CN116301159A - Low-temperature-drift bipolar band-gap reference voltage source - Google Patents
Low-temperature-drift bipolar band-gap reference voltage source Download PDFInfo
- Publication number
- CN116301159A CN116301159A CN202310288936.8A CN202310288936A CN116301159A CN 116301159 A CN116301159 A CN 116301159A CN 202310288936 A CN202310288936 A CN 202310288936A CN 116301159 A CN116301159 A CN 116301159A
- Authority
- CN
- China
- Prior art keywords
- transistor
- resistor
- reference voltage
- module
- bandgap reference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
- G05F1/561—Voltage to current converters
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
技术领域technical field
本发明属于模拟集成电路领域,涉及一种低温漂的双极带隙基准电压源。The invention belongs to the field of analog integrated circuits, and relates to a low-temperature drift bipolar bandgap reference voltage source.
背景技术Background technique
近年来,随着电子产品的不断发展和升级,对集成电路芯片的性能要求越来越高。带隙基准电压源作为数模转换器、模数转换器以及开关电源等系统中的重要组成部分,具有高精度、低温漂和稳定性的特点,可为系统提供不受电源电压、工作温度和工艺参数影响的稳定电压。In recent years, with the continuous development and upgrading of electronic products, the performance requirements of integrated circuit chips are getting higher and higher. As an important part of systems such as digital-to-analog converters, analog-to-digital converters and switching power supplies, the bandgap reference voltage source has the characteristics of high precision, low temperature drift and stability, and can provide the system with independent power supply voltage, operating temperature and Stabilized voltage influenced by process parameters.
现有的带隙基准电压源利用具有负温度系数的基极-发射极电压VBE叠加正温度系数的N·Vt结构,缺少温度补偿结构,无法消除温度对输出的基准电压的高阶影响,输出的基准电压受温度变化影响明显,不利于系统级用户的选型设计。The existing bandgap reference voltage source uses the base-emitter voltage VBE with a negative temperature coefficient to superimpose the N Vt structure with a positive temperature coefficient, lacks a temperature compensation structure, and cannot eliminate the high-order influence of temperature on the output reference voltage, the output The reference voltage is significantly affected by temperature changes, which is not conducive to the selection and design of system-level users.
发明内容Contents of the invention
本发明的目的在于克服上述现有技术中,现有带隙基准电压源无法消除温度对输出的基准电压的高阶影响,输出的基准电压受温度变化影响明显的缺点,提供一种低温漂的双极带隙基准电压源。The purpose of the present invention is to overcome the disadvantages of the above-mentioned prior art that the existing bandgap reference voltage source cannot eliminate the high-order influence of temperature on the output reference voltage, and the output reference voltage is obviously affected by temperature changes, and provide a low-temperature drift Bipolar Bandgap Voltage Reference.
为达到上述目的,本发明采用以下技术方案予以实现:In order to achieve the above object, the present invention adopts the following technical solutions to achieve:
一种低温漂的双极带隙基准电压源,包括带隙基准模块、温度补偿模块和直流偏置模块;温度补偿模块与带隙基准模块连接,直流偏置模块与带隙基准模块和温度补偿模块均连接;带隙基准模块用于生成一阶补偿的带隙基准电压;温度补偿模块用于生成高阶PTAT电流,并通过高阶PTAT电流补偿带隙基准电压中负温度系数的高阶项,得到低温漂的带隙基准电压;直流偏置模块用于生成第一偏置电流和第二偏置电流,并分别发送至带隙基准模块和温度补偿模块。A low-temperature drift bipolar bandgap reference voltage source, including a bandgap reference module, a temperature compensation module and a DC bias module; the temperature compensation module is connected to the bandgap reference module, and the DC bias module is connected to the bandgap reference module and temperature compensation The modules are all connected; the bandgap reference module is used to generate a first-order compensated bandgap reference voltage; the temperature compensation module is used to generate a high-order PTAT current, and compensate the high-order term of the negative temperature coefficient in the bandgap reference voltage through the high-order PTAT current , to obtain a bandgap reference voltage with low temperature drift; the DC bias module is used to generate a first bias current and a second bias current, and send them to the bandgap reference module and the temperature compensation module respectively.
可选的,所述带隙基准模块包括第一晶体管Q1、第二晶体管Q2、第三晶体管Q3、第四晶体管Q4和第一电阻R1、第二电阻R2和第三电阻R3;第三电阻R3的第一端设置第一输出节点,第二端连接第二电阻R2的第一端;第二电阻R2的第二端连接第一晶体管Q1的发射极和第二晶体管Q2的发射极;第一晶体管Q1的基极上设置第二输出节点,并和第二晶体管Q2的基极连接;第一晶体管Q1的集电极连接第三晶体管Q3的集电极;第二晶体管Q2的集电极连接第四晶体管Q4的集电极;第三晶体管Q3的基极连接第四晶体管Q4的基极;第四晶体管Q4的基极与集电极短接,发射极连接第一电阻R1的第一端。Optionally, the bandgap reference module includes a first transistor Q1, a second transistor Q2, a third transistor Q3, a fourth transistor Q4, and a first resistor R1, a second resistor R2, and a third resistor R3; the third resistor R3 The first end of the first output node is set as the first output node, the second end is connected to the first end of the second resistor R2; the second end of the second resistor R2 is connected to the emitter of the first transistor Q1 and the emitter of the second transistor Q2; the first A second output node is provided on the base of the transistor Q1 and connected to the base of the second transistor Q2; the collector of the first transistor Q1 is connected to the collector of the third transistor Q3; the collector of the second transistor Q2 is connected to the fourth transistor The collector of Q4; the base of the third transistor Q3 is connected to the base of the fourth transistor Q4; the base of the fourth transistor Q4 is short-circuited to the collector, and the emitter is connected to the first end of the first resistor R1.
可选的,所述第三晶体管Q3的发射极接地;第一电阻R1的第二端接地。Optionally, the emitter of the third transistor Q3 is grounded; the second end of the first resistor R1 is grounded.
可选的,所述第三晶体管Q3和第四晶体管Q4的发射区面积比例为1:8。Optionally, the area ratio of the emitter regions of the third transistor Q3 and the fourth transistor Q4 is 1:8.
可选的,所述温度补偿模块包括第六晶体管Q6、第七晶体管Q7、第八晶体管Q8、第九晶体管Q9、第十晶体管Q10、第十一晶体管Q11、第四电阻R4、第五电阻R5和第六电阻R6;第六晶体管Q6的发射极连接第一输出节点,集电极连接第二电阻R2的第一端,基极连接第七晶体管Q7的基极;第七晶体管Q7的发射极连接第一输出节点,集电极与基极短接;第九晶体管Q9的集电极连接第七晶体管Q7的集电极,基极连接第五电阻R5的第二端,发射极连接第四电阻R4的第一端;第八晶体管Q8的集电极连接第一输出节点,基极连接第十晶体管Q10的基极,发射极连接第四电阻R4的第一端;第十晶体管Q10的集电极与基极短接,发射极连接第十一晶体管Q11的集电极;第十一晶体管Q11的基极与集电极短接;第五电阻R5的第一端接第八晶体管Q8的基极,第二端接第六电阻R6的第一端;第六电阻R6的第二端接第十晶体管Q10的发射极。Optionally, the temperature compensation module includes a sixth transistor Q6, a seventh transistor Q7, an eighth transistor Q8, a ninth transistor Q9, a tenth transistor Q10, an eleventh transistor Q11, a fourth resistor R4, and a fifth resistor R5 and the sixth resistor R6; the emitter of the sixth transistor Q6 is connected to the first output node, the collector is connected to the first end of the second resistor R2, and the base is connected to the base of the seventh transistor Q7; the emitter of the seventh transistor Q7 is connected to The first output node, the collector and the base are short-circuited; the collector of the ninth transistor Q9 is connected to the collector of the seventh transistor Q7, the base is connected to the second end of the fifth resistor R5, and the emitter is connected to the second end of the fourth resistor R4 One end; the collector of the eighth transistor Q8 is connected to the first output node, the base is connected to the base of the tenth transistor Q10, and the emitter is connected to the first end of the fourth resistor R4; the collector of the tenth transistor Q10 is short to the base The emitter is connected to the collector of the eleventh transistor Q11; the base of the eleventh transistor Q11 is short-circuited to the collector; the first end of the fifth resistor R5 is connected to the base of the eighth transistor Q8, and the second end is connected to the first The first end of the sixth resistor R6; the second end of the sixth resistor R6 is connected to the emitter of the tenth transistor Q10.
可选的,所述第四电阻R4的第二端接地;第十一晶体管Q11的发射极接地。Optionally, the second end of the fourth resistor R4 is grounded; the emitter of the eleventh transistor Q11 is grounded.
可选的,所述第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5以及第六电阻R6均为多晶硅电阻。Optionally, the first resistor R1 , the second resistor R2 , the third resistor R3 , the fourth resistor R4 , the fifth resistor R5 and the sixth resistor R6 are all polysilicon resistors.
可选的,所述第六晶体管Q6和第七晶体管Q7的发射区面积比例为1:1;所述第八晶体管Q8、第九晶体管Q9、第十晶体管Q10和第十一晶体管Q11的发射区面积比例为1:1:2:2。Optionally, the emitter area ratio of the sixth transistor Q6 and the seventh transistor Q7 is 1:1; the emitter areas of the eighth transistor Q8, the ninth transistor Q9, the tenth transistor Q10, and the eleventh transistor Q11 The area ratio is 1:1:2:2.
可选的,所述直流偏置模块包括第五晶体管Q5、第一电流源I1、第二电流源I2和第三电流源I3;第五晶体管Q5的基极接第三电流源I3的第一端,集电极接第一输出节点;第一电流源I1的第一端接第十晶体管Q10的集电极;第二电流源I2的第一端接第二输出节点。Optionally, the DC bias module includes a fifth transistor Q5, a first current source I1, a second current source I2, and a third current source I3; the base of the fifth transistor Q5 is connected to the first current source of the third current source I3. terminal, the collector is connected to the first output node; the first terminal of the first current source I1 is connected to the collector of the tenth transistor Q10; the first terminal of the second current source I2 is connected to the second output node.
可选的,所述第五晶体管Q5的发射极、第一电流源I1的第二端、第二电流源I2的第二端以及第三电流源I3的第二端均连接电源VCC。Optionally, the emitter of the fifth transistor Q5, the second terminal of the first current source I1, the second terminal of the second current source I2 and the second terminal of the third current source I3 are all connected to the power supply VCC.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明低温漂的双极带隙基准电压源,设置带隙基准模块、温度补偿模块和直流偏置模块,通过带隙基准模块提供经一阶补偿的带隙基准电压,通过温度补偿模块提供高阶PTAT电流,并通过高阶PTAT电流补偿带隙基准电压中负温度系数的高阶项,得到低温漂的带隙基准电压,通过直流偏置模块为带隙基准模块和温度补偿模块的工作提供直流偏置。该双极带隙基准电压源可工作在不同温度的工作状态下,基于温度补偿模块产生的变化的高阶PTAT电流,使输出的带隙基准电压不受温度的变化,具有低温漂、适应双极型工艺的特点,提高了基准电压源电路的应用适用性,可广泛应用在各种电源类管理和驱动类芯片中,具有良好的应用前景和经济效益。有效解决了现有带隙基准结构中由于不包含温度补偿结构,无法消除温度对输出的带隙基准电压的高阶影响,导致输出的带隙基准电压受温度变化影响明显,不利于系统级用户的选型设计的缺陷。The low-temperature drift bipolar bandgap reference voltage source of the present invention is provided with a bandgap reference module, a temperature compensation module and a DC bias module, and provides a first-order compensated bandgap reference voltage through the bandgap reference module, and provides a high voltage through the temperature compensation module. order PTAT current, and compensate the high-order term of the negative temperature coefficient in the bandgap reference voltage through the high-order PTAT current to obtain a low-temperature drift bandgap reference voltage, and provide the work of the bandgap reference module and temperature compensation module through the DC bias module DC bias. The bipolar bandgap reference voltage source can work at different temperatures. Based on the changing high-order PTAT current generated by the temperature compensation module, the output bandgap reference voltage is not affected by temperature changes, and has low temperature drift and adapts to dual The characteristics of the pole-type process improve the application applicability of the reference voltage source circuit, and can be widely used in various power supply management and drive chips, with good application prospects and economic benefits. Effectively solve the problem that the existing bandgap reference structure does not include a temperature compensation structure, which cannot eliminate the high-order influence of temperature on the output bandgap reference voltage, resulting in the output bandgap reference voltage being significantly affected by temperature changes, which is not conducive to system-level users Defects in the selection design.
附图说明Description of drawings
图1为现有带隙基准电压源结构示意图。FIG. 1 is a schematic structural diagram of an existing bandgap reference voltage source.
图2为本发明的低温漂的双极带隙基准电压源结构示意图。Fig. 2 is a schematic structural diagram of the low-temperature drift bipolar bandgap reference voltage source of the present invention.
图3为本发明的温度补偿的基准电压温度特性曲线图。FIG. 3 is a temperature characteristic curve diagram of the reference voltage of the temperature compensation of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only It is an embodiment of a part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first" and "second" in the description and claims of the present invention and the above drawings are used to distinguish similar objects, but not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product or device comprising a sequence of steps or elements is not necessarily limited to the expressly listed instead, may include other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.
下面结合附图对本发明做进一步详细描述:The present invention is described in further detail below in conjunction with accompanying drawing:
参见图1,现有带隙基准源电压源,通常利用具有负温度系数的基极-发射极电压VBE叠加正温度系数的N·Vt,缺少温度补偿结构,无法消除温度对输出的带隙基准电压的高阶影响,输出的带隙基准电压受温度变化影响明显,不利于系统级用户的选型设计。Referring to Figure 1, the existing bandgap reference voltage source usually uses the base-emitter voltage VBE with a negative temperature coefficient to superimpose the N Vt with a positive temperature coefficient, lacks a temperature compensation structure, and cannot eliminate the temperature-to-output bandgap reference Due to the high-order influence of voltage, the output bandgap reference voltage is significantly affected by temperature changes, which is not conducive to the selection and design of system-level users.
参见图2,本发明提供一种低温漂的双极带隙基准电压源,其线路结构设计简单,具有低温漂、高可靠性、适应双极型工艺、芯片面积小以及低成本的特点,提高了基准电压源电路的应用适用性。Referring to Fig. 2, the present invention provides a bipolar bandgap reference voltage source with low temperature drift. Its circuit structure design is simple, it has the characteristics of low temperature drift, high reliability, adaptability to bipolar technology, small chip area and low cost, and improves The application suitability of the reference voltage source circuit is improved.
具体的,该低温漂的双极带隙基准电压源包括带隙基准模块、温度补偿模块和直流偏置模块;温度补偿模块与带隙基准模块连接,直流偏置模块与带隙基准模块和温度补偿模块均连接;带隙基准模块用于生成一阶补偿的带隙基准电压;温度补偿模块用于生成高阶PTAT电流,并通过高阶PTAT电流补偿带隙基准电压中负温度系数的高阶项,得到低温漂的带隙基准电压;直流偏置模块用于生成第一偏置电流和第二偏置电流,并分别发送至带隙基准模块和温度补偿模块。Specifically, the low-temperature drift bipolar bandgap reference voltage source includes a bandgap reference module, a temperature compensation module and a DC bias module; the temperature compensation module is connected to the bandgap reference module, and the DC bias module is connected to the bandgap reference module and the temperature The compensation modules are all connected; the bandgap reference module is used to generate a first-order compensated bandgap reference voltage; the temperature compensation module is used to generate a high-order PTAT current, and compensate the high-order of the negative temperature coefficient in the bandgap reference voltage through the high-order PTAT current item to obtain the bandgap reference voltage with low temperature drift; the DC bias module is used to generate the first bias current and the second bias current, and send them to the bandgap reference module and the temperature compensation module respectively.
其中,带隙基准模块包括第一晶体管Q1、第二晶体管Q2、第三晶体管Q3、第四晶体管Q4和第一电阻R1、第二电阻R2和第三电阻R3;第三电阻R3的第一端设置第一输出节点A,第二端连接第二电阻R2的第一端;第二电阻R2的第二端连接第一晶体管Q1的发射极和第二晶体管Q2的发射极;第一晶体管Q1的基极上设置第二输出节点B,并和第二晶体管Q2的基极连接;第一晶体管Q1的集电极连接第三晶体管Q3的集电极;第二晶体管Q2的集电极连接第四晶体管Q4的集电极;第三晶体管Q3的基极连接第四晶体管Q4的基极;第四晶体管Q4的基极与集电极短接,发射极连接第一电阻R1的第一端。Wherein, the bandgap reference module includes a first transistor Q1, a second transistor Q2, a third transistor Q3, a fourth transistor Q4 and a first resistor R1, a second resistor R2 and a third resistor R3; the first terminal of the third resistor R3 The first output node A is set, and the second end is connected to the first end of the second resistor R2; the second end of the second resistor R2 is connected to the emitter of the first transistor Q1 and the emitter of the second transistor Q2; A second output node B is set on the base and connected to the base of the second transistor Q2; the collector of the first transistor Q1 is connected to the collector of the third transistor Q3; the collector of the second transistor Q2 is connected to the collector of the fourth transistor Q4 collector; the base of the third transistor Q3 is connected to the base of the fourth transistor Q4; the base of the fourth transistor Q4 is short-circuited to the collector, and the emitter is connected to the first terminal of the first resistor R1.
带隙基准模块利用第一晶体管Q1、第二晶体管Q2、第三晶体管Q3、第四晶体管Q4和第一电阻R1生成与温度正相关的电流(即PTAT电流),利用第二电阻R2和第三电阻R3生成PTAT电压,利用第一晶体管Q1的基极-发射极电压VBE叠加PTAT电压生成一阶补偿的带隙基准电压。The bandgap reference module uses the first transistor Q1, the second transistor Q2, the third transistor Q3, the fourth transistor Q4 and the first resistor R1 to generate a current positively related to temperature (ie PTAT current), and uses the second resistor R2 and the third The resistor R3 generates a PTAT voltage, and the base-emitter voltage VBE of the first transistor Q1 is used to superimpose the PTAT voltage to generate a first-order compensated bandgap reference voltage.
温度补偿模块包括第六晶体管Q6、第七晶体管Q7、第八晶体管Q8、第九晶体管Q9、第十晶体管Q10、第十一晶体管Q11、第四电阻R4、第五电阻R5和第六电阻R6;第六晶体管Q6的发射极连接第一输出节点A,集电极连接第二电阻R2的第一端,基极连接第七晶体管Q7的基极;第七晶体管Q7的发射极连接第一输出节点A,集电极与基极短接;第九晶体管Q9的集电极连接第七晶体管Q7的集电极,基极连接第五电阻R5的第二端,发射极连接第四电阻R4的第一端;第八晶体管Q8的集电极连接第一输出节点A,基极连接第十晶体管Q10的基极,发射极连接第四电阻R4的第一端;第十晶体管Q10的集电极与基极短接,发射极连接第十一晶体管Q11的集电极;第十一晶体管Q11的基极与集电极短接;第五电阻R5的第一端接第八晶体管Q8的基极,第二端接第六电阻R6的第一端;第六电阻R6的第二端接第十晶体管Q10的发射极。The temperature compensation module includes a sixth transistor Q6, a seventh transistor Q7, an eighth transistor Q8, a ninth transistor Q9, a tenth transistor Q10, an eleventh transistor Q11, a fourth resistor R4, a fifth resistor R5 and a sixth resistor R6; The emitter of the sixth transistor Q6 is connected to the first output node A, the collector is connected to the first end of the second resistor R2, and the base is connected to the base of the seventh transistor Q7; the emitter of the seventh transistor Q7 is connected to the first output node A , the collector is short-circuited to the base; the collector of the ninth transistor Q9 is connected to the collector of the seventh transistor Q7, the base is connected to the second end of the fifth resistor R5, and the emitter is connected to the first end of the fourth resistor R4; The collector of the eighth transistor Q8 is connected to the first output node A, the base is connected to the base of the tenth transistor Q10, and the emitter is connected to the first end of the fourth resistor R4; the collector of the tenth transistor Q10 is short-circuited to the base, and the emitter The pole is connected to the collector of the eleventh transistor Q11; the base of the eleventh transistor Q11 is short-circuited to the collector; the first end of the fifth resistor R5 is connected to the base of the eighth transistor Q8, and the second end is connected to the sixth resistor R6 The first terminal of the sixth resistor R6 is connected to the emitter of the tenth transistor Q10.
温度补偿模块利用第八晶体管Q8、第九晶体管Q9、第十晶体管Q10、第十一晶体管Q11、第四电阻R4、第五电阻R5和第六电阻R6产生高阶PTAT电流,该高阶PTAT电流通过第六晶体管Q6和第七晶体管Q7的镜像作用于第三电阻R3,用于补偿第二晶体管Q2的基极-发射极电压VBE中负温度系数的高阶项,使补偿后输出的带隙基准电压获得低温漂特性。The temperature compensation module uses the eighth transistor Q8, the ninth transistor Q9, the tenth transistor Q10, the eleventh transistor Q11, the fourth resistor R4, the fifth resistor R5 and the sixth resistor R6 to generate a high-order PTAT current, and the high-order PTAT current The mirror image of the sixth transistor Q6 and the seventh transistor Q7 acts on the third resistor R3, which is used to compensate the high-order term of the negative temperature coefficient in the base-emitter voltage VBE of the second transistor Q2, so that the band gap of the output after compensation The reference voltage obtains low temperature drift characteristics.
直流偏置模块包括第五晶体管Q5、第一电流源I1、第二电流源I2和第三电流源I3;第五晶体管Q5的基极接第三电流源I3的第一端,集电极接第一输出节点A;第一电流源I1的第一端接第十晶体管Q10的集电极;第二电流源I2的第一端接第二输出节点B。The DC bias module includes a fifth transistor Q5, a first current source I1, a second current source I2, and a third current source I3; the base of the fifth transistor Q5 is connected to the first end of the third current source I3, and the collector is connected to the first end of the third current source I3. An output node A; the first terminal of the first current source I1 is connected to the collector of the tenth transistor Q10; the first terminal of the second current source I2 is connected to the second output node B.
直流偏置模块中第二电流源I2和第三电流源I3为第五晶体管Q5、第一晶体管Q1和第二晶体管Q2提供偏置电流。其中,第三电流源I3为温度补偿模块提供直流偏置,第五晶体管Q5为带隙基准模块提供直流偏置。The second current source I2 and the third current source I3 in the DC bias module provide bias currents for the fifth transistor Q5, the first transistor Q1 and the second transistor Q2. Wherein, the third current source I3 provides a DC bias for the temperature compensation module, and the fifth transistor Q5 provides a DC bias for the bandgap reference module.
使用时,第三晶体管Q3的发射极接地;第一电阻R1的第二端接地,第四电阻R4的第二端接地;第十一晶体管Q11的发射极接地,第五晶体管Q5的发射极、第一电流源I1的第二端、第二电流源I2的第二端以及第三电流源I3的第二端均连接电源VCC。When in use, the emitter of the third transistor Q3 is grounded; the second end of the first resistor R1 is grounded, the second end of the fourth resistor R4 is grounded; the emitter of the eleventh transistor Q11 is grounded, and the emitter of the fifth transistor Q5, The second terminal of the first current source I1 , the second terminal of the second current source I2 and the second terminal of the third current source I3 are all connected to the power supply VCC.
综上所述,对于由于现有带隙基准结构中不包含温度补偿结构,无法消除温度对输出的基准电压的高阶影响,输出的基准电压受温度变化影响明显,不利于系统级用户的选型设计的缺陷,本发明采用的温度补偿结构可让电路在不同温度的工作状态下,通过产生变化的高阶PTAT补偿电流,使带隙基准电压源输出的带隙基准电压不受温度的变化,具有低温漂、适应双极型工艺的特点,提高了带隙基准电压源电路的应用适用性,可广泛应用在各种电源类管理和驱动类芯片中,具有良好的应用前景和经济效益。In summary, because the existing bandgap reference structure does not include a temperature compensation structure, the high-order influence of temperature on the output reference voltage cannot be eliminated, and the output reference voltage is significantly affected by temperature changes, which is not conducive to the selection of system-level users. Due to the defect of type design, the temperature compensation structure adopted in the present invention can allow the circuit to generate a changing high-order PTAT compensation current under the working conditions of different temperatures, so that the bandgap reference voltage output by the bandgap reference voltage source is not affected by temperature changes. , has the characteristics of low temperature drift and adapts to bipolar technology, improves the application applicability of the bandgap reference voltage source circuit, and can be widely used in various power supply management and drive chips, with good application prospects and economic benefits.
可选的,假定第三晶体管Q3的发射区面积与第四晶体管Q4的发射区面积比为1:N,则第三晶体管Q3与第四晶体管Q4的基极-发射极电压差值ΔVBE关系为:ΔVBE=VBE3-VBE4=VTlnN,其中,VT为热电压,正比于温度T, Optionally, assuming that the ratio of the emitter area of the third transistor Q3 to the emitter area of the fourth transistor Q4 is 1:N, the relationship between the base-emitter voltage difference ΔV BE of the third transistor Q3 and the fourth transistor Q4 is It is: ΔV BE =V BE3 -V BE4 =V T lnN, wherein, V T is thermal voltage, proportional to temperature T,
ΔVBE作用于第一电阻R1,产生PTAT电流IPTAT:流经第一电阻R1和第二电阻R2的电流为两倍的IPTAT。ΔV BE acts on the first resistor R1 to generate PTAT current I PTAT : The current flowing through the first resistor R1 and the second resistor R2 is twice I PTAT .
该带隙基准电压关系式如下:The bandgap reference voltage relation is as follows:
可选的,本实施方式中设计N为8,第一电阻R1为阻值为52kΩ的多晶硅电阻,第二电阻R2为阻值为138kΩ的多晶硅电阻,第三电阻R3为阻值为98kΩ的多晶硅电阻。Optionally, in this embodiment, N is designed to be 8, the first resistor R1 is a polysilicon resistor with a resistance value of 52kΩ, the second resistor R2 is a polysilicon resistor with a resistance value of 138kΩ, and the third resistor R3 is a polysilicon resistor with a resistance value of 98kΩ resistance.
可选的,假定第六晶体管Q6和第七晶体管Q7的发射区面积比例为1:1;所述第八晶体管Q8、第九晶体管Q9、第十晶体管Q10和第十一晶体管Q11的发射区面积比例为1:1:2:2。Optionally, it is assumed that the emission area ratio of the sixth transistor Q6 and the seventh transistor Q7 is 1:1; the emission area areas of the eighth transistor Q8, the ninth transistor Q9, the tenth transistor Q10, and the eleventh transistor Q11 are The ratio is 1:1:2:2.
当电路工作温度较低时,第十晶体管Q10的基极-发射极电压小于晶体管的开启电压,处于关断状态。偏置电流I1经第五电阻R5、第六电阻R6和第十一晶体管Q11至地。第九晶体管Q9与第八晶体管Q8的集电极电流满足:流经第十一晶体管Q11、第九晶体管Q9与第八晶体管Q8的集电极电流满足:/> When the operating temperature of the circuit is low, the base-emitter voltage of the tenth transistor Q10 is lower than the turn-on voltage of the transistor, and is in an off state. The bias current I1 is sent to ground through the fifth resistor R5, the sixth resistor R6 and the eleventh transistor Q11. The collector currents of the ninth transistor Q9 and the eighth transistor Q8 satisfy: The collector currents flowing through the eleventh transistor Q11, the ninth transistor Q9 and the eighth transistor Q8 satisfy: />
随着电路工作温度升高,第五电阻R5和第六电阻R6上的电流逐渐增大,同时第十晶体管Q10的开启电压减小,第十晶体管10将导通工作。偏置电流I1经第十晶体管10和第十一晶体管Q11至地,故流经第五电阻R5和第六电阻R6上的电流减小。第十一晶体管Q11、第九晶体管Q9与第八晶体管Q8的集电极电流关系仍满足:第九晶体管Q9与第八晶体管Q8的集电极电流关系满足:/> As the operating temperature of the circuit increases, the currents of the fifth resistor R5 and the sixth resistor R6 gradually increase, and at the same time, the turn-on voltage of the tenth transistor Q10 decreases, and the tenth transistor Q10 will be turned on and working. The bias current I1 is connected to the ground through the tenth transistor 10 and the eleventh transistor Q11, so the current flowing through the fifth resistor R5 and the sixth resistor R6 decreases. The relationship between the collector currents of the eleventh transistor Q11, the ninth transistor Q9 and the eighth transistor Q8 still satisfies: The collector current relationship between the ninth transistor Q9 and the eighth transistor Q8 satisfies: />
根据上述,可以看出补偿电流IC9为含高阶项lnT的正温度系数电流。补偿后电路输出的基准电压值满足: According to the above, it can be seen that the compensation current I C9 is a positive temperature coefficient current containing a high-order term lnT. The reference voltage value output by the circuit after compensation satisfies:
本实施方式中,第四电阻R4为阻值为90kΩ的多晶硅电阻,第五电阻R5为阻值为19.5kΩ的多晶硅电阻,第六电阻R6为阻值为212kΩ的多晶硅电阻。In this embodiment, the fourth resistor R4 is a polysilicon resistor with a resistance of 90kΩ, the fifth resistor R5 is a polysilicon resistor with a resistance of 19.5kΩ, and the sixth resistor R6 is a polysilicon resistor with a resistance of 212kΩ.
参见图3,本实施方式中低温漂的双极带隙基准电压源的线路应用的仿真结果,可见,在-55℃~125℃温度范围内,对电路进行温度扫描,带隙基准的输出电压仿真值为1.202V,随温度变化输出基准电压的变化幅度为3.052mV,温漂为14ppm/℃,具有良好的温度特性。Referring to FIG. 3 , the simulation results of the circuit application of the low-temperature drift bipolar bandgap reference voltage source in this embodiment, it can be seen that, in the temperature range of -55°C to 125°C, the temperature of the circuit is scanned, and the output voltage of the bandgap reference The simulated value is 1.202V, the variation range of the output reference voltage with temperature changes is 3.052mV, and the temperature drift is 14ppm/℃, which has good temperature characteristics.
根据以上描述可知:本发明低温漂的双极带隙基准电压源采用的温度补偿结构可让电路在不同温度的工作状态下,产生变化的高阶PTAT补偿电流,使带隙基准电压源输出的基准电压不受温度的变化,具有低温漂、适应双极型工艺的特点,提高了基准电压源电路的应用适用性,可广泛应用在各种电源类管理和驱动类芯片中,具有良好的应用前景和经济效益。According to the above description, it can be seen that the temperature compensation structure adopted by the low-temperature drift bipolar bandgap reference voltage source of the present invention can allow the circuit to produce a variable high-order PTAT compensation current under the working conditions of different temperatures, so that the output of the bandgap reference voltage source The reference voltage is not subject to temperature changes, has the characteristics of low temperature drift and adapts to bipolar technology, improves the application applicability of the reference voltage source circuit, and can be widely used in various power supply management and drive chips, and has good application Prospects and economic benefits.
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。The above content is only to illustrate the technical ideas of the present invention, and cannot limit the protection scope of the present invention. Any changes made on the basis of the technical solutions according to the technical ideas proposed in the present invention shall fall within the scope of the claims of the present invention. within the scope of protection.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310288936.8A CN116301159A (en) | 2023-03-22 | 2023-03-22 | Low-temperature-drift bipolar band-gap reference voltage source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310288936.8A CN116301159A (en) | 2023-03-22 | 2023-03-22 | Low-temperature-drift bipolar band-gap reference voltage source |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116301159A true CN116301159A (en) | 2023-06-23 |
Family
ID=86781373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310288936.8A Pending CN116301159A (en) | 2023-03-22 | 2023-03-22 | Low-temperature-drift bipolar band-gap reference voltage source |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116301159A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117519403A (en) * | 2024-01-05 | 2024-02-06 | 深圳市山海半导体科技有限公司 | Band gap reference circuit and electronic equipment |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000009916A (en) * | 1998-07-29 | 2000-02-15 | 김덕중 | Band gap reference voltage generating circuit |
CN102323842A (en) * | 2011-05-13 | 2012-01-18 | 电子科技大学 | A Bandgap Voltage Reference Source with High-order Temperature Compensation |
CN109343639A (en) * | 2018-11-01 | 2019-02-15 | 西安电子科技大学 | A low temperature drift bandgap reference voltage circuit, method and chip |
CN109634343A (en) * | 2019-01-30 | 2019-04-16 | 西安微电子技术研究所 | It is a kind of using band-gap reference structure as the on piece secondary power supply power supply structure of core |
US11086347B1 (en) * | 2020-02-10 | 2021-08-10 | ZJW Microelectronics Limited | Bandgap reference circuit and electronic device |
CN214202192U (en) * | 2020-12-23 | 2021-09-14 | 上海新微技术研发中心有限公司 | Band gap reference source high-order temperature compensation circuit |
CN216719001U (en) * | 2021-09-09 | 2022-06-10 | 电子科技大学 | Low-temperature drift band gap reference voltage source based on Brokaw structure |
CN114661087A (en) * | 2022-03-09 | 2022-06-24 | 电子科技大学 | Reference voltage source with bias current matching |
CN115437446A (en) * | 2022-09-27 | 2022-12-06 | 江苏润石科技有限公司 | High-precision curvature compensation band gap reference circuit |
-
2023
- 2023-03-22 CN CN202310288936.8A patent/CN116301159A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000009916A (en) * | 1998-07-29 | 2000-02-15 | 김덕중 | Band gap reference voltage generating circuit |
CN102323842A (en) * | 2011-05-13 | 2012-01-18 | 电子科技大学 | A Bandgap Voltage Reference Source with High-order Temperature Compensation |
CN109343639A (en) * | 2018-11-01 | 2019-02-15 | 西安电子科技大学 | A low temperature drift bandgap reference voltage circuit, method and chip |
CN109634343A (en) * | 2019-01-30 | 2019-04-16 | 西安微电子技术研究所 | It is a kind of using band-gap reference structure as the on piece secondary power supply power supply structure of core |
US11086347B1 (en) * | 2020-02-10 | 2021-08-10 | ZJW Microelectronics Limited | Bandgap reference circuit and electronic device |
CN214202192U (en) * | 2020-12-23 | 2021-09-14 | 上海新微技术研发中心有限公司 | Band gap reference source high-order temperature compensation circuit |
CN216719001U (en) * | 2021-09-09 | 2022-06-10 | 电子科技大学 | Low-temperature drift band gap reference voltage source based on Brokaw structure |
CN114661087A (en) * | 2022-03-09 | 2022-06-24 | 电子科技大学 | Reference voltage source with bias current matching |
CN115437446A (en) * | 2022-09-27 | 2022-12-06 | 江苏润石科技有限公司 | High-precision curvature compensation band gap reference circuit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117519403A (en) * | 2024-01-05 | 2024-02-06 | 深圳市山海半导体科技有限公司 | Band gap reference circuit and electronic equipment |
CN117519403B (en) * | 2024-01-05 | 2024-04-09 | 深圳市山海半导体科技有限公司 | Band gap reference circuit and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100489726C (en) | Bandgap reference circuit with low supply voltage and method for supplying bandgap reference current | |
TWI405068B (en) | Voltage and current generator with an approximately zero temperature coefficient | |
CN107340796A (en) | A kind of non-resistance formula high-precision low-power consumption a reference source | |
CN113110678B (en) | High-reliability starting circuit based on low power supply voltage bandgap and control method | |
CN201936216U (en) | Reference voltage source with wide input voltage and high power supply rejection ratio | |
CN116301159A (en) | Low-temperature-drift bipolar band-gap reference voltage source | |
CN112684239A (en) | Low-temperature-drift power supply voltage detection circuit | |
CN107450652A (en) | A kind of voltage reference source circuit | |
RU2461048C1 (en) | Reference voltage source | |
CN214253044U (en) | Current source circuit and electronic equipment | |
CN107272811B (en) | A Low Temperature Coefficient Reference Voltage Source Circuit | |
CN112034920B (en) | voltage generator | |
CN114489222A (en) | A Bandgap Reference Circuit for Power Chips | |
CN111427406B (en) | Band gap reference circuit | |
CN114265462A (en) | Band gap reference, chip, electronic device and electronic equipment | |
CN110888485B (en) | Self-biased band gap reference circuit | |
CN116860061A (en) | Segmented current compensation mechanism band-gap reference source based on maximum current selection circuit | |
CN214280916U (en) | Novel undervoltage protection circuit module | |
CN214585663U (en) | Low-temperature-drift power supply voltage detection circuit | |
CN116069111A (en) | A High and Low Temperature Curvature Compensation Zener Reference Voltage Source Circuit | |
CN115903993A (en) | Band-gap reference voltage source capable of being started quickly | |
JPH02191012A (en) | Voltage generating circuit | |
CN115599157A (en) | Reference power generator and circuit system | |
CN116466783A (en) | A bipolar bandgap reference structure and working method | |
CN214896358U (en) | Adjustable temperature coefficient reference voltage generator circuit structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |