CN116217225A - 一种钛酸锶基微波介质陶瓷材料及其制备方法 - Google Patents

一种钛酸锶基微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN116217225A
CN116217225A CN202310228034.5A CN202310228034A CN116217225A CN 116217225 A CN116217225 A CN 116217225A CN 202310228034 A CN202310228034 A CN 202310228034A CN 116217225 A CN116217225 A CN 116217225A
Authority
CN
China
Prior art keywords
microwave dielectric
dielectric ceramic
strontium titanate
based microwave
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310228034.5A
Other languages
English (en)
Inventor
江娟
熊心月
章天金
邢楚武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN202310228034.5A priority Critical patent/CN116217225A/zh
Publication of CN116217225A publication Critical patent/CN116217225A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种钛酸锶基微波介质陶瓷材料及其制备方法,其化学通式为Sr2‑xLaxTi1‑ xAlxO4,其中0.2≤x≤0.8。其制备流程主要包括:配料称量、一次球磨、预烧、二次球磨、过筛、造粒、过筛、压片、排胶和烧结。本发明通过形成固溶体的方法,改善了Sr2TiO4微波介质陶瓷的温度稳定性。

Description

一种钛酸锶基微波介质陶瓷材料及其制备方法
技术领域
本发明属于微波介质陶瓷材料技术领域,具体涉及一种钛酸锶基微波介质陶瓷及制备方法。
背景技术
目前应用于移动通信、卫星通信等微波通信中的微波介质陶瓷体系存在着价格昂贵、制备条件苛刻、介电损耗较大等问题,且随着现代电子器件和无线通信系统的广泛发展,中国微波介质陶瓷规模及消费需求迅速增长。因此需要开发一系列具有合适的介电常数、低介电损耗、近零的谐振频率温度系数和合适的烧结温度的微波介质陶瓷材料。
其中具有 K2NiF4型结构的微波介质陶瓷因具有超低的介电损耗而受到越来越多的关注。 而在具有此种结构的微波介质陶瓷中,Sr2TiO4陶瓷由于其较好的微波介电性能引起了研究人员的广泛关注,但其高的谐振频率温度系数(~142 ppm/℃)限制了其应用。
发明内容
为解决现有技术中Sr2TiO4微波介质陶瓷温度稳定性差的问题,本发明着眼于通过离子取代形成固溶体的方法,改善其烧结特性和微波介电性能,最终找到一种高Q且温度稳定性好的可应用于通信领域的微波介质陶瓷材料及其制备方法。
本发明的钛酸锶基微波介质陶瓷材料,它的化学表达式为Sr2-xLaxTi1-xAlxO4,其中0.2≤x≤0.8。
较佳的,0.2≤x≤0.8时,优选为0 .4。
较佳的,所述x=0.4时的钛酸锶基微波介质陶瓷的介电性能为ε r =22.5,Q×f=75464 GHz,τ f =-7.3 ppm/℃。
本发明的钛酸锶基微波介质陶瓷材料可以用下述制备方法获得,具体包括以下步骤:
(1)以SrCO3、La2O3、Al2O3和TiO2为原料,将所述原料按照化学表达式比例用行星式球磨机进行一次球磨。
(2)将步骤(1)后得到的浆料进行烘干、研磨、过筛和预烧,并对预烧后的粉末进行二次球磨。
(3)将步骤(2)后得到的浆料进行烘干、过60目筛、造粒、过40目筛、压片、排胶,得到陶瓷生坯。
(4)将步骤(3)中得到的生坯在1550 ℃~1575 ℃进行烧结,得到微波介质陶瓷。
优选地,所述步骤(1)中,所述La2O3需在称量之前进行900 ℃煅烧2小时的预处理。
优选地,所述步骤(1)中,一次球磨介质为无水乙醇,球磨珠材料为ZrO2,球磨罐为尼龙罐,球磨时间为4小时。
优选地,所述步骤(2)中,所述过筛使用的60目的标准筛,所述预烧的温度为1400℃,以每分钟5 ℃的升温速率升至1400 ℃,在1400 ℃预烧4小时,后自然降温至室温。
优选地,所述步骤(2)中,二次球磨介质为无水乙醇,球磨珠材料为ZrO2,球磨罐为尼龙罐,球磨时间为8小时。
优选地,所述步骤(3)中,所述造粒使用浓度为10 wt%的PVA溶液作为粘合剂,所述造粒前后的过筛分别使用的是60目和40目的标准筛,所述压片采用不锈钢制模具干压成型;所述排胶是将陶瓷生坯置于马弗炉中,在550 ℃进行煅烧,保温时间为5小时,旨在排出用于粘结的PVA成分。
优选地,所述步骤(4)中,所述烧结过程为先以每分钟5 ℃的升温速率升温至1100℃,后以每分钟3℃的升温速率升至1550 ℃~1575 ℃,保温4小时;保温结束后,以每分钟2℃的降温速率降至1100 ℃,后自然冷却至室温。
本发明的有益效果为:
本发明通过形成固溶体的方法,改善了Sr2TiO4微波介质陶瓷的温度稳定性,其介电常数 (18.2~27.1),品质因数为 (59501~102136 GHz),谐振频率温度系数为-38.2~16.7 ppm/℃,较佳的,所述x=0.4时的钛酸锶基微波介质陶瓷的介电性能为ε r =22.5,Q×f=75464 GHz, τ f =-7.3 ppm/℃。制备工艺简单有效,实验重复性强,可大批生产,可应用于通信领域,以上特点使得本发明具有重要的工业应用价值。
附图说明
图1为本发明对比例1和实施例1-4的 X射线衍射图谱。
图2为本发明对比例1的SEM图。
图3为实施例2的SEM图。
实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
实施例1:
Sr1.8La0.2Ti0.8Al0.2O4微波介质陶瓷及其制备方法,制备过程包括以下步骤:
(1)配料称量:按照Sr2-xLaxTi1-xAlxO4x=0.2)的化学计量比称取经过煅烧处理的SrCO3、La2O3、Al2O3和TiO2粉末。
(2)一次球磨:将称量好的原料转移入尼龙球磨罐中,以无水乙醇作为球磨介质、二氧化锆球作为球磨珠,在240转/分钟的条件下于行星式球磨机中球磨4小时。
(3)预烧:将球磨后的浆料在100 ℃烘干14小时,将烘干后的粉料过60目标准筛,以每分钟5 ℃的升温速率在1400 ℃预烧4小时,后随炉降温。
(4)二次球磨:将预烧后的粉料进行二次球磨,大部分操作同一次球磨,其中球磨时间为8小时。
(5)造粒:将二次球磨后的浆料在100 ℃烘干14小时,将烘干后的粉料过60目标准筛,以10 wt%的PVA溶液作为粘合剂,充分混合均匀后过40目标准筛。
(6)压片:将造粒好的粉料倒入模具中,在4 MPa的压力下制成直径15 mm,高度6mm左右的生坯。
(7)排胶: 将生坯在550 ℃排胶5小时。
(8)烧结:先以每分钟5 ℃的升温速率快速升温至1100 ℃,后以每分钟3 ℃的升温速率升温至1550 ℃烧结4小时,随后以每分钟2 ℃的降温速率降至1100 ℃,其后自然冷却至室温得到微波介质陶瓷样品。
本实施例的介电常数为27.1,介电损耗为102136 GHz,谐振频率温度系数为16.7ppm/℃。
实施例2
本实施例2中Sr1.6La0.4Ti0.6Al0.4O4微波介质陶瓷的制备过程参照实施例1,区别仅在于:于本实施例中,步骤(1)中,x=0.4,即原料的配比按照化学式Sr1.6La0.4Ti0.6Al0.4O4进行称量;步骤(8)中的烧结温度为1575 ℃。
本实施例的介电常数为22.5,介电损耗为75464 GHz,谐振频率温度系数为-7.3ppm/℃。
实施例3
本实施例3中Sr1.4La0.6Ti0.4Al0.6O4微波介质陶瓷的制备过程参照实施例1,区别仅在于:于本实施例中,步骤(1)中,x=0.6,即原料的配比按照化学式Sr1.4La0.6Ti0.4Al0.6O4进行称量。
本实施例的介电常数为20.3,介电损耗为68282 GHz,谐振频率温度系数为-26.2ppm/℃。
实施例4
本实施例4中Sr1.2La0.8Ti0.2Al0.8O4微波介质陶瓷的制备过程参照实施例1,区别仅在于:于本实施例中,步骤(1)中,x=0.8,即原料的配比按照化学式Sr1.2La0.8Ti0.2Al0.8O4进行称量。
本实施例的介电常数为18.2,介电损耗为59501 GHz,谐振频率温度系数为-38.2ppm/℃。
对比例1
(1)配料称量:按照Sr2TiO4的化学计量比称取SrCO3和TiO2粉末。
(2)一次球磨:将称量好的原料转移入尼龙球磨罐中,以无水乙醇作为球磨介质、二氧化锆球作为球磨珠,在240转/分钟的条件下于行星式球磨机中球磨4小时。
(3)预烧:将球磨后的浆料在100 ℃烘干14小时,将烘干后的粉料过60目标准筛,以每分钟5 ℃的升温速率在1200℃预烧4小时,后随炉降温。
(4)二次球磨:将预烧后的粉料进行二次球磨,球磨时间为8小时。
(5)造粒:将烘干后的粉料先过60目标准筛,以10 wt%的PVA溶液作为粘合剂,充分混合均匀后过40目标准筛。
(6)压片:将造粒好的粉料倒入模具中,在4 MPa的压力下制成直径7 mm,高度3 mm左右的生坯。
(7)排胶: 将生坯在550 ℃排胶5小时。
(8)烧结:以每分钟3 ℃的升温速率升温至1500 ℃烧结4小时,随后以每分钟2 ℃的降温速率降至1100 ℃,其后自然冷却至室温得到微波介质陶瓷样品。
本对比例的介电常数为37.9,介电损耗为70839 GHz,谐振频率温度系数为142.1ppm/℃。
图1示出对比例1制得的Sr2TiO4和实施例1-4制得的Sr2-xLaxTi1-xAlxO4(0.2≤x≤0.8)微波介质陶瓷材料的X射线衍射图谱,由图1可知,所制得的Sr2-xLaxTi1-xAlxO4(0.2≤x≤0.8)微波介质陶瓷材料呈现单一的四方K2NiF4结构。
图2和图3分别是对比例1和实施例2的SEM图,其中实施例2为优选地x=0.4时的微波介质陶瓷。对比图2和图3可知,x=0.4时的陶瓷材料的气孔较少,致密度更高,晶粒大小平均,形状规整,此组分的微波介电陶瓷的介电损耗更低,品质因数更高。
以上所述,仅为本发明部分具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种钛酸锶基微波介质陶瓷,其特征在于,所述微波介质陶瓷的化学组成为Sr2- xLaxTi1-xAlxO4,其中0.2≤x≤0.8。
2.根据权利要求1所述的一种钛酸锶基微波介质陶瓷,其特征在于,优选为x=0.4,所述陶瓷的相对介电常数ε r =22.5,品质因数Q×f=75464 GHz, τ f =-7.3 ppm/℃。
3.一种如权利要求1-2中任一项所述的钛酸锶基微波介质陶瓷的制备方法,其特征在于,包括如下步骤:
(1)按照Sr2-xLaxTi1-xAlxO4(0.2≤x≤0.8)的化学计量比称取SrCO3、La2O3、Al2O3、TiO2,将称量得到的原料混合后依次进行一次球磨、烘干、过筛和预烧,将预烧后得到的粉料进行二次球磨并烘干,得到粉料;
(2)将步骤(1)中得到的所述粉料进行造粒、过筛、压片、排胶,得到陶瓷生坯;
(3)将步骤(2)中得到的生坯在1550 ℃~1575 ℃进行烧结,得到微波介质陶瓷。
4.如权利要求3所述的钛酸锶基微波介质陶瓷的制备方法,其特征在于,所述步骤(1)中,对所述La2O3在所述称量之前进行900 ℃煅烧2小时的预处理。
5.如权利要求3所述的钛酸锶基微波介质陶瓷的制备方法,其特征在于,所述步骤(1)中,所述预烧工艺包括以下步骤:以每分钟5 ℃的升温速率升至1400 ℃,在1400 ℃预烧4小时,后自然降温至室温。
6.如权利要求3所述的钛酸锶基微波介质陶瓷的制备方法,其特征在于,所述步骤(2)中,所述造粒的具体工艺包括:使用浓度为10 wt%的PVA溶液作为粘合剂,所述造粒前后的过筛分别使用的是60目和40目的标准筛,所述压片是干压成型;所述排胶是将陶瓷生坯在550 ℃煅烧5小时。
7.权利要求3所述的钛酸锶基微波介质陶瓷的制备方法,其特征在于,所述步骤(3)中,所述烧结工艺包括如下步骤:先以每分钟5 ℃的升温速率升温至1100 ℃,后以每分钟3 ℃的升温速率升至1450 ℃~1600 ℃,保温4小时;保温结束后,以每分钟2 ℃的降温速率降至1100 ℃,后自然冷却至室温。
CN202310228034.5A 2023-03-10 2023-03-10 一种钛酸锶基微波介质陶瓷材料及其制备方法 Pending CN116217225A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310228034.5A CN116217225A (zh) 2023-03-10 2023-03-10 一种钛酸锶基微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310228034.5A CN116217225A (zh) 2023-03-10 2023-03-10 一种钛酸锶基微波介质陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116217225A true CN116217225A (zh) 2023-06-06

Family

ID=86576637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310228034.5A Pending CN116217225A (zh) 2023-03-10 2023-03-10 一种钛酸锶基微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116217225A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209172A (ja) * 1998-01-22 1999-08-03 Matsushita Electric Ind Co Ltd 誘電体磁器組成物および複合誘電体磁器組成物
JPH11278927A (ja) * 1998-01-14 1999-10-12 Kyocera Corp 誘電体磁器組成物、誘電体磁器の製造方法並びに誘電体共振器
CN103601487A (zh) * 2013-11-29 2014-02-26 电子科技大学 一种(SrCa)TiO3-LaAlO3基微波介质陶瓷材料及其制备方法
CN105198423A (zh) * 2015-08-18 2015-12-30 电子科技大学 Sr-La-Al基微波介质陶瓷材料及其制备方法
CN106542819A (zh) * 2015-09-21 2017-03-29 中国科学院上海硅酸盐研究所 一种中介微波介质陶瓷及其制备方法
WO2022188219A1 (zh) * 2021-03-10 2022-09-15 嘉兴佳利电子有限公司 一种频率稳定型低介微波介质陶瓷材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278927A (ja) * 1998-01-14 1999-10-12 Kyocera Corp 誘電体磁器組成物、誘電体磁器の製造方法並びに誘電体共振器
JPH11209172A (ja) * 1998-01-22 1999-08-03 Matsushita Electric Ind Co Ltd 誘電体磁器組成物および複合誘電体磁器組成物
CN103601487A (zh) * 2013-11-29 2014-02-26 电子科技大学 一种(SrCa)TiO3-LaAlO3基微波介质陶瓷材料及其制备方法
CN105198423A (zh) * 2015-08-18 2015-12-30 电子科技大学 Sr-La-Al基微波介质陶瓷材料及其制备方法
CN106542819A (zh) * 2015-09-21 2017-03-29 中国科学院上海硅酸盐研究所 一种中介微波介质陶瓷及其制备方法
WO2022188219A1 (zh) * 2021-03-10 2022-09-15 嘉兴佳利电子有限公司 一种频率稳定型低介微波介质陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHENHUI LEI ET AL.: "Effects of CaO–B2O3 glass addition on the low-temperature sintering and cation ordering in SrxLa(1−x)TixAl(1−x)O3 ceramics", 《JOURNAL OF ALLOYS AND COMPOUNDS》, vol. 632, pages 78 - 86 *
底佳欣;董桂霞;董丽;张茜;: "SrTiO_3-Al_2O_3系陶瓷的制备及介电性能的研究", 粉末冶金技术, no. 03, pages 166 - 169 *

Similar Documents

Publication Publication Date Title
US10899669B2 (en) Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof
CN102531570A (zh) 一种高q值低温烧结微波介质陶瓷材料及制备方法
JP2023520615A (ja) 周波数安定型低誘電性マイクロ波誘電体セラミック材料及びその調製方法
CN111995383B (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN110282968A (zh) 一种微波介质陶瓷材料及其制备方法
WO2023093221A1 (zh) 一种高稳定低损耗的微波介质陶瓷材料的制备方法及应用其制得的微波介质陶瓷材料
CN107382313B (zh) 一种超高品质因数、中低介电常数及近零温度系数的微波介质陶瓷及其制备方法
CN108727023A (zh) 一种钼酸铝基微波介质复合陶瓷及其制备方法
CN115304367B (zh) 一种微波介电陶瓷的制备方法和产品
CN115650713B (zh) 一种5g通信用微波介质陶瓷材料及其制备方法
CN116217225A (zh) 一种钛酸锶基微波介质陶瓷材料及其制备方法
CN114835480B (zh) 一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料及其制备方法
CN106866143B (zh) 微波复相陶瓷AWO4-TiO2及其制备方法
JPH02225367A (ja) 誘電体磁器の製造方法
CN105294103B (zh) 一种钒基温度稳定型微波介质陶瓷及其制备方法
TWI662008B (zh) 介電陶瓷材料及其製備方法
CN104961458A (zh) 一种温度稳定型钙钛矿结构微波介质陶瓷
CN110627480A (zh) MgO-Al2O3-GeO2三元体系微波介质材料的制备方法
CN104961459A (zh) 一种温度稳定型钛酸镁基微波介质陶瓷
CN115536373B (zh) 一种高熵化微波介质陶瓷材料及其制备方法和应用
CN110818413A (zh) 一种极低温烧结的钼酸铝基微波介质复合陶瓷及其制备方法
CN105906340B (zh) 采用固相氮气烧结法制备二氧化钛基巨介电陶瓷材料的方法
CN110317057A (zh) 一种中介电常数低温共烧陶瓷材料和制备方法
CN113004026B (zh) Ltcc微波介质陶瓷材料及其制造方法
CN113773070B (zh) 温度稳定型高介电常数微波介质陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination