CN116273088A - 一种磷掺杂二氧化钛及其制备方法和应用 - Google Patents

一种磷掺杂二氧化钛及其制备方法和应用 Download PDF

Info

Publication number
CN116273088A
CN116273088A CN202310329421.8A CN202310329421A CN116273088A CN 116273088 A CN116273088 A CN 116273088A CN 202310329421 A CN202310329421 A CN 202310329421A CN 116273088 A CN116273088 A CN 116273088A
Authority
CN
China
Prior art keywords
titanium dioxide
phosphorus
black phosphorus
composite material
doped titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310329421.8A
Other languages
English (en)
Inventor
王欣
白力诚
张�荣
喻学锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN202310329421.8A priority Critical patent/CN116273088A/zh
Publication of CN116273088A publication Critical patent/CN116273088A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化领域,提供了一种磷掺杂二氧化钛及其制备方法。该磷掺杂二氧化钛制备方法包括以下步骤:S1:采用溶胶凝胶法在黑磷纳米片上沉积二氧化钛,得到黑磷/二氧化钛复合材料。S2:在S1制备的黑磷/二氧化钛复合材料上沉积二氧化硅,得到黑磷/二氧化钛/二氧化硅复合材料。S3:对S2得到的黑磷/二氧化钛/二氧化硅复合材料进行煅烧及刻蚀。本发明提供的方法制备的磷掺杂二氧化钛通过制备出比表面积大、颗粒尺寸均匀度高、结晶度可调和晶相可控等特性的二氧化钛纳米材料,进一步提升了二氧化钛的光催化性能。

Description

一种磷掺杂二氧化钛及其制备方法和应用
技术领域
本发明属于光催化领域,具体涉及一种磷掺杂二氧化钛及其制备方法和应用。
背景技术
自1972年首次发现二氧化钛光催化分解水以来,光催化技术由于利用取之不尽、用之不竭的绿色太阳能来解决能源短缺和环境污染的危机,受到了广泛的关注1-3。二氧化钛具有化学稳定性好、氧化还原能力强、成本低、无毒等优点,已被广泛地应用于光催化放氢和放氧、二氧化碳还原、有害物质分解、固氮和有机合成等领域4-9。但二氧化钛固有的宽光学带隙和光激发载流子的快速复合大大限制了其光催化效率。
为了解决以上两个短板,最近的研究集中在通过掺杂金属(Ce、Ni、Ag、Pt、Fe等),非金属(C、N、S、Si)来部分取代Ti4+和O2-,从而改善其性能10-23。金属掺杂的作用是促进光生载流子电荷分离,降低其复合速度。非金属掺杂的作用是将二氧化钛的吸收区域从紫外区移动到可见光区,同时缩小二氧化钛的带隙。2020年,Chiara Alberoni等人通过掺杂CeO2来调节纳米二氧化钛的电子性质,制备了纳米管(CeTNTx)和纳米粒子(CeTNPx)光催化剂10。结果表明,Ce的加入导致了能隙的减小,从而提高了可见光的吸收率,当CeO2掺杂量为0.25wt%时,纳米管和纳米颗粒的亚甲基蓝(MB)降解率最高(分别为0.123min-1和0.146min-1),120分钟实现完全降解。2012年,S.Krejcíkováa等人以非离子表面活性剂Triton X-114、环己烷、AgNO3水溶液和金属前驱体为原料,采用溶胶-凝胶法制备了掺银的TiO2光催化剂16。与纯二氧化钛催化剂相比,掺银二氧化钛催化剂的吸收光谱向可见光区移动,对于CO2的光催化还原,具有优异的光催化活性。2021年,Maria Sadia等人以异丙醇钛为前驱体,合成了镍掺杂和非掺杂二氧化钛光催化剂18。研究表明,镍掺杂二氧化钛催化剂由于降低了光生电子-空穴复合速率,在中性红和亚甲基蓝催化降解效率更高。2018年,Wenyi Huang等人采用低温非水溶剂热法制备了高浓度掺N锐钛矿型二氧化钛光催化剂14。研究表明,在合成过程中,N原子渗入到二氧化钛晶格中,在二氧化钛的禁带内形成了杂质能级,增强了对可见光的吸收,在亚甲基蓝的光催化降解中具有优异的性能。2012年,Jian-Wen Shi等人以碳球为模板,采用简便的方法合成了C掺杂二氧化钛空心球(THS)19。研究表明C掺杂使二氧化钛的禁带宽度变窄,并产生亚带隙吸收,这导致了THS对可见光的光响应,对亚甲基蓝的分解表现出比商业P25更高的光催化活性。2017年,Zhenyu Huang等人以二氧化硫脲为硫源和还原剂合成了S-TiO2-x光催化剂15。研究表明,S掺杂导致TiO2-x的吸收边红移,Ti3+的引入在导带的底部形成局域态,使得S-TiO2-x可吸收可见光。此外,Ti3+作为电子捕获剂,提高了光催化剂的电导率,加速了电子和空穴的传递。与纯TiO2光催化剂相比,S-TiO2-x光催化剂在可见光照射下对罗丹明B的降解表现出优异的光催化活性。2018年,Zhenbiao Dong等人在Ar气氛下,将Ti-Si-O纳米管在钛硅合金上进行锌还原,制得黑色的掺硅纳米管,并用作光电化学(PEC)水分解的光阳极12。结果表明,由于在纳米管中引入了Si元素和Ti3+/O空位,提高了光吸收,促进了光生电子-空穴对的分离。光转化效率可达1.22%,是未掺杂TiO2光转化效率的7.18倍。
现有技术方案通过金属/非金属掺杂的方式,减小了二氧化钛的禁带宽度,降低了光生电子-空穴的复合速率,增强了二氧化钛对可见光的吸收,提高了二氧化钛的光催化性能。但与此同时,金属离子掺杂会导致二氧化钛热力学不稳定、引入一些光生载流子复合中心,在一定程度上会降低催化剂的性能。利用非金属元素如C、N等元素掺杂,会带来二氧化钛晶相的转变、纳米颗粒粒径增大、比表面积减小等问题,这将造成催化剂的活性降低。
参考文献
1.Duan,Y.;Wang,Y.;Gan,L.;Meng,J.;Feng,Y.;Wang,K.;Zhou,K.;Wang,C.;Han,X.;Zhou,X.,Amorphous Carbon Nitride with Three Coordinate Nitrogen(N3C)Vacancies for Exceptional NOx Abatement in Visible Light.Advanced EnergyMaterials 2021,11(19).
2.Fujishima,A.;Honda,K.,Electrochemical Photolysis of Water at aSemiconductor Electrode.Nature 1972,238(5358),37-38.
3.Li,H.;Zhang,X.;MacFarlane,D.R.,Carbon Quantum Dots/Cu2OHeterostructures for Solar-Light-Driven Conversion of CO2 toMethanol.Advanced Energy Materials 2015,5(5).
4.Bhethanabotla,V.C.;Russell,D.R.;Kuhn,J.N.,Assessment of mechanismsfor enhanced performance of Yb/Er/titania photocatalysts for organicdegradation:Role of rare earth elements in the titania phase.AppliedCatalysis B:Environmental 2017,202,156-164.
5.Gao,M.;Connor,P.K.N.;Ho,G.W.,Plasmonic photothermic directedbroadband sunlight harnessing for seawater catalysis and desalination.Energy&Environmental Science 2016,9(10),3151-3160.
6.Kuo,T.-R.;Liao,H.-J.;Chen,Y.-T.;Wei,C.-Y.;Chang,C.-C.;Chen,Y.-C.;Chang,Y.-H.;Lin,J.-C.;Lee,Y.-C.;Wen,C.-Y.;Li,S.-S.;Lin,K.-H.;Wang,D.-Y.,Extended visible to near-infrared harvesting of earth-abundant FeS2–TiO2heterostructures for highly active photocatalytic hydrogen evolution.GreenChemistry 2018,20(7),1640-1647.
7.Tian,J.;Hao,P.;Wei,N.;Cui,H.;Liu,H.,3D Bi2MoO6 Nanosheet/TiO2Nanobelt Heterostructure:Enhanced Photocatalytic Activities andPhotoelectochemistry Performance.ACS Catalysis 2015,5(8),4530-4536.
8.Wang,M.;Han,Q.;Zhou,Y.;Li,P.;Tu,W.;Tang,L.;Zou,Z.,TiO2nanosheet-anchoring Au nanoplates:high-energy facet and wide spectra surface plasmon-promoting photocatalytic efficiency and selectivity for CO2 reduction.RSCAdvances 2016,6(85),81510-81516.
9.Yu,J.;Yang,Y.;Fan,R.;Wang,P.;Dong,Y.,Enhanced photovoltaicperformance of dye-sensitized solar cells using a new photoelectrodematerial:upconversion YbF3-Ho/TiO2nanoheterostructures.Nanoscale 2016,8(7),4173-4180.
10.Alberoni,C.;
Figure BDA0004154411460000031
I.;Infantes-Molina,A.;/>
Figure BDA0004154411460000032
E.;Talon,A.;Zhao,H.;You,S.;Vomiero,A.;Moretti,E.,Ceria doping boostsmethylene blue photodegradation in titania nanostructures.Materials ChemistryFrontiers 2021,5(11),4138-4152.
11.Belver,C.;Bedia,J.;
Figure BDA0004154411460000033
M.A.;Rodriguez,J.J.,Solarphotocatalytic purification of water with Ce-doped TiO2/clayheterostructures.Catalysis Today 2016,266,36-45.
12.Dong,Z.;Ding,D.;Li,T.;Ning,C.,Black Si-doped TiO2 nanotubephotoanode for high-efficiency photoelectrochemical water splitting.RSC Adv2018,8(11),5652-5660.
13.Eadi,S.B.;Kim,S.;Jeong,S.W.;Jeon,H.W.,Novel Preparation of FeDoped TiO2Nanoparticles and Their Application for Gas Sensor andPhotocatalytic Degradation.Advances in Materials Science and Engineering2017,2017,1-6.
14.Huang,W.;Cheng,H.;Feng,J.;Shi,Z.;Bai,D.;Li,L.,Synthesis ofhighlywater-dispersible N-doped anatase titania based on low temperature solvent-thermal method.Arabian Journal of Chemistry 2018,11(6),871-879.
15.Huang,Z.;Gao,Z.;Gao,S.;Wang,Q.;Wang,Z.;Huang,B.;Dai,Y.,Facilesynthesis ofS-doped reduced TiO2-x with enhanced visible-light photocatalyticperformance.Chinese Journal of Catalysis 2017,38(5),821-830.
16.
Figure BDA0004154411460000034
S.;Matějová,L.;/>
Figure BDA0004154411460000035
K.;Obalová,L.;Matěj,Z.;/>
Figure BDA0004154411460000036
L.;/>
Figure BDA0004154411460000037
Figure BDA0004154411460000038
O.,Preparation and characterization of Ag-doped crystalline titania forphotocatalysis applications.Applied Catalysis B:Environmental 2012,111-112,119-125.
17.Ren,R.;Wen,Z.;Cui,S.;Hou,Y.;Guo,X.;Chen,J.,Controllable Synthesisand Tunable Photocatalytic Properties of Ti(3+)-doped TiO2.Sci Rep 2015,5,10714.
18.Sadia,M.;Naz,R.;Khan,J.;Zahoor,M.;Ullah,R.;Khan,R.;Naz,S.;Almoallim,H.S.;Alharbi,S.A.,Metal doped titania nanoparticles as efficientphotocatalyst for dyes degradation.Journal of King Saud University-Science2021,33(2).
19.Shi,J.-W.;Chen,J.-W.;Cui,H.-J.;Fu,M.-L.;Luo,H.-Y.;Xu,B.;Ye,Z.-L.,One template approach to synthesize C-doped titania hollow spheres with highvisible-light photocatalytic activity.Chemical Engineering Journal 2012,195-196,226-232.
20.Vijayan,B.K.;Dimitrijevic,N.M.;Wu,J.;Gray,K.A.,The Effects of PtDoping on the Structure and Visible Light Photoactivity of TitaniaNanotubes.The Journal of Physical Chemistry C 2010,114(49),21262-21269.
21.Wu,Q.;Huang,F.;Zhao,M.;Xu,J.;Zhou,J.;Wang,Y.,Ultra-small yellowdefective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogenproduction.Nano Energy2016,24,63-71.
22.Xiong,Y.;He,D.;Jaber,R.;Cameron,P.J.;Edler,K.J.,Sulfur-Doped CubicMesostructured Titania Films for Use as a Solar Photocatalyst.The Journal ofPhysical Chemistry C2017,121(18),9929-9937.
23.Yao,L.;Wang,H.;Zhang,Y.;Wang,S.;Liu,X.,Fabrication of N dopedTiO2/C nanocomposites with hierarchical porous structure and highphotocatalytic activity.Microporous and Mesoporous Materials 2019,288.
发明内容
为了解决现有技术中的问题,本发明提供一种磷掺杂二氧化钛制备方法。本发明提供的方法制备的磷掺杂二氧化钛通过制备出比表面积大、颗粒尺寸均匀度高、结晶度可调和晶相可控等特性的二氧化钛纳米材料,进一步提升二氧化钛的光催化性能。
该磷掺杂二氧化钛制备方法包括以下步骤:
S1:采用溶胶凝胶法在黑磷纳米片上沉积二氧化钛,得到黑磷/二氧化钛复合材料。
S2:在S1制备的黑磷/二氧化钛复合材料上沉积二氧化硅,得到黑磷/二氧化钛/二氧化硅复合材料。
S3:对S2得到的黑磷/二氧化钛/二氧化硅复合材料进行煅烧及刻蚀。
进一步地,S1步骤包括:
S11:依据C mg黑磷的量称取对应量的黑磷纳米片溶液,用无水乙醇洗涤三遍,分散于D mL乙醇中,加入E mL无水乙腈,在搅拌条件下,加入F mL浓氨水,得到a溶液;
S12:G mL无水乙醇、H mL无水乙腈和I mL钛酸四丁酯(TBOT)混合后得到b溶液;
S13:将a溶液常温搅拌5-10min,再将b溶液快速加入其中,搅拌4小时以上,离心,用无水乙醇洗涤四次,分散于30ml乙醇中,得到黑磷/二氧化钛复合材料(即BP@TiO2样品),
其中,C:D:E:F:G:H:I=(15~30):(20~30):(5~10):(0.1~0.5):(2~5):(0.5~2):(0.05~0.5)。
进一步地,S2步骤包括:
向S1步骤所得的黑磷/二氧化钛复合材料(即BP@TiO2样品)中加入聚丙烯酸(PAA,0.01g/mL),搅拌2小时以上,离心并使用无水乙醇洗涤,分散于J mL乙醇中。向其中加入KmL水、L mL浓氨水、M mL正硅酸乙酯(TEOS),搅拌4小时以上,离心,用乙醇和水洗涤,烘干,得到黑磷/二氧化钛/二氧化硅复合材料(即BP@TiO2@SiO2样品),其中,J:K:L:M=(20~30):(2~5):(0.5~2):(0.5~2)。
具体地,所述氨水溶液的质量分数为25~28%,烘干温度为60~70℃。
进一步地,S2步骤包括:
将S2步骤所得黑磷/二氧化钛/二氧化硅复合材料在氩气气氛下,升温后煅烧2h,冷却至室温后得到煅烧后BP@TiO2@SiO2样品;
取N mg煅烧后BP@TiO2@SiO2样品溶于O mL P 2.5mol/L氢氧化钠溶液中,在50℃加热条件下搅拌近8小时,离心,用水洗涤,得到磷掺杂二氧化钛,烘干,备用,
其中,N:O:P=(50~500):(20~50):(0.5~3)。
具体地,煅烧温度为600~800℃,烘干温度为60~70℃。
进一步地,所述的磷掺杂二氧化钛制备方法包括S1步骤之前的S0步骤:
用电化学剥离方法制备黑磷纳米片:将A g四丁基溴化铵(TBAB)溶于B mL N,N-二甲基甲酰胺中(DMF)中作为电解液,黑磷晶体为阴极,铂片电极作为对电极,四丁基溴化铵作为插层剂,电解约5小时后,离心收集产物,用DMF洗涤四遍后分散于DMF中。存于手套箱中,备用,其中,A:B=(2~4):(50~100)。
本发明的一个目的是提供一种磷掺杂二氧化钛。该磷掺杂二氧化钛按照如上任一项所述的掺杂二氧化钛制备方法制备。
本发明的一个目的是提供一种如上所述的磷掺杂二氧化钛在光催化中的应用。
本发明通过溶胶-凝胶法在黑磷纳米片上包覆二氧化钛层和二氧化硅后进行保护煅烧。煅烧过程中,集黑磷掺杂进入二氧化钛的晶格中、二氧化硅有效保护二氧化钛晶粒的团聚与过度增长两个优势,可制备出比表面积大、颗粒尺寸均匀度高、结晶度可调和晶相可控等特性的磷掺杂二氧化钛纳米材料。磷掺杂二氧化钛纳米材料具有禁带宽度窄、光生电子-空穴复合速率低的特性,光吸收范围拓宽至可见光及红外光,进一步提升了二氧化钛的光催化性能,达到了最大限度利用太阳光的效果。
附图说明
图1为本发明实施例3提供的黑鳞纳米片扫描电子显微镜(SEM)图像;
图2为本发明实施例3提供的黑磷/二氧化钛复合材料的扫描电子显微镜(SEM)图像;
图3为本发明实施例3提供的磷掺杂二氧化钛的X射线衍射(XRD)图谱;
图4为本发明实施例3提供的磷掺杂二氧化钛STEM-EDS扫描图像;
图5为本发明实施例2和实施例3提供的罗丹明的紫外-可见分光图谱。
具体实施方式
为了使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明,但不能理解为对本发明的可实施范围的限定。
本发明采用一种全新的方法制备磷掺杂二氧化钛纳米材料。基于黑磷纳米片比表面积大等特性,拟用具有较大比表面积的黑磷(BP)纳米片作为二氧化钛的生长模板,通过溶胶-凝胶法在其上先后沉积无定形二氧化钛和二氧化硅层。利用二氧化硅的有效保护煅烧,实现对二氧化钛的有效磷掺杂,并控制二氧化钛的颗粒大小、晶相、结晶度等性质,制备出具有优异性能的磷掺杂二氧化钛光催化剂。通过磷掺杂和二氧化硅保护煅烧的共同作用,以期制得的二氧化钛纳米材料具有大的比表面积、颗粒尺寸均匀、晶相可控等特性,拥有较小的禁带宽度,较低的光生电子-空穴复合速率,实现对可见光和近红外光充分利用,达到最大限度地利用太阳能。
该磷掺杂二氧化钛制备方法,包括以下步骤:
S1:采用溶胶凝胶法在黑磷纳米片上沉积二氧化钛,得到黑磷/二氧化钛复合材料。
S2:在S1制备的黑磷/二氧化钛复合材料上沉积二氧化硅,得到黑磷/二氧化钛/二氧化硅复合材料。
S3:对S2得到的黑磷/二氧化钛/二氧化硅复合材料进行煅烧及刻蚀。
在一个实施例中,黑磷纳米片通过以下步骤制备:
S0:用电化学剥离方法制备黑磷纳米片:将A g四丁基溴化铵(TBAB)溶于B mL N,N-二甲基甲酰胺中(DMF)中作为电解液,黑磷晶体为阴极,铂片电极作为对电极,四丁基溴化铵作为插层剂。电解约5小时后,离心收集产物,用DMF洗涤四遍后分散于DMF中。存于手套箱中,备用。其中,A:B=(2~4):(50~100)。黑磷的浓度由光谱法测定。
在一个实施例中,S1步骤包括:
S11:配置a溶液:依据C mg黑磷的量称取对应量的黑磷纳米片溶液,用无水乙醇洗涤三遍,分散于D mL乙醇中,加入E mL无水乙腈,在搅拌条件下,加入F mL氨水,得到a溶液。
S12:配制b溶液:将G mL无水乙醇、H mL无水乙腈和I mL钛酸四丁酯(TBOT)混合后得到b溶液。
S13:将a溶液常温搅拌5-10min,再将b溶液快速加入其中,搅拌4小时以上,离心,用无水乙醇洗涤四次,分散于30ml乙醇中,得到黑磷/二氧化钛复合材料(即BP@TiO2样品)。
其中,C:D:E:F:G:H:I=(15~30):(20~30):(5~10):(0.1~0.5):(2~5):(0.5~2):(0.05~0.5)。
在一个实施例中,S2步骤包括:
向S1步骤所得的黑磷/二氧化钛复合材料(即BP@TiO2样品)中加入聚丙烯酸(PAA,0.01g/mL),搅拌2小时以上,离心并使用无水乙醇洗涤,分散于J mL乙醇中。向其中加入KmL水、L mL氨水和M mL正硅酸乙酯(TEOS),搅拌4小时以上,离心,用乙醇和水洗涤,烘干,得到黑磷/二氧化钛/二氧化硅复合材料(即BP@TiO2@SiO2样品)。其中,J:K:L:M=(20~30):(2~5):(0.5~2):(0.5~2)。
在一个实施例中,S3步骤包括:
将S2步骤所得黑磷/二氧化钛/二氧化硅复合材料在氩气气氛下,升温至所需温度后煅烧2h,冷却至室温后得到煅烧后的BP@TiO2@SiO2样品。取N mg煅烧后BP@TiO2@SiO2样品溶于O mL P 2.5mol/L氢氧化钠溶液中,在50℃加热条件下搅拌近8小时,离心,用水洗涤,得到刻蚀后的磷掺杂二氧化钛(即BP@TiO2样品),烘干,备用,其中,N:O:P=(50~500):(20~50):(0.5~3)。
在一个实施例中,磷掺杂二氧化钛及其制备方法,包括以下步骤:
S0:用电化学剥离方法制备黑磷纳米片:将A g四丁基溴化铵(TBAB)溶于B mL N,N-二甲基甲酰胺中(DMF)中作为电解液,黑磷晶体为阴极,铂片电极作为对电极,四丁基溴化铵作为插层剂。电解约5小时后,离心收集产物,用DMF洗涤四遍后分散于DMF中。存于手套箱中,备用。其中,A:B=(2~4):(50~100)。黑磷的浓度由光谱法测定。
S1:采用溶胶凝胶法在黑磷纳米片上沉积二氧化钛,得到黑磷/二氧化钛复合材料。具体地,包括以下步骤:
S11:配置a溶液:依据C mg黑磷的量称取对应量的黑磷纳米片溶液,用无水乙醇洗涤三遍,分散于D mL乙醇中,加入E mL无水乙腈,在搅拌条件下,加入F mL浓氨水,得到a溶液。
S12:配制b溶液:G mL无水乙醇,H mL无水乙腈,I mL钛酸四丁酯(TBOT)混合后得到b溶液。
S13:将a溶液常温搅拌5-10min,再将b溶液快速加入其中,搅拌4小时以上,离心,用无水乙醇洗涤四次,分散于30ml乙醇中,得到黑磷/二氧化钛复合材料(即BP@TiO2样品)。
其中,C:D:E:F:G:H:I=(15~30):(20~30):(5~10):(0.1~0.5):(2~5):(0.5~2):(0.05~0.5)。
S2:在S1制备的黑磷/二氧化钛复合材料上沉积二氧化硅,得到黑磷/二氧化钛/二氧化硅复合材料。具体地,包括以下步骤:
向S1步骤所得的黑磷/二氧化钛复合材料(即BP@TiO2样品)中加入聚丙烯酸(PAA,0.01g/mL),搅拌2小时以上,离心并使用无水乙醇洗涤,分散于J mL乙醇中。向其中加入KmL水、L mL浓氨水和M mL正硅酸乙酯(TEOS),搅拌4小时以上,离心,用乙醇和水洗涤,烘干,得到黑磷/二氧化钛/二氧化硅复合材料(即BP@TiO2@SiO2样品)。其中,J:K:L:M=(20~30):(2~5):(0.5~2):(0.5~2)。
可选地,氨水溶液的质量分数为25~28%,烘干温度为60~70℃
S3:对S2得到的黑磷/二氧化钛/二氧化硅复合材料进行煅烧及刻蚀。具体地,包括以下步骤:
将S2步骤所得黑磷/二氧化钛/二氧化硅复合材料在氩气气氛下,升温至所需温度后煅烧2h,冷却至室温后得到煅烧后BP@TiO2@SiO2样品。取N mg煅烧后BP@TiO2@SiO2样品溶于O mL P 2.5mol/L氢氧化钠溶液中,在50℃加热条件下搅拌近8小时,离心,用水洗涤,得到刻蚀后的磷掺杂二氧化钛(即BP@TiO2样品),烘干,备用,其中,N:O:P=(50~500):(20~50):(0.5~3)。
可选地,煅烧温度为600~800℃,烘干温度为60~70℃
本发明提供实施例1-3,均按照上述磷掺杂二氧化钛制备方法制备磷掺杂二氧化钛,区别在于所用试剂的量不同,具体参照以下表格:
Figure BDA0004154411460000081
Figure BDA0004154411460000091
将实施例1-3制备的黑鳞纳米片进行电子显微镜扫描测试;实施例3制备的黑磷/二氧化钛复合材料进行电子显微镜扫描测试;实施例1-3制备的磷掺杂二氧化钛进行X射线衍射测试;实施例3制备的磷掺杂二氧化钛进行STEM-EDS扫描测试。
实施例3制备的黑鳞纳米片的扫描电子显微镜(SEM)图像如图1所示,实施例1-2制备的黑鳞纳米片的扫描电子显微镜(SEM)图像与图1相似,由图1可看出黑磷纳米片成功从大块黑磷晶体中剥离出来,具有良好的分散性,且多数为单层的纳米片。
实施例3制备的黑磷/二氧化钛复合材料的扫描电子显微镜(SEM)图像如图2所示,通过与图1的对比可以看出,二氧化钛成功包覆在黑磷纳米片表面,形成黑磷/二氧化钛复合材料。
实施例3制备的磷掺杂二氧化钛的X射线衍射(XRD)图谱如图3所示,实施例1-2制备的磷掺杂二氧化钛的X射线衍射(XRD)图谱与图3类似,从图3中可以看出,所制备的磷掺杂二氧化钛为锐钛矿相(Anatase),且随着前驱体TBOT量增加,所制备的磷掺杂二氧化钛具有更好的晶体结构。
实施例3制备的磷掺杂二氧化钛STEM-EDS扫描图像如图4所示,图中观察到了Ti、O、Na、Si、P元素,说明了P元素的成功掺杂二氧化钛。
本发明还提供了一种如上所述磷掺杂二氧化钛在光催化中的应用。
实施例1-3制备的磷掺杂二氧化钛的催化性能通过降解罗丹明B的速率进行评估。
评估方法:通过跟踪降解罗丹明B(RhB)随时间的变化来评价其光催化活性。将磷掺杂二氧化钛催化剂分散在罗丹明B(RhB)水溶液(20mL,1×10-5M)中,在黑暗条件下搅拌30min,以确保罗丹明B染料在磷掺杂二氧化钛催化剂表面的吸附。激发源为300W氙灯,利用紫外-可见分光光度计测定RhB的浓度。利用553nm吸收峰的强度跟踪反应介质中罗丹明B的浓度作为时间的函数,以获得图5中报告的催化性能数据。其中,图5(左)为实施例2制备的磷掺杂二氧化钛的催化效率,光照90min,对罗丹明的降解效率达94%;图5(右)为实施例3制备的磷掺杂二氧化钛的降解效率,光照30min,罗丹明降解约90%。实施例1制备的磷掺杂二氧化钛对罗丹明也有较高的降解效率。
本发明通过溶胶-凝胶法在黑磷纳米片上包覆二氧化钛层和二氧化硅后进行保护煅烧。煅烧过程中,集黑磷掺杂进入二氧化钛的晶格中、二氧化硅有效保护二氧化钛晶粒的团聚与过度增长两个优势,可制备出比表面积大、颗粒尺寸均匀、结晶度可调和晶相可控等特性的二氧化钛纳米材料。磷掺杂二氧化钛纳米材料具有减小禁带宽度窄、光生电子-空穴复合速率低的特性,光吸收范围拓宽至可见光及红外光,进一步提升了二氧化钛的光催化性能,达到了最大限度利用太阳光的效果。

Claims (9)

1.一种磷掺杂二氧化钛制备方法,其特征在于,包括以下步骤:
S1:采用溶胶凝胶法在黑磷纳米片上沉积二氧化钛,得到黑磷/二氧化钛复合材料;
S2:在S1制备的所述黑磷/二氧化钛复合材料上沉积二氧化硅,得到黑磷/二氧化钛/二氧化硅复合材料;
S3:对S2得到的所述黑磷/二氧化钛/二氧化硅复合材料进行煅烧及刻蚀。
2.如权利要求1所述的磷掺杂二氧化钛制备方法,其特征在于,S1步骤包括:
S11:依据C mg黑磷的量称取对应量的黑磷纳米片溶液,用无水乙醇洗涤三遍,分散于DmL乙醇中,加入E mL无水乙腈,在搅拌条件下,加入F mL浓氨水,得到a溶液;
S12:G mL无水乙醇、H mL无水乙腈和I mL钛酸四丁酯(TBOT)混合后得到b溶液;
S13:将a溶液常温搅拌5-10min,再将b溶液快速加入其中,搅拌4小时以上,离心,用无水乙醇洗涤四次,分散于30ml乙醇中,得到所述黑磷/二氧化钛复合材料,
其中,C:D:E:F:G:H:I=(15~30):(20~30):(5~10):(0.1~0.5):(2~5):(0.5~2):(0.05~0.5)。
3.如权利要求1所述的磷掺杂二氧化钛制备方法,其特征在于,S2步骤包括:
向S1步骤所得的所述黑磷/二氧化钛复合材料中加入聚丙烯酸,搅拌2小时以上,离心并使用无水乙醇洗涤,分散于J mL乙醇中,向其中加入K mL水、L mL氨水和M mL正硅酸乙酯,搅拌4小时以上,离心,用乙醇和水洗涤,烘干,得到所述黑磷/二氧化钛/二氧化硅复合材料,其中,J:K:L:M=(20~30):(2~5):(0.5~2):(0.5~2)。
4.如权利要求3所述的磷掺杂二氧化钛制备方法,其特征在于,所述氨水溶液的质量分数为25~28%,烘干温度为60~70oC。
5.如权利要求1所述的磷掺杂二氧化钛制备方法,其特征在于,S2步骤包括:
将S2步骤所得所述黑磷/二氧化钛/二氧化硅复合材料在氩气气氛下,升温后煅烧2h,冷却至室温后得到煅烧后BP@TiO2@SiO2样品;
取N mg所述煅烧后BP@TiO2@SiO2样品溶于O mL P 2.5mol/L氢氧化钠溶液中,在50℃加热条件下搅拌近8小时,离心,用水洗涤,得到所述磷掺杂二氧化钛,烘干,备用,
其中,N:O:P=(50~500):(20~50):(0.5~3)。
6.如权利要求5所述的磷掺杂二氧化钛制备方法,其特征在于,煅烧温度为600~800oC,烘干温度为60~70oC。
7.如权利要求1所述的磷掺杂二氧化钛制备方法,其特征在于,包括S1步骤之前的S0步骤:
将Ag四丁基溴化铵(TBAB)溶于B mL N,N-二甲基甲酰胺中(DMF)中作为电解液,黑磷晶体为阴极,铂片电极作为对电极,四丁基溴化铵作为插层剂,电解约5小时后,离心收集产物,用DMF洗涤四遍后分散于DMF中,存于手套箱中,备用,其中,A:B=(2~4):(50~100)。
8.一种磷掺杂二氧化钛,其特征在于,按照如权利要求1~7任一项所述的掺杂二氧化钛制备方法制备。
9.如权利要求8所述的磷掺杂二氧化钛在光催化中的应用。
CN202310329421.8A 2023-03-30 2023-03-30 一种磷掺杂二氧化钛及其制备方法和应用 Pending CN116273088A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310329421.8A CN116273088A (zh) 2023-03-30 2023-03-30 一种磷掺杂二氧化钛及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310329421.8A CN116273088A (zh) 2023-03-30 2023-03-30 一种磷掺杂二氧化钛及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116273088A true CN116273088A (zh) 2023-06-23

Family

ID=86799542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310329421.8A Pending CN116273088A (zh) 2023-03-30 2023-03-30 一种磷掺杂二氧化钛及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116273088A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101690896A (zh) * 2009-10-13 2010-04-07 南京师范大学 具有高效太阳光催化性能的磷掺杂型纳米二氧化钛及其制备方法
CN102302940A (zh) * 2011-07-15 2012-01-04 成都理工大学 一种新型光催化剂S掺杂SiO2/TiO2复合材料的制备方法
EP2436439A1 (en) * 2010-10-01 2012-04-04 Council of Scientific and Industrial Research Ruthenium complex intercalated N-doped or N,S-codoped titania pillared montmorillonite and a process for the preparation thereof
CN108514887A (zh) * 2018-04-04 2018-09-11 中山大学 一种空心纳米颗粒二氧化钛/黑磷烯光热催化剂及其制备方法与应用
CN110950313A (zh) * 2019-12-25 2020-04-03 深圳市中科墨磷科技有限公司 一种水热刻蚀法制备多晶黑磷纳米片的方法
CN112076769A (zh) * 2020-09-15 2020-12-15 大连民族大学 圆球状钒酸铋/黑磷复合光催化剂及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101690896A (zh) * 2009-10-13 2010-04-07 南京师范大学 具有高效太阳光催化性能的磷掺杂型纳米二氧化钛及其制备方法
EP2436439A1 (en) * 2010-10-01 2012-04-04 Council of Scientific and Industrial Research Ruthenium complex intercalated N-doped or N,S-codoped titania pillared montmorillonite and a process for the preparation thereof
CN102302940A (zh) * 2011-07-15 2012-01-04 成都理工大学 一种新型光催化剂S掺杂SiO2/TiO2复合材料的制备方法
CN108514887A (zh) * 2018-04-04 2018-09-11 中山大学 一种空心纳米颗粒二氧化钛/黑磷烯光热催化剂及其制备方法与应用
CN110950313A (zh) * 2019-12-25 2020-04-03 深圳市中科墨磷科技有限公司 一种水热刻蚀法制备多晶黑磷纳米片的方法
CN112076769A (zh) * 2020-09-15 2020-12-15 大连民族大学 圆球状钒酸铋/黑磷复合光催化剂及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG, Q,ET AL.: "Recyclable, hierarchical hollow photocatalyst TiO2@SiO2 composite microsphere realized by raspberry-like SiO2", 《COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS》, 5 October 2020 (2020-10-05), pages 1 - 17 *
李永豪等: "两种改性方法对磁性纳米TiO2光催化性能的影响", 《韶关学院学报》, 30 September 2018 (2018-09-30), pages 60 - 65 *

Similar Documents

Publication Publication Date Title
Kong et al. Ti3+ defect mediated g-C3N4/TiO2 Z-scheme system for enhanced photocatalytic redox performance
Lai et al. Preparation of hybrid WO3–TiO2 nanotube photoelectrodes using anodization and wet impregnation: Improved water-splitting hydrogen generation performance
Ji et al. In situ synthesis of carbon doped TiO2 nanotubes with an enhanced photocatalytic performance under UV and visible light
Yang et al. Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity
Wang et al. Photoelectrochemical water splitting with rutile TiO2 nanowires array: synergistic effect of hydrogen treatment and surface modification with anatase nanoparticles
Gong et al. The synthesis of graphene-TiO 2/gC 3 N 4 super-thin heterojunctions with enhanced visible-light photocatalytic activities
Lai et al. Incorporation of WO3 species into TiO2 nanotubes via wet impregnation and their water-splitting performance
CN101890344B (zh) 石墨烯/二氧化钛复合光催化剂的制备方法
Chu et al. Efficient carbon-doped nanostructured TiO 2 (anatase) film for photoelectrochemical solar cells
Chong et al. Enhanced photocatalytic activity of Ag3PO4 for oxygen evolution and Methylene blue degeneration: Effect of calcination temperature
CN111921550B (zh) 一种MXene/二氧化钛纳米管复合材料光催化剂及其制备方法
CN108579765B (zh) 硫化铜/钒酸铋双层膜复合材料的制备及作为光电阳极的应用
Yang et al. Nb-doping of TiO2/SrTiO3 nanotubular heterostructures for enhanced photocatalytic water splitting
Yang et al. Visible light photoelectrochemical properties of β-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness
CN113713823B (zh) 一种CoTiO3/BiVO4复合光催化剂的制备方法及应用
Yang et al. In situ growth of porous TiO 2 with controllable oxygen vacancies on an atomic scale for highly efficient photocatalytic water splitting
Zhao et al. Visible-light-driven photocatalytic H2 evolution from water splitting with band structure tunable solid solution (AgNbO3) 1− x (SrTiO3) x
CN106475127A (zh) 一种氮掺杂石墨烯量子点/介孔二氧化钛光催化剂及其制备方法
Khan et al. Hierarchical nanostructures of titanium dioxide: synthesis and applications
Liu et al. Sandwich SrTiO3/TiO2/H-Titanate nanofiber composite photocatalysts for efficient photocatalytic hydrogen evolution
Wang et al. When MoS 2 meets TiO 2: facile synthesis strategies, hybrid nanostructures, synergistic properties, and photocatalytic applications
CN106390986A (zh) 一种钒酸铋/钛酸锶复合光催化剂的制备方法
CN101555037B (zh) 一种中空二氧化钛纳米球的制备方法
KR20140119314A (ko) 광전기화학전지용 광전극, 이의 제조 방법 및 이를 포함하는 광전기화학전지
Yuan et al. N/Ti 3+-codoped triphasic TiO 2/gC 3 N 4 heterojunctions as visible-light photocatalysts for the degradation of organic contaminants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination