CN116324019A - 薄膜晶体管的制造方法 - Google Patents

薄膜晶体管的制造方法 Download PDF

Info

Publication number
CN116324019A
CN116324019A CN202180063924.4A CN202180063924A CN116324019A CN 116324019 A CN116324019 A CN 116324019A CN 202180063924 A CN202180063924 A CN 202180063924A CN 116324019 A CN116324019 A CN 116324019A
Authority
CN
China
Prior art keywords
thin film
film transistor
insulating layer
gas
plasma treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180063924.4A
Other languages
English (en)
Inventor
酒井敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Publication of CN116324019A publication Critical patent/CN116324019A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种薄膜晶体管的制造方法,包括:等离子体处理工序,使用包含氮及氧的混合气体作为工艺气体来对半导体层的表面进行等离子体处理;以及绝缘层形成工序,使用包含SiF4、氮、氧及氢的混合气体作为工艺气体,通过等离子体CVD法,在所述等离子体处理后的半导体层之上形成绝缘层。

Description

薄膜晶体管的制造方法
技术领域
本发明涉及一种薄膜晶体管的制造方法。
背景技术
近年来,将In-Ga-Zn-O系(氧化铟镓锌(Indium Gallium Zinc Oxide,IGZO))的氧化物半导体用于半导体层(通道层)的薄膜晶体管的开发正在活跃地进行。在所述薄膜晶体管中,在半导体层的周边,形成有包含硅膜(SiNx)或氧化硅膜(SiOx)等的保护层或栅极绝缘层等各种绝缘层。例如,在专利文献1中记载了:通过将包含SiCl4气体、SiF4气体与氧气的混合气体用作工艺气体的等离子体化学气相沈积(Chemical Vapor Deposition,CVD)法,在半导体层之上形成包含含氟硅膜的绝缘层。
现有技术文献
专利文献
专利文献1:日本专利特开2018-195610号公报
发明内容
发明所要解决的问题
然而,专利文献1所公开的制造方法是通过300℃左右的低温工艺而形成绝缘层,因此绝缘层中的正的固定电荷密度变高,由此薄膜晶体管的阈值电压向负的方向偏移,有可靠性下降之虞。
本发明是鉴于此种问题而成者,其主要课题在于提供一种即使利用低温工艺也可形成固定电荷密度良好的绝缘层的薄膜晶体管的制造方法。
解决问题的技术手段
即,本发明的薄膜晶体管的制造方法的特征在于包括:等离子体处理工序,使用包含氮及氧的混合气体作为工艺气体来对半导体层的表面进行等离子体处理;以及绝缘层形成工序,使用包含SiF4、氮、氧及氢的混合气体作为工艺气体,通过等离子体CVD法,在所述等离子体处理后的半导体层之上形成绝缘层。
若为此种制造方法,则在对半导体层的表面进行等离子体处理而使其活性化后形成绝缘层,因此即使在例如300℃以下的低温工艺中,也可形成固定电荷密度良好的绝缘层。由此,可制造栅极阈值电压高、可靠性优异的薄膜晶体管。
作为所述绝缘层的具体形态,可列举含氟氮氧化硅膜。
绝缘层形成工序中形成的绝缘层的固定电荷密度优选为3×1011cm-2以下。
若在所述等离子体处理工序中供给的氧气的流量多,则半导体层的表面过氧化,而有无法获得固定电荷密度良好的绝缘层之虞。因此,在所述等离子体处理工序中供给的氮气的流量相对于氮气与氧气的合计流量的比例优选为70%以上,更优选为80%以上,进而优选为90%以上。
另外,优选为在所述等离子体处理工序中供给的氮气的流量相对于氮气与氧气的合计流量的比例、和在所述绝缘层形成工序中供给的氮气的流量相对于氮气与氧气的合计流量的比例相同。
据此,由于等离子体处理工序与绝缘层形成工序中的氮气与氧气的流量比例相同,因此可在稳定地维持等离子体处理工序中产生的等离子体的状态下转移到绝缘层形成工序。由此可缩短产距时间,可降低制造成本。另外,由于可在稳定地维持等离子体的状态下转移到绝缘层形成工序,因此可抑制SiF4气体等工艺气体物理吸附于半导体层与绝缘层的界面上,从而可获得密合性更高的优质界面。
作为更显著地发挥本发明的效果的形态,可列举在300℃以下进行所述等离子体处理工序及所述绝缘层形成工序的形态。
若为此种低温,则可使用树脂等熔点低的基板来制造薄膜晶体管。根据本发明的制造方法,即使在此种低温处理下也可制造包括固定电荷密度良好的绝缘层的薄膜晶体管。
作为所述半导体层的具体形态,可列举包含In-Ga-Zn-O的形态。
发明的效果
根据如此构成的本发明,可提供一种即使利用低温工艺也可形成固定电荷密度良好的绝缘层的、薄膜晶体管的制造方法。
附图说明
图1是示意性地表示本实施方式的底栅极型薄膜晶体管的结构的图。
图2是示意性地表示所述实施方式的薄膜晶体管的制造工序的图。
图3是示意性地表示所述实施方式的薄膜晶体管的等离子体处理工序中使用的等离子体处理装置的结构的图。
图4是示意性地表示其他实施方式的顶栅极型薄膜晶体管的结构的图。
图5是表示实验例中的等离子体处理与固定电荷密度的关系的图表。
具体实施方式
以下,对本发明的一实施方式的薄膜晶体管及其制造方法进行说明。
<1.薄膜晶体管>
本实施方式的薄膜晶体管1是所谓的底栅极型薄膜晶体管(Thin FilmTransistor,TFT),将氧化物半导体用于通道。具体而言,如图1所示,具有基板2、栅极电极3、栅极绝缘层4、半导体层5、源极电极6及漏极电极7、以及保护层8,且自基板2侧依次形成。此外,在此实施方式中,保护层8相当于权利要求书中所述的“绝缘层”。以下,对各部分进行详细叙述。
基板2包含可透过光的任意材料,例如可包含聚对苯二甲酸乙二酯(Polyethyleneterephthalate,PET)、聚萘二甲酸乙二酯(Polyethylene naphthalate,PEN)、聚醚砜(Polyether sulfone,PES)、丙烯酸、聚酰亚胺等塑料(合成树脂)等树脂材料或玻璃材料。
栅极电极3通过施加至薄膜晶体管1的栅极电压来控制半导体层5中的载体密度。所述栅极电极3包含具有高导电性的任意材料,例如可包含选自Si、Al、Mo、Cr、Ta、Ti、Pt、Au、Ag等中的一种以上的金属。另外,也可包含Al-Nd、Ag合金、氧化锡、氧化锌、氧化铟、氧化铟锡(Indium Tin Oxide,ITO)、氧化锌铟(Indium Zinc Oxide,IZO)、In-Ga-Zn-O(IGZO)等金属氧化物的导电性膜。栅极电极3也可包含这些导电性膜的单层结构或两层以上的层叠结构。
栅极绝缘层4包含具有高绝缘性的任意绝缘材料,例如可为包含选自SiOx、SiNx、SiON、Al2O3、Y2O3、Ta2O5、Hf2等中的一个以上的氧化物的绝缘膜。栅极绝缘层4也可为将这些导电性膜设为单层结构或两层以上的层叠结构。
半导体层(通道层)5使在源极电极6与漏极电极7之间流动的电流通过。本实施方式的半导体层5包含氧化物半导体,例如包含选自In、Ga、Zn、Sn、Al、Ti等中的至少一种元素的氧化物作为主要成分。作为构成半导体层5的材料的具体例,例如可列举:In-Ga-Zn-O(IGZO)、In-Al-Mg-O、In-Al-Zn-O或In-Hf-Zn-O等。所述半导体层5包含非晶质(amorphous)的氧化物半导体膜。本实施方式的半导体层5为单层结构,但并不限于此,也可为将组成或结晶性互不相同的多个层重叠而构成的层叠结构。
源极电极6及漏极电极7以局部覆盖半导体层5的表面的方式相互分离地形成。源极电极6及漏极电极7与栅极电极3同样,包含具有高导电性的材料,以便作为电极发挥功能。源极电极6及漏极电极7可为包含单一材料的单层结构,也可为将包含互不相同的材料的多层重叠而成的层叠结构。
保护层(钝化层)8覆盖并保护自源极电极6与漏极电极7之间露出的半导体层5的表面(通道区域),且包含绝缘性的材料。保护层8被设置成至少与半导体层5的表面接触。本实施方式的保护层8以进一步覆盖源极电极6及漏极电极7的表面的方式设置。
具体而言,所述保护层8包含含氟氮氧化硅膜(SiON:F)。所述含氟氮氧化硅膜的固定电荷密度优选为3×1011cm-2以下,更优选为1×1011cm-2以下。
此外,在保护层8之上,也可根据需要进而设置包含例如含氟氧化硅膜(SiN:F)、含氟氧化硅膜(SiO:F)、氮化硅膜(SiNx)、氧化硅膜(SiOx)等的第二保护层。
<2.薄膜晶体管的制造方法>
接着,参照图2对所述结构的薄膜晶体管1的制造方法进行说明。
本实施方式的薄膜晶体管1的制造方法包括栅极电极形成工序、栅极绝缘层形成工序、半导体层形成工序、源汲-漏极电极形成工序、等离子体处理工序及保护层形成工序。此外,在此实施方式中,保护层形成工序相当于权利要求书中所述的“绝缘层形成工序”。以下,对各工序进行说明。
(1)栅极电极形成工序
首先,如图2的(a)所示,准备包含例如PET等树脂材料的基板2,在基板2的表面形成栅极电极3。栅极电极3的形成方法并无特别限制,例如可通过真空蒸镀法等已知方法来形成。
(2)栅极绝缘层形成工序
接着,如图2的(b)所示,以覆盖基板2及栅极电极3的表面的方式形成栅极绝缘层4。栅极绝缘层4的形成方法并无特别限定,可通过已知方法来形成。
(3)半导体层形成工序
接着,如图2的(c)所示,在栅极绝缘层4上形成半导体层5。所述半导体层5可通过已知方法来形成。例如,可通过使用感应耦合型的等离子体,以InGaZnO等导电性氧化物烧结体为靶材进行溅镀来形成半导体层5。此外,并不限于此,也可通过其他方法来形成包含氧化物半导体的半导体层5。
(4)源极-漏极电极形成工序
接着,如图2的(d)所示,在半导体层5上形成源极电极6及漏极电极7。源极电极6及漏极电极7的形成例如可通过使用射频(Radio Frequency,RF)磁控溅镀等的已知方法来形成。源极电极6及漏极电极7以在半导体层5的表面上相互分离,使半导体层5的表面的一部分露出的方式形成。
(5)等离子体处理工序
接着,于在半导体层5的表面形成保护层8之前,对半导体层5的表面进行等离子体处理(成膜前处理)。具体而言,所述等离子体处理是使用图3所例示那样的感应耦合型等离子体处理装置100来进行。具体而言,等离子体处理装置100包括:真空容器20,经真空排气且在内侧形成有被导入工艺气体G的处理室10;天线30,设置于处理室10的外部;以及高频电源40,向天线30施加高频(13.56MHz)。当自高频电源40向天线30施加高频时,在处理室10内形成自天线30产生的高频磁场,由此产生感应电场,由此生成感应耦合型的等离子体P。
具体而言,在所述工序中,将至少包含氮气与氧气的混合气体作为工艺气体供给至处理室10内,在此状态下向天线30施加高频而产生感应耦合型的等离子体。关于此处供给的工艺气体,氮气的流量相对于氮气与氧气的合计流量的比例(N2/N2+O2)优选为70%以上,更优选为80%以上,进而优选为90%以上。氮气的流量比例越大,越可减小之后形成的保护层8中的固定电荷密度,因此优选。另外,所述工序优选为在基板温度为150℃以上且300℃以下的低温下进行。进行等离子体处理的处理时间并无特别限定,就进一步减小保护层8中的固定电荷密度的观点而言,优选为15秒以上且45秒以下。除此之外,RF功率、成膜时压力、工艺气体的绝对量等可适宜设定。
(6)保护层形成工序
在等离子体处理工序之后,如图2的(e)所示,以覆盖自源极电极6及漏极电极7之间露出的半导体层5的表面的方式形成保护层8。所述保护层8的形成例如使用所述等离子体CVD装置100并利用等离子体CVD法(化学气相沈积法)进行。此处,在维持等离子体处理工序中在等离子体CVD装置100的处理室10内生成的等离子体的状态下转移到保护层形成工序。
具体而言,在所述保护层形成工序中,向处理室10内供给包含SiF4(四氟化硅)气体、氮气、氧气以及氢气的混合气体作为工艺气体,在此状态下向天线30施加高频而产生感应耦合型的等离子体。在所供给的工艺气体中,氮气的流量相对于氮气与氧气的合计流量的比例(N2/N2+O2)并无特别限定,例如优选为与所述等离子体处理工序中的流量比例大致相同。另外,所述工序优选为在基板温度为150℃以上且300℃以下的低温下进行。除此之外,RF功率、成膜时压力、工艺气体的绝对量等可适宜设定。
根据需要,也可在保护层8之上形成包含例如含氟氧化硅膜(SiN:F)、含氟氧化硅膜(SiO:F)、氮化硅膜(SiNx)、氧化硅膜(SiOx)等的第二保护层。所述保护层的成膜与保护层8同样,可使用等离子体CVD装置进行。
(7)热处理工序
根据需要,也可在包含氧的大气压下的环境中进行热处理。热处理中的炉内温度并无特别限定,例如为150℃以上且300℃以下。另外,热处理时间并无特别限定,例如为1小时以上且3小时以下。
通过以上内容,可获得本实施方式的薄膜晶体管1。
<3.本实施方式的效果>
若为如此构成的本实施方式的薄膜晶体管1的制造方法,则在形成半导体层之后,在等离子体处理工序中对半导体层5的表面进行等离子体处理而使其活性化,并在此状态下形成保护层8,因此即使是300℃以下的低温工艺,也可形成固定电荷密度良好的保护层8。由此,可制造栅极阈值电压高、可靠性优异的薄膜晶体管1。
另外,由于在等离子体处理工序中供给的氮气的流量相对于氮气与氧气的合计流量的比例、和在保护层形成工序中供给的氮气的流量相对于氮气与氧气的合计流量的比例相同,因此可在稳定地维持等离子体处理工序中产生的等离子体的状态下转移到保护层形成工序。由此可缩短产距时间,可降低制造成本。另外,由于可在稳定地维持等离子体的状态下转移到保护层形成工序,因此可抑制SiF4气体等工艺气体物理吸附于半导体层5与保护层8的界面上,从而可获得密合性更高的优质界面。
<4.其他变形实施方式>
此外,本发明并不限于所述实施方式。
所述实施方式的薄膜晶体管1是自基板2侧依次层叠栅极电极3、栅极绝缘层4及半导体层5而成的底栅极型,但并不限于此。在其他实施方式中,如图4所示,薄膜晶体管1可为自基板2侧依次层叠半导体层5、栅极绝缘层4及栅极电极3而成的顶栅极型。在此情况下,层叠于半导体层5上的栅极绝缘层4相当于权利要求书中所述的“绝缘层”。在此情况下,栅极绝缘层4优选为包含含氟氮氧化硅膜(SiON:F)、含氟氧化硅膜(SiN:F)、含氟氧化硅膜(SiO:F)、氮化硅膜(SiNx)、氧化硅膜(SiOx)等,其固定电荷密度优选为3×1011cm-2以下。
另外,在薄膜晶体管1为顶栅极型的情况下,其制造方法通过依次进行上文所述的半导体层形成工序、源极-漏极电极形成工序、等离子体处理工序、栅极绝缘层形成工序及栅极电极形成工序来进行。在此情况下,栅极绝缘层形成工序相当于权利要求书中所述的“绝缘层形成工序”。
因此,在此实施方式中,栅极绝缘层形成工序是将SiF4(四氟化硅)气体、氮气、氧气及氢气的混合气体用作工艺气体,并通过等离子体CVD法来进行。具体方法与所述保护层形成工序相同。
在所述实施方式中,半导体层5包含氧化物半导体,但并不限于此。在其他实施方式中,半导体层5可包含例如非晶质Si或多晶Si等任意半导体材料。
在所述实施方式中,保护层8为含氟氮氧化硅膜,但并不限于此。在其他实施方式中,保护层8也可为包含含氟氧化硅膜(SiN:F)、含氟氧化硅膜(SiO:F)、氮化硅膜(SiNx)、氧化硅膜(SiOx)等绝缘材料的膜。
另外,在所述实施方式中,在进行半导体层形成工序及源汲-漏极电极形成工序之后进行等离子体处理工序,但并不限于此。在其他实施方式中,也可在半导体层形成工序之后且源极-漏极电极形成工序之前进行等离子体处理工序。
除此之外,本发明并不限于所述实施方式,当然能够在不脱离其主旨的范围内进行各种变形。
实施例
以下,列举实施例来更具体地说明本发明。本发明并不受以下实施例的限制,当然能够在可适合上述、后述的主旨的范围内适当施加变更来实施,这些均包含于本发明的技术范围内。
<对半导体层的等离子体处理与固定电荷密度的关系性>
评价了绝缘层成膜前的对半导体层表面的等离子体处理与成膜后的绝缘层的固定电荷密度的关系性。
(样品制作)
具体而言,在此实施例中,使用所述等离子体CVD装置对n型的Si基板的表面进行等离子体处理后,通过等离子体CVD法将含氟氮氧化硅膜形成于硅基板表面,然后在大气环境下以250℃进行60分钟热处理,由此制作多个金属-绝缘体-半导体(Metal-Insulator-Semiconductor,MIS)结构的样品。
对于任一样品,对硅基板的等离子体处理均是使用G4基板尺寸(680mm×880mm)的等离子体处理装置,供给包含氮与氧的混合气体作为工艺气体,并在RF功率:0.47W/cm2、成膜时的压力:6Pa、设定温度:200℃的条件下进行。此处,针对所制作的每个样品,变更了等离子体处理的时间
Figure SMS_1
Figure SMS_2
及氮气的流量相对于氮气及氧气的合计流量的比例(0%、96.7%)。另外,对于任一样品,均使用等离子体CVD装置,并使用SiF4、N2、O2及H2的混合气体作为原料气体,且在RF功率:0.71W/cm2、成膜时的压力:6Pa、设定温度:200℃、气体流量:SiF4/N2/O2/H2=200/1160/40/360sccm的条件下进行等离子体处理后的绝缘层的成膜处理。
(固定电荷密度的测定)
接着,对所制作的各样品的固定电荷密度进行测定。具体而言,形成分别与含氟氮氧化硅膜及Si基板接触的含铝的电极,根据CV测定来求出平带偏移量,由此计算出各样品的固定电荷密度。将其结果示于图5中。根据图5可知,使用工艺气体中的氮气的流量的比例为96.7%的混合气体进行了等离子体处理的样品显示出3×1011cm-2以下的良好的固定电荷密度。进而可知,将等离子体处理时间设为15秒~45秒的样品显示出1×1011cm-2以下的良好的固定电荷密度。
产业上的可利用性
根据本发明,可提供一种可在低温工艺中形成固定电荷密度良好的绝缘层的、薄膜晶体管的制造方法。
符号的说明
1:薄膜晶体管
2:基板
3:栅极电极
4:栅极绝缘层
5:半导体层
6:源极电极
7:漏极电极
8:保护层。

Claims (7)

1.一种薄膜晶体管的制造方法,包括:等离子体处理工序,使用包含氮及氧的混合气体作为工艺气体来对半导体层的表面进行等离子体处理;以及
绝缘层形成工序,使用包含SiF4、氮、氧及氢的混合气体作为工艺气体,通过等离子体化学气相沈积法,在所述等离子体处理后的半导体层之上形成绝缘层。
2.根据权利要求1所述的薄膜晶体管的制造方法,其中,所述绝缘层为含氟氮氧化硅膜。
3.根据权利要求1或2所述的薄膜晶体管的制造方法,其中,所述绝缘层的固定电荷密度为3×1011cm-2以下。
4.根据权利要求1至3中任一项所述的薄膜晶体管的制造方法,其中,在所述等离子体处理工序中供给的氮气的流量相对于氮气与氧气的合计流量的比例为90%以上。
5.根据权利要求1至4中任一项所述的薄膜晶体管的制造方法,其中,在所述等离子体处理工序中供给的氮气的流量相对于氮气与氧气的合计流量的比例、和在所述绝缘层形成工序中供给的氮气的流量相对于氮气与氧气的合计流量的比例相同。
6.根据权利要求1至5中任一项所述的薄膜晶体管的制造方法,其中,在300℃以下进行所述等离子体处理工序及所述绝缘层形成工序。
7.根据权利要求1至6中任一项所述的薄膜晶体管的制造方法,其中,所述半导体层包含In-Ga-Zn-O。
CN202180063924.4A 2020-12-18 2021-11-22 薄膜晶体管的制造方法 Pending CN116324019A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020210352A JP2022097012A (ja) 2020-12-18 2020-12-18 薄膜トランジスタの製造方法
JP2020-210352 2020-12-18
PCT/JP2021/042788 WO2022130912A1 (ja) 2020-12-18 2021-11-22 薄膜トランジスタの製造方法

Publications (1)

Publication Number Publication Date
CN116324019A true CN116324019A (zh) 2023-06-23

Family

ID=82058783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180063924.4A Pending CN116324019A (zh) 2020-12-18 2021-11-22 薄膜晶体管的制造方法

Country Status (5)

Country Link
JP (1) JP2022097012A (zh)
KR (1) KR20230051692A (zh)
CN (1) CN116324019A (zh)
TW (1) TWI801019B (zh)
WO (1) WO2022130912A1 (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260044A (ja) * 2008-04-17 2009-11-05 Hitachi Displays Ltd 表示装置
TWI500159B (zh) * 2008-07-31 2015-09-11 Semiconductor Energy Lab 半導體裝置和其製造方法
WO2011118510A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN103875077B (zh) * 2011-10-07 2016-09-28 住友电气工业株式会社 绝缘膜及其制造方法
US8901556B2 (en) * 2012-04-06 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Insulating film, method for manufacturing semiconductor device, and semiconductor device
US9929279B2 (en) * 2014-02-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6392061B2 (ja) * 2014-10-01 2018-09-19 東京エレクトロン株式会社 電子デバイス、その製造方法、及びその製造装置
WO2016199680A1 (ja) * 2015-06-08 2016-12-15 シャープ株式会社 半導体装置およびその製造方法
TW201812419A (zh) * 2016-07-25 2018-04-01 半導體能源研究所股份有限公司 電晶體的製造方法及顯示裝置
JP6924943B2 (ja) 2017-05-12 2021-08-25 東京エレクトロン株式会社 成膜方法及び成膜装置

Also Published As

Publication number Publication date
TW202225441A (zh) 2022-07-01
TWI801019B (zh) 2023-05-01
JP2022097012A (ja) 2022-06-30
KR20230051692A (ko) 2023-04-18
WO2022130912A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
JP6411820B2 (ja) 半導体装置および半導体装置の作製方法
KR102513073B1 (ko) 반도체 장치 및 그 제작 방법
KR102273623B1 (ko) 반도체 장치 및 그 제작방법
KR101747158B1 (ko) 반도체 장치를 제작하기 위한 방법
CN111902929A (zh) 用于含金属材料的高压退火处理
US20160329255A1 (en) Semiconductor device, measurement apparatus, and measurement method of relative permittivity
US11728392B2 (en) Composite oxide semiconductor and transistor
WO2014005841A1 (en) A method for fabricating a thin film transistor
KR20150136726A (ko) 산화물 반도체 박막 트랜지스터의 제조방법
Zhang et al. Ultrathin-Body TiO 2 Thin Film Transistors With Record On-Current Density, ON/OFF Current Ratio, and Subthreshold Swing via O 2 Annealing
CN111226307B (zh) 氧化物半导体薄膜、薄膜晶体管和溅射靶
CN116324019A (zh) 薄膜晶体管的制造方法
CN113169232A (zh) 薄膜晶体管及其制造方法
CN116982142A (zh) 氮氧化硅膜的成膜方法及薄膜晶体管的制造方法
US10748759B2 (en) Methods for improved silicon nitride passivation films
WO2022004838A1 (ja) 薄膜トランジスタ
Jeon et al. Contact properties of a low-resistance aluminum-based electrode with metal capping layers in vertical oxide thin-film transistors
Ahn et al. Effects of Hydrogen Doping on a-GIZO Thin-Film Transistors With Hafnium Dioxide Gate Insulators Formed by Atomic Layer Deposition at Different Temperatures
CN111052397A (zh) 薄膜晶体管及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination