子层加厚至1-2μm,得到3-6μm的产品。从技术实现角度,电镀加厚工艺广泛用于传统电解铜箔生产,相关技术已十分成熟。所以,通过磁控溅射技术在聚合物基材表面快速沉积结合强度高、导电性好、耐氧化的纳米厚度铜种子层是目前制约聚合物复合铜箔产业化的关键问题。
发明内容
本发明意在提供一种聚合物复合铜箔铜种子层的制备方法,以提供铜种子层具有高的结合强度、优异的导电性能和抗氧化性能,所属制备方法具有较高沉积速率,可进一步提高生产效率。
为了达到上述目的,本发明的基础方案如下:一种聚合物复合铜箔铜种子层的制备方法,包括如下步骤:
步骤1,采用高能量非金属离子束,对聚合物薄膜的表面进行刻蚀活化,得到活化后的聚合物薄膜;
步骤2,采用磁控溅射,在活化后的聚合物薄膜的表面沉积金属离子,形成聚合物-金属互穿网络结构;
步骤3,在聚合物-金属互穿网络结构表面沉积纳米厚度的铜种子层,通过低基底偏压、还原性气氛、低沉积气压和磁场增强实现高导电铜种子层的择优取向快速沉积。
进一步,聚合物薄膜为聚丙烯薄膜或聚对苯二甲酸乙二醇酯薄膜,薄膜厚度为2~4μm。
进一步,刻蚀活化在真空条件下进行,并进行离子源辅助;真空室的背底真空度<1×10-4Pa。
进一步,高能量非金属离子束为Ar+离子或Ar++N+离子;Ar等离子体产生Ar+,Ar的流量为80sccm,Ar+N2等离子体产生Ar++N+,Ar和N2的流量分别为80sccm和20sccm。
进一步,刻蚀活化的偏置电压为-200~-250V,时间为1~5min。
进一步,金属离子对应的金属元素为Cr、Ni或Nb。
进一步,磁控溅射的条件为:Ar流量为80~150sccm,基材偏置电压为-100~-150V,金属靶功率为2.0~3.0kW,溅射气压为0.1~0.3Pa,沉积时间为1~5min。
进一步,铜种子层快速沉积条件为:Ar流量为80~150sccm,H2流量为4~10sccm,基材偏置电压为-10~-50V,铜靶功率为2.0kW,溅射气压为0.2Pa。
进一步,10-80纳米厚度的铜种子层的衍射峰强度比I111/I200高于3.0,其电导率低至1mΩ·mm。
本发明的原理以及有益效果是:本发明通过高能量非金属离子轰击聚合物薄膜,有效活化了聚合物薄膜表面,使其与金属原子能够形成更加有效的键合,提高铜种子层对聚合物表面的粘合强度。在高能量非金属离子活化的基础上,引入金属离子沉积工序,形成聚合物-金属互穿网络结构,进一步增强铜种子层对聚合物薄膜的粘合强度,同时为实现晶格匹配和表面能最低诱导铜种子层实现Cu(111)择优取向生长。此外,本发明利用含氢等离子体有效抑制铜种子层氧化,通过低沉积气压和磁场增强辅助实现铜种子层的快速沉积。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为得到的聚合物复合铜箔铜种子层的百格测试实物图。
图2为聚合物复合铜箔铜种子层的X射线衍射图谱。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
下面通过具体实施方式进一步详细说明。
本申请提供一种聚合物复合铜箔铜种子层的制备方法,包括如下步骤:
步骤1,采用高能量非金属离子束,对聚合物薄膜的表面进行刻蚀活化,得到活化的聚合物薄膜。
本实施例中,高能量非金属离子束为Ar+或Ar++N+;在本发明中,Ar+优选由Ar等离子体提供,对应Ar流量优选为80sccm;Ar++N+优选由Ar+N2等离子体提供,Ar和N2的流量分别优选为80sccm和20sccm。在本发明中,Ar和N2的纯度均优选为99.99%。
本实施例中,刻蚀活化的偏置电压优选为-200~-250V,更优选为-210~-230V;时间优选为2~8min,更优选为4~6min。刻蚀活化的真空压强优选为0.08~0.3Pa,更优选为0.1-0.3Pa,最优选为0.2Pa。聚合物薄膜优选为聚丙烯或聚对苯二甲酸乙二醇酯薄膜,聚合物薄膜的厚度为2~4μm。
步骤2,采用磁控溅射,在活化后的聚合物薄膜的表面沉积金属离子,形成聚合物-金属互穿网络结构。
本实施例中,在活化后的聚合物表面沉积的金属离子优选为Cr、Nb或Ni。在本发明中,所述金属离子优选通过磁控溅射溅射金属靶材制备得到。在本发明中,所述金属靶材优选为Cr靶材、Nb靶材或Ni靶材;所述Cr靶材、Nb靶材或Ni靶材的纯度均优选为99.99%。磁控溅射的条件优选为:Ar流量优选为80~150sccm,更优选为100~120sccm;所述基材偏置电压优选为-200~-250V,更优选为-210~-230V;金属靶功率优选为2.0~3.0kW,更优选为2.4~2.6kW;溅射气压优选为0.1~0.3Pa,更优选为0.2Pa;沉积时间优选为1~3min,更优选为2min。
步骤3,在聚合物-金属互穿网络结构表面沉积纳米厚度的铜种子层,通过低基底偏压、还原性气氛、低沉积气压和磁场增强实现Cu(111)(高导电铜种子层)的择优取向快速沉积。
本实施例中,纳米厚度铜种子层的条件优选为:Ar流量优选为80~150sccm,H2流量为4~10sccm,基材偏置电压优选为-30V,铜靶功率优选为2.0kW,溅射气压优选为0.2Pa。
在本发明中,若无特殊说明,所有制备原料均为本领域技术人员熟知的市售产品。
下面结合实验对本发明提供的聚合物复合铜箔铜种子层制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实验1
将厚度为2μm的聚对苯二甲酸乙二醇酯薄膜贴于金属表面置于真空腔体内,抽真空至腔体真空度低于5×10-5Pa;
向真空腔体通入Ar气,Ar流量为80sccm,沉积气压为0.15Pa,在固定薄膜的金属架上施加偏置电压-250V,形成Ar+等离子体轰击聚对苯二甲酸乙二醇酯薄膜2min,得到活化后的聚合物薄膜;
采用磁控溅射,在所述活化后的聚合物薄膜表面沉积金属离子,所述金属离子沉积过程中:Ar流量为100sccm,在聚对苯二甲酸乙二醇酯薄膜施加偏置电压为-200V,Nb靶溅射功率为2.5kW,沉积2min,形成聚合物-金属互穿网络结构;
在所述聚合物-金属互穿网络结构表面沉积纳米厚度的铜种子层,所述沉积铜种子层的过程中:Ar流量为80sccm,H2流量为5sccm,沉积气压为0.18Pa,基材偏压为-30V,铜靶功率为2.0kW,沉积3min,得到80nm厚的铜种子层,具有优异的导电性,电导率为1mΩ·mm。
实验2
将厚度为2μm的聚对苯二甲酸乙二醇酯薄膜贴于金属表面置于真空腔体内,抽真空至腔体真空度低于5×10-5Pa;
向真空腔体通入Ar和N2混合气体,Ar流量为80sccm,N2流量为20sccm,沉积气压为0.2Pa,在固定薄膜的金属架上施加偏置电压-250V,形成Ar++N+等离子体轰击聚对苯二甲酸乙二醇酯薄膜2min,得到活化后的聚合物薄膜;
采用磁控溅射,在活化后的聚合物薄膜表面沉积金属离子,金属离子沉积过程中:Ar流量为100sccm,在聚对苯二甲酸乙二醇酯薄膜施加偏置电压为-200V,Ni靶溅射功率为3.0kW,沉积2min,形成聚合物-金属互穿网络结构;
在所述聚合物-金属互穿网络结构表面沉积纳米厚度的铜种子层,沉积铜种子层的过程中:Ar流量为100sccm,H2流量为6sccm,沉积气压为0.2Pa,基材偏压为-30V,铜靶功率为2.0kW,沉积3min,得到80nm厚的铜种子层,具有优异的导电性,电导率为1.2mΩ·mm。
对比实验1
将厚度为2μm的聚对苯二甲酸乙二醇酯薄膜贴于金属表面置于真空腔体内,抽真空至腔体真空度低于5×10-5Pa;
向真空腔体通入Ar气,Ar流量为80sccm,沉积气压为0.15Pa,在固定薄膜的金属架上施加偏置电压-250V,形成Ar+等离子体轰击聚对苯二甲酸乙二醇酯薄膜2min,得到活化后的聚合物薄膜;
在活化后的聚合物薄膜表面沉积纳米厚度的铜种子层,沉积铜种子层的过程中:Ar流量为100sccm,沉积气压为0.2Pa,基材偏压为-30V,铜靶功率为2.0kW,沉积3min,得到80nm厚的导电铜种子层。
图1为对比实验1、实验1和实验2得到的聚对苯二甲酸乙二醇酯薄膜表面铜种子层的百格测试实物图。由图1可知,金属Nb和Ni离子沉积形成的聚合物-金属互传网络结构显著改善了聚对苯二甲酸乙二醇酯薄膜与铜种子层之间的结合强度。
图2为对比实验1、实验1和实验2得到的聚对苯二甲酸乙二醇酯薄膜表面铜种子层的X射线衍射(XRD)图谱。与无金属离子沉积的样品相比较,Nb和Ni金属离子沉积促进了铜种子层(111)择优取向生长,尤其是金属Nb的沉积。对于无金属离子沉积的铜种子层,衍射峰强度比I111/I200=2.2,对于Ni金属离子沉积的铜种子层,衍射峰强度比I111/I200=3.2,对于Nb金属离子沉积的铜种子层,衍射峰强度比I111/I200=5.0。这种(111)择优取向生长的铜种子层具有优异的导电性和抗氧化性能,为聚合物复合铜箔的电解增厚提供了有利条件。
以上所述的仅是本发明的实施例,方案中公知的具体结构和/或特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (9)

1.一种聚合物复合铜箔铜种子层的制备方法,其特征在于:包括如下步骤:
步骤1,采用高能量非金属离子束,对聚合物薄膜的表面进行刻蚀活化,得到活化后的聚合物薄膜;
步骤2,采用磁控溅射,在活化后的聚合物薄膜的表面沉积金属离子,形成聚合物-金属互穿网络结构;
步骤3,在聚合物-金属互穿网络结构表面沉积纳米厚度的铜种子层,通过低基底偏压、还原性气氛、低沉积气压和磁场增强实现高导电铜种子层的择优取向快速沉积。
2.根据权利要求1所述的聚合物复合铜箔铜种子层的制备方法,其特征在于:聚合物薄膜为聚丙烯薄膜或聚对苯二甲酸乙二醇酯薄膜,薄膜厚度为2~4μm。
3.根据权利要求1所述的聚合物复合铜箔铜种子层的制备方法,其特征在于:刻蚀活化在真空条件下进行,并进行离子源辅助;真空室的背底真空度<1×10-4Pa。
4.根据权利要求1所述的聚合物复合铜箔铜种子层的制备方法,其特征在于:高能量非金属离子束为Ar+离子或Ar++N+离子;Ar等离子体产生Ar+,Ar的流量为80sccm,Ar+N2等离子体产生Ar++N+,Ar和N2的流量分别为80sccm和20sccm。
5.根据权利要求1所述的聚合物复合铜箔铜种子层的制备方法,其特征在于:刻蚀活化的偏置电压为-200~-250V,时间为1~5min。
6.根据权利要求1所述的聚合物复合铜箔铜种子层的制备方法,其特征在于:金属离子对应的金属元素为Cr、Ni或Nb。
7.根据权利要求1所述的聚合物复合铜箔铜种子层的制备方法,其特征在于:磁控溅射的条件为:Ar流量为80~150sccm,基材偏置电压为-100~-150V,金属靶功率为2.0~3.0kW,溅射气压为0.1~0.3Pa,沉积时间为1~5min。
8.根据权利要求1所述的聚合物复合铜箔铜种子层的制备方法,其特征在于:铜种子层快速沉积条件为:Ar流量为80~150sccm,H2流量为4~10sccm,基材偏置电压为-10~-50V,铜靶功率为2.0kW,溅射气压为0.2Pa。
9.根据权利要求1所述的聚合物复合铜箔铜种子层的制备方法,其特征在于:10-80纳米厚度的铜种子层的衍射峰强度比I111/I200高于3.0,其电导率低至1mΩ·mm。
CN202310243169.9A 2023-03-14 2023-03-14 一种聚合物复合铜箔铜种子层的制备方法 Active CN116334556B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310243169.9A CN116334556B (zh) 2023-03-14 2023-03-14 一种聚合物复合铜箔铜种子层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310243169.9A CN116334556B (zh) 2023-03-14 2023-03-14 一种聚合物复合铜箔铜种子层的制备方法

Publications (2)

Publication Number Publication Date
CN116334556A true CN116334556A (zh) 2023-06-27
CN116334556B CN116334556B (zh) 2024-05-03

Family

ID=86881635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310243169.9A Active CN116334556B (zh) 2023-03-14 2023-03-14 一种聚合物复合铜箔铜种子层的制备方法

Country Status (1)

Country Link
CN (1) CN116334556B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171714B1 (en) * 1996-04-18 2001-01-09 Gould Electronics Inc. Adhesiveless flexible laminate and process for making adhesiveless flexible laminate
CN1527656A (zh) * 2003-09-19 2004-09-08 波 曹 利用磁控溅射制作印刷线路板的方法
CN101724842A (zh) * 2009-11-29 2010-06-09 田建军 一种电磁波屏蔽材料的制备方法和设备
CN102469700A (zh) * 2010-11-12 2012-05-23 北大方正集团有限公司 制作电路板的方法及电路板
CN102465270A (zh) * 2010-11-12 2012-05-23 北大方正集团有限公司 导电膜及其制备设备及方法
CN106929850A (zh) * 2017-05-17 2017-07-07 福建新嵛高新柔性材料有限公司 一种低轮廓柔性线路板材料的制备方法及其生产设备
CN109280881A (zh) * 2018-09-27 2019-01-29 中国科学技术大学 一种复合基材及其制备方法
CN113463054A (zh) * 2021-07-09 2021-10-01 大连理工大学 介质滤波器全磁控溅射多层复合金属化方法
CN114864951A (zh) * 2022-03-04 2022-08-05 上海治臻新能源股份有限公司 一种锂离子电池负极用复合集流体及其制备方法
CN115652255A (zh) * 2022-11-04 2023-01-31 中国科学院兰州化学物理研究所 一种Ti基耐蚀导电非晶结构涂层及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171714B1 (en) * 1996-04-18 2001-01-09 Gould Electronics Inc. Adhesiveless flexible laminate and process for making adhesiveless flexible laminate
CN1527656A (zh) * 2003-09-19 2004-09-08 波 曹 利用磁控溅射制作印刷线路板的方法
CN101724842A (zh) * 2009-11-29 2010-06-09 田建军 一种电磁波屏蔽材料的制备方法和设备
CN102469700A (zh) * 2010-11-12 2012-05-23 北大方正集团有限公司 制作电路板的方法及电路板
CN102465270A (zh) * 2010-11-12 2012-05-23 北大方正集团有限公司 导电膜及其制备设备及方法
CN106929850A (zh) * 2017-05-17 2017-07-07 福建新嵛高新柔性材料有限公司 一种低轮廓柔性线路板材料的制备方法及其生产设备
CN109280881A (zh) * 2018-09-27 2019-01-29 中国科学技术大学 一种复合基材及其制备方法
CN113463054A (zh) * 2021-07-09 2021-10-01 大连理工大学 介质滤波器全磁控溅射多层复合金属化方法
CN114864951A (zh) * 2022-03-04 2022-08-05 上海治臻新能源股份有限公司 一种锂离子电池负极用复合集流体及其制备方法
CN115652255A (zh) * 2022-11-04 2023-01-31 中国科学院兰州化学物理研究所 一种Ti基耐蚀导电非晶结构涂层及其制备方法和应用

Also Published As

Publication number Publication date
CN116334556B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
NL2023642B1 (en) Silicon composition material for use as battery anode
WO2021259046A1 (zh) 一种Cr-Al-C系MAX相涂层的制备方法及其应用
CN107369810A (zh) 一种负极集流体、其制备方法及其应用
CN101800318B (zh) 一种质子交换膜燃料电池用金属双极板及其制备方法
CN113235062B (zh) 一种max相多层复合涂层及其制备方法与应用
CN109378433B (zh) 隔膜及其制备方法,以及电化学电池
CN111430684B (zh) 复合负极及其制备方法和应用
CN110444751B (zh) Li-Si-N纳米复合薄膜及其制备方法、负极结构及锂电池
WO2023197469A1 (zh) 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用
US20130252068A1 (en) Manufacturing method of high-performance silicon based electrode using polymer pattern on current collector and manufacturing method of negative electrode of rechargeable lithium battery including same
CN103266306B (zh) 一种用pvd技术制备石墨烯或超薄碳膜的方法
CN103144393A (zh) 一种三明治结构硅基薄膜材料及其制备方法和应用
Polat et al. Functionally graded Si based thin films as negative electrodes for next generation lithium ion batteries
CN105449168B (zh) 具有界面修饰层的金属基固态薄膜锂电池正极的制备方法
CN116334556B (zh) 一种聚合物复合铜箔铜种子层的制备方法
CN109301157B (zh) 一种基于石墨烯薄膜的锂离子电池
CN115537727B (zh) 硅烯复合薄膜及其制备方法、电极及锂离子电池
CN114015987B (zh) 一种降低基材离子污染的高延展性金属极板预涂层
CN116454286A (zh) 金属铜复合集流体及其制备方法、电极片和电池
CN111600043A (zh) 一种燃料电池金属双极板及其表面涂层方法
CN108899470A (zh) 一种Li-S电池正极片夹层结构及其制备方法
CN113151790B (zh) 离子/电子共导体薄膜及其制备方法、固态电池及电动车
CN112010306B (zh) 一种max相材料包覆的富锂锰基正极材料及其制备方法
WO2021136551A1 (zh) 一种二次电池、其极片及极片的制备方法
KR20230096616A (ko) 수지상 리튬의 성장을 억제하기 위한 리튬금속전지용 집전체 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant