CN116133659A - 使用长非编码rna作为靶标诊断和治疗慢性糖尿病并发症 - Google Patents

使用长非编码rna作为靶标诊断和治疗慢性糖尿病并发症 Download PDF

Info

Publication number
CN116133659A
CN116133659A CN202180054733.1A CN202180054733A CN116133659A CN 116133659 A CN116133659 A CN 116133659A CN 202180054733 A CN202180054733 A CN 202180054733A CN 116133659 A CN116133659 A CN 116133659A
Authority
CN
China
Prior art keywords
hotair
lncrna
subject
expression
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180054733.1A
Other languages
English (en)
Inventor
苏布拉塔·查克拉巴蒂
苏米克·比斯瓦斯
陈沙力
冯彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Western Ontario
Original Assignee
University of Western Ontario
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Western Ontario filed Critical University of Western Ontario
Publication of CN116133659A publication Critical patent/CN116133659A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/113Antisense targeting other non-coding nucleic acids, e.g. antagomirs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plant Pathology (AREA)
  • Pathology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明涉及识别具有增加的可能性进展到因糖尿病导致的终末器官损伤的对象的方法,其包含:比较来自所述对象的生物样本中lncRNA的量与参考值,以及如果样本中所述lncRNA的量相对于所述参考值增加,则识别所述对象具有增加的可能性进展到因糖尿病导致的终末器官损伤。所述lncRNA是HOTAIR、H19、WISPER、ZFAS1、HULC、ANRIL、MALAT1、MIAT和MEG3中的一个或多个。本发明还涉及治疗慢性糖尿病并发症和其他病症的方法,其包含施用HOTAIR抑制剂。

Description

使用长非编码RNA作为靶标诊断和治疗慢性糖尿病并发症
技术领域
本发明大体上涉及长非编码RNA(lncRNA)以及在诊断和治疗上使用它们的方法。特别是,本发明涉及lncRNA及其在治疗慢性糖尿病并发症中的应用。
背景技术
糖尿病(DM)预计在未来20年将影响全球超过6亿人(1),随之而来的获得微血管和大血管并发症的风险仍然是一个严重的问题。DM是一种退行性代谢疾病,主要特征是慢性高血糖,持续的高血糖刺激能够引起生化和代谢途径的改变,最终导致血管损伤和慢性糖尿病并发症的发病机制(2)。在这些并发症中,糖尿病视网膜病变(DR)是DM的一种衰弱的微血管并发症,也是全世界失明的主要原因之一(3)。尽管DR有不同的严重程度阶段,但DR主要可以分为非增殖性DR(NPDR)和增殖性DR(PDR),后者由于存在眼部病理性新生血管,可能会导致即将发生的视力丧失(4)。
由于长期的糖尿病,病理性血管生成发生且连续激活各种信号转导级联,促进一些促血管生成基因的表达,导致血管生成因子的浓度比抑制血管生成因子的浓度高(5)。上调后,这些血管生成因子协同作用以介导血管中现存的视网膜内皮细胞迁移和增殖,最终导致新的、不正常的容易出现出血、渗漏、纤维化和收缩的血管的形成(6)。在调节性血管生成分子中,血管内皮生长因子(VEGF)是一种由EC和非EC表达的强力的血管生成因子,并且在DR中已被广泛研究。一些病理过程(如缺氧(7)、氧化应激(8)、晚期糖化终产物(9)和炎症(10))可以通过涉及转录因子(11)和介质复合物(12)的复杂环境的转录调节刺激VEGF表达。事实上,由于VEGF在DR中的关键作用,患有糖尿病黄斑水肿和PDR的患者的标准一线疗法包括在玻璃体内注射抗VEGF和/或类固醇化合物,暂时延缓严重视网膜病变的发展。然而,使用这种疗法对患者来说是有代价的,需要频繁的眼内注射,与抗VEGF化合物有关的局部的或全身的不良反应(13,14),而且40-50%的具有糖尿病黄斑水肿(糖尿病的另一种并发症)的眼睛对抗VEGF治疗不能完全反应(15)。毫无疑问地,为了减轻DR的影响,迫切需要更好的诊断和靶向性的治疗。
在过去的二十年里,基因组技术的迅速发展已经确定长非编码RNA(lncRNA)是一类基本的RNA转录物,它们长度大于200个碱基对且拥有有限的蛋白质编码能力。LncRNA是动态调节的且具有明显的功能,促进染色质重塑和/或帮助控制参与多种生物和病理过程(包括发育(16)、癌症(17)和神经变性(18))的基因表达。
因此,本领域仍然需要识别和表征能够被用于开发诊断和治疗的lncRNA。
发明内容
本发明涉及长非编码RNA(lncRNA)及其对糖尿病视网膜病变(DR)等病症的诊断、预后和治疗用途。特别是,本发明涉及在参与糖尿病诱导的血管生成的基因的调节中发挥作用的lncRNA。这类lncRNA可以作为生物标记物来诊断DR,包括早期DR。一个识别的lncRNA,HOTAIR,介导高葡萄糖(HG)诱导的血管生成和促进血管生成和糖尿病相关基因的表达。HOTAIR表达的抑制剂可以被用于治疗慢性糖尿病并发症(例如DR,包括早期DR),以及本发明所述的与HOTAIR表达相关的其他病症和疾病。
在一个实施方案中,本发明提供了一种识别具有增加的可能性进展到因糖尿病导致的终末器官损伤的对象的方法,其包含:a)测量来自对象的生物样本中长非编码RNA(lncRNA)的量;以及b)将样本中lncRNA的量与参考值进行比较,如果样本中lncRNA的量相对于参考值增加或减少,则识别所述对象具有增加的可能性进展到因糖尿病导致的终末器官损伤,其中所述lncRNA是HOTAIR、H19、WISPER、ZFAS1、HULC、ANRIL、MALAT1、MIAT和MEG3中的一个或多个。
在一个实施方案中,如果样本中lncRNA HOTAIR的量表明对象具有增加的可能性进展到因糖尿病导致的终末器官损伤,则所述方法进一步包含治疗所述对象因糖尿病导致的终末器官损伤。
在另一个实施方案中,如果样本中lncRNA HOTAIR的量表明对象具有增加的可能性进展到因糖尿病导致的终末器官损伤,所述方法进一步包含向所述对象施用治疗有效量的抑制lncRNA HOTAIR的至少一种生物活性的药剂。
在一个实施方案中,lncRNA的量是通过使用能够扩增lncRNA多核苷酸序列的至少一组寡核苷酸引物进行聚合酶链反应(PCR)来完成的,所述引物包括正向引物和反向引物,其中至少一组引物选自:当对象是人时,包含SEQ ID NO:3、77、79、81、83、85、87、89、91或93的序列的正向引物和包含SEQ ID NO:4、78、80、82、84、86、88、90、92或94的序列的相应反向引物,以及当对象是鼠时,包含SEQ ID NO:43的序列的正向引物和包括SEQ ID NO:44的序列的反向引物。
在另一个实施方案中,生物样本是血清或玻璃体液。
在另一个实施方案中,本发明是一种诊断对象中糖尿病视网膜病变(DR)的方法,该方法包含:a)测量来自对象的生物样本中长非编码RNA(lncRNA)的量;以及b)将lncRNA的量与对照参考值进行比较,当lncRNA的量相对于对照参考值发生变化时,诊断所述对象为患有DR,其中所述lncRNA是HOTAIR、H19、WISPER、ZFAS1、HULC、ANRIL、MALAT1、MIAT和MEG3中的一个或多个。
在诊断对象中DR的方法的一个实施方案中,当对象被诊断患有DR时,所述方法进一步包含治疗对象的DR。
在诊断对象中DR的方法的另一个实施方案中,当对象被诊断患有DR时,所述方法进一步包含向对象施用治疗有效量的抑制lncRNA HOTAIR的至少一种生物活性的药剂。
在诊断对象中DR的方法的另一个实施方案中,lncRNA的量是通过使用能够扩增lncRNA多核苷酸序列的至少一组寡核苷酸引物进行聚合酶链反应(PCR)来测量的,所述引物包括正向引物和反向引物,其中至少一组引物选自:当对象是人时,包含SEQ ID NO:3、77、79、81、83、85、87、89、91或93的序列的正向引物和包含SEQ ID NO:4、78、80、82、84、86、88、90、92或94的序列的相应反向引物,以及当对象是鼠时,包含SEQ ID NO:43的序列的正向引物和包括SEQ ID NO:44的序列的反向引物。
在诊断对象中DR的方法的另一个实施方案中,生物样本是血清或玻璃体液。
在一个实施方案中,本发明提供了一种治疗DR对象的方法,所述方法包含:a)测量来自对象的生物样本中长非编码RNA HOTAIR的量;b)结合长非编码RNA HOTAIR的各自参考值范围分析所述长非编码RNA HOTAIR的量,其中,与对照样本相比,生物样本中长非编码RNA HOTAIR的量增加表明对象具有DR;以及c)如果长非编码RNA HOTAIR的量表明对象具有DR,向有此需要的对象施用治疗有效量的抑制长非编码RNA HOTAIR的至少一种生物活性的药剂。
在一个实施方案中,测量生物样本中长非编码RNA HOTAIR的量包含用能够扩增HOTAIR长非编码RNA多核苷酸序列的至少一组寡核苷酸引物进行聚合酶链反应(PCR),所述引物包括正向引物和反向引物,其中至少一组引物选自:当对象是人时,包含SEQ ID NO:3、77、79、81、83、85、87、89、91或93的序列的正向引物和包含SEQ ID NO:4、78、80、82、84、86、88、90、92或94的序列的相应反向引物,以及当对象是鼠时,包含SEQ ID NO:43的序列的正向引物和包括SEQ ID NO:44的序列的反向引物。
在另一个实施方案中,本发明提供了一种治疗病症的方法,所述方法包含:向有此需要的对象施用治疗有效量的至少一种抑制长非编码RNA HOTAIR的至少一种生物活性的药剂。在实施方案中,与HOTAIR表达相关的病症是以下一种或多种:糖尿病视网膜病变(DR)、糖尿病肾病、糖尿病心肌病、糖尿病神经病变、增殖性玻璃体视网膜病变、新生血管性青光眼、缺血性视网膜病变、继发于视网膜静脉阻塞的视网膜病变、以及年龄相关性黄斑变性、瘢痕形成和创伤愈合。在一个方面,所述病症是DR。在另一个方面,所述DR是非增殖性DR或增殖性DR。
在另一个实施方案中,本发明提供了一种治疗对抗VEGF疗法无效的病症的方法,所述方法包含:向有此需要的对象施用治疗有效量的至少一种抑制长非编码RNA HOTAIR的至少一种生物活性的药剂。
在另一个实施方案中,本发明提供了一种治疗对抗VEGF疗法没有反应的患者的方法,所述方法包含:向有此需要的对象施用治疗有效量的至少一种抑制长非编码RNAHOTAIR的至少一种生物活性的药剂。
在另一个实施方案中,本发明提供了一种防止葡萄糖诱导的氧化损伤的方法,所述方法包含:向有此需要的对象施用治疗有效量的至少一种抑制长非编码RNA HOTAIR的至少一种生物活性的药剂。
在另一个实施方案中,本发明提供了一种防止高血糖环境中表观遗传介质的诱导的方法,所述方法包含抑制lncRNA HOTAIR的表达。
在另一个实施方案中,本发明提供了至少一种抑制长非编码RNA HOTAIR的至少一种生物活性的药剂用于治疗病症的应用,其中所述病症是以下一种或多种:糖尿病视网膜病变、糖尿病肾病、糖尿病心肌病、糖尿病神经病变、增殖性玻璃体视网膜病变、新生血管性青光眼、缺血性视网膜病变、继发于视网膜静脉阻塞的视网膜病变、年龄相关性黄斑变性、瘢痕形成和创伤愈合。在一个方面,所述病症是糖尿病视网膜病变。在另一个方面,所述糖尿病视网膜病变是非增殖性糖尿病视网膜病变或增殖性糖尿病视网膜病变。
在另一个实施方案中,本发明提供了至少一种抑制长非编码RNA HOTAIR的至少一种生物活性的药剂用于治疗对抗VEGF疗法无效的病症的应用。
在另一个实施方案中,本发明提供了至少一种抑制长非编码RNA HOTAIR的至少一种生物活性的药剂用于防止葡萄糖诱导的氧化损伤的应用。
在另一个实施方案中,本发明提供了至少一种抑制长非编码RNA HOTAIR的至少一种生物活性的药剂用于防止高血糖环境中表观遗传介质的诱导的应用。
在本发明的一个实施方案中,表观遗传介质是EZH2、SUZ12、EED、DNMT1、DNMT3A、DNMT3B、CTCF或P300。
在本发明的另一个实施方案中,所述至少一种药剂是抗长非编码RNA HOTAIR抗体或抗体片段中的一种或多种。
在本发明的另一个实施方案中,所述至少一种药剂是一种或多种siRNA、piRNA、snRNA、miRNA、核酶或反义寡核苷酸。
在本发明的另一个实施方案中,所述对象是人。
在本发明的另一个实施方案中,所述至少一种药剂是siRNA,其中siRNA是SEQ IDNO:104、SEQ ID NO:106、SEQ ID NO:108、SEQ ID NO:110、N-187951-01、187951-02、187951-03、187951-04。
在本发明的另一个实施方案中,所述至少一种药剂是DNMT抑制剂或组蛋白甲基化抑制剂。
在本发明的另一个实施方案中,DNMT抑制剂是5-aza-dC或siDNMT1。
在本发明的另一个实施方案中,组蛋白甲基化抑制剂是DZNep和/或siEZH2。
在本发明的另一个实施方案中,所述药剂与另一种治疗剂(例如抗VEGF药剂)组合施用,用于治疗与糖尿病诱导的新生血管相关的病症。
在另一个实施方案中,本发明提供了一种治疗疾病的方法,其包含施用一定量的以有效量治疗疾病的siRNA,其中siRNA是SEQ ID NO:104、106、108或110。
在另一个实施方案中,本发明涉及一种选自SEQ ID NO:104、106、108和110的分离的siRNA。
                         序列表
<110>  西安大略大学
<120>  使用长非编码RNA作为靶标诊断和治疗慢性糖尿病并发症
<130>  0118494.0173
<150>  US 63/048,389
<151>  2020-07-06
<160>  121
<170>  PatentIn version 3.5
<210>  1
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  1
cctctatgcc aacacagtgc                                                  20
<210>  2
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  2
catcgtactc ctgcttgctg                                                  20
<210>  3
<211>  23
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  3
ggtagaaaaa gcaaccacga agc                                              23
<210>  4
<211>  25
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  4
acataaacct ctgtctgtga gtgcc                                            25
<210>  5
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  5
gaactttctg ctgtcttggg                                                  20
<210>  6
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  6
cttcgtgatg attctgccct                                                  20
<210>  7
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  7
aagccctcca gagagcgtta t                                                21
<210>  8
<211>  25
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  8
ccgaaggtct gtctgtcacc aatgt                                            25
<210>  9
<211>  19
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  9
ggacacggcc tatagcctg                                                   19
<210>  10
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  10
ctcttggcgc agttcttgtc                                                  20
<210>  11
<211>  22
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  11
ccggctcgtg tatttattac cg                                               22
<210>  12
<211>  22
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  12
ggcaaccact gttctccaga gc                                               22
<210>  13
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  13
gcggcatcca gctacgaatc t                                                21
<210>  14
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  14
gggcagggaa ccagcatctt                                                  20
<210>  15
<211>  24
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  15
cataaagtct gcaacatgga aggt                                             24
<210>  16
<211>  23
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  16
atttgatggg tgaggaatgg gtt                                              23
<210>  17
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  17
ccacacacaa tgcgtatgac                                                  20
<210>  18
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  18
ccacagcaat cttcggttat g                                                21
<210>  19
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  19
tcaccagacg cctcaaccgc                                                  20
<210>  20
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  20
gcctcgcccg atgtgtagga                                                  20
<210>  21
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  21
tcgcctccag catgaaagtc                                                  20
<210>  22
<211>  19
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  22
ggcattgatt gcatctggc                                                   19
<210>  23
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  23
gaccccaccc ttcttcagat g                                                21
<210>  24
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  24
ccacagcagc ctctgcttct                                                  20
<210>  25
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  25
gggactaacc aatggtggtg                                                  20
<210>  26
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  26
attgggagaa gtcaagcctg                                                  20
<210>  27
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  27
ccaccattaa tgtgctggaa                                                  20
<210>  28
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  28
ttccttggag gagtatccac a                                                21
<210>  29
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  29
tacggctcct attgccaaac                                                  20
<210>  30
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  30
tgcttcagtt tgttgccttg                                                  20
<210>  31
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  31
gcaactgtag gaagcaacag a                                                21
<210>  32
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  32
cataggtcca tgcacaagtg t                                                21
<210>  33
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  33
acggtgctca tgcttacaac                                                  20
<210>  34
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  34
ttagcctctc catcggactt                                                  20
<210>  35
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  35
ggcaaattct cagtggtgtg                                                  20
<210>  36
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  36
gtcactctca tcgctgctgt                                                  20
<210>  37
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  37
ttgaatatga agcccccaag                                                  20
<210>  38
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  38
tgatattccc ctcgtgcttc                                                  20
<210>  39
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  39
cagcctcctg gtctgaactc                                                  20
<210>  40
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  40
atccagggga agatctgctt                                                  20
<210>  41
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  41
atgtacatgc caccacctag c                                                21
<210>  42
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  42
ttgctgtgta acaggttgct c                                                21
<210>  43
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  43
gcgccaacgt agaccaaaag                                                  20
<210>  44
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  44
tctaccgatg ttggggacct                                                  20
<210>  45
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  45
atgcggatca aacctcacca                                                  20
<210>  46
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  46
ctttctttgg tctgcattca c                                                21
<210>  47
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  47
ttagcaagac catctgtgtg                                                  20
<210>  48
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  48
gagtttctcc ctgaaatgtg                                                  20
<210>  49
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  49
ttggtacctg tagccattcc                                                  20
<210>  50
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  50
gaggctaaga ggctgctgta                                                  20
<210>  51
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  51
tgctgggaac aactcaacag                                                  20
<210>  52
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  52
cctcatcagg gtattcatcc a                                                21
<210>  53
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  53
ttcaggcagg cagtatcact c                                                21
<210>  54
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  54
gaaggtccac gggaaagaca c                                                21
<210>  55
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  55
tcaagtcagc aacgtggaag                                                  20
<210>  56
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  56
tatcgaggct gtgtcgactg                                                  20
<210>  57
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  57
ggaaagggat ctactttgcc g                                                21
<210>  58
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  58
tcgggtctcc ctgagatgtg                                                  20
<210>  59
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  59
tccttcatgt cggacgaggc                                                  20
<210>  60
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  60
aatgctgtgg ctatgactgc g                                                21
<210>  61
<211>  22
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  61
ttgtcaccaa gctcaagaga ga                                               22
<210>  62
<211>  22
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  62
gaggtggttg tggaaaaggt ag                                               22
<210>  63
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  63
tggtccagat ggcgtagagg                                                  20
<210>  64
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  64
gtcatcgaga tccggctcag                                                  20
<210>  65
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  65
aggcagagta ggacagtgaa                                                  20
<210>  66
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  66
ctcagtctgg gtcactcaat                                                  20
<210>  67
<211>  23
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  67
cgcgggacta gggagtgttc agt                                              23
<210>  68
<211>  24
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  68
agtacattat aggcaccgag gcga                                             24
<210>  69
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  69
agctctgcca cagcaggttc a                                                21
<210>  70
<211>  25
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  70
tgcttttgtt ctttttggcc tgcaa                                            25
<210>  71
<211>  23
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  71
atgctgtcag tattgagagt ggc                                              23
<210>  72
<211>  23
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  72
gaggctgttc acacatttga aag                                              23
<210>  73
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  73
gagacctggc actgggaata                                                  20
<210>  74
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  74
tccaggggaa gatctgtttg                                                  20
<210>  75
<211>  23
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  75
ataagcgcaa caaactcatt tcg                                              23
<210>  76
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  76
atatcgaggg acgggaacct                                                  20
<210>  77
<211>  23
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  77
ggggcttcct tgctcttctt atc                                              23
<210>  78
<211>  24
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  78
ctgacactga acggactctg tttg                                             24
<210>  79
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  79
aaagacacca tcggaacagc                                                  20
<210>  80
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  80
agagtcgtcg aggctttgaa                                                  20
<210>  81
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  81
ccatctgtgg gacatctgtg                                                  20
<210>  82
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  82
tgggggctgt ggagatagta                                                  20
<210>  83
<211>  18
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  83
cagcgggtac agaatgga                                                    18
<210>  84
<211>  22
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  84
tcaggagatc gaaggttgta ga                                               22
<210>  85
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  85
atctgcaagc caggaagagt c                                                21
<210>  86
<211>  22
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  86
cttgcttgat gctttggtct gt                                               22
<210>  87
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  87
cccttattta ttcctggctc c                                                21
<210>  88
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  88
gacctcgctt tcctttcttc c                                                21
<210>  89
<211>  22
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  89
tcttagaggg tgggcttttg tt                                               22
<210>  90
<211>  22
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  90
ctgcatctag gccatcatac tg                                               22
<210>  91
<211>  22
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  91
gggaggggaa atgggtgatg ta                                               22
<210>  92
<211>  22
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  92
taacgccaaa tgtgaagtgt ga                                               22
<210>  93
<211>  22
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  93
cggctgggtc ggctgaagaa ct                                               22
<210>  94
<211>  22
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  94
ccgcccaaac caggaaggag ac                                               22
<210>  95
<211>  19
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  95
agacgaaggu gaaagcgaa                                                   19
<210>  96
<211>  19
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  96
caauauaucu guugggcgu                                                   19
<210>  97
<211>  19
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  97
gggacuggga ggcgcuaau                                                   19
<210>  98
<211>  19
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  98
caguggaaug gaacggauu                                                   19
<210>  99
<211>  19
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  99
gaugcaaaua ggcguuaau                                                   19
<210>  100
<211>  19
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  100
ccagaaaugc cagcgcuaa                                                   19
<210>  101
<211>  19
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  101
cagaagacac gcacggaga                                                   19
<210>  102
<211>  19
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  102
ggaaggaagu cagcgccaa                                                   19
<210>  103
<211>  21
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  103
ccaaagaguc ugauguuuac a                                                21
<210>  104
<211>  21
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  104
uaaacaucag acucuuuggg g                                                21
<210>  105
<211>  21
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  105
cauaaacaau auaucuguug g                                                21
<210>  106
<211>  21
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  106
aacagauaua uuguuuauga g                                                21
<210>  107
<211>  21
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  107
cucuauaaua ugcuuauauu a                                                21
<210>  108
<211>  21
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  108
auauaagcau auuauagagu u                                                21
<210>  109
<211>  21
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  109
guguauauau aauaauguau u                                                21
<210>  110
<211>  21
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  110
uacauuauua uauauacaca a                                                21
<210>  111
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  111
gtagtcccag ggtgcaacac                                                  20
<210>  112
<211>  20
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  112
gactggctag aatgggcatc                                                  20
<210>  113
<211>  27
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  113
cggtgctgga atttgatatt cattgat                                          27
<210>  114
<211>  21
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  114
ttcaagtggg gaatggcaag c                                                21
<210>  115
<211>  23
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  115
ccccaaagag tctgatgttt aca                                              23
<210>  116
<211>  23
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  116
ctcataaaca atatatctgt tgg                                              23
<210>  117
<211>  23
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  117
aactctataa tatgcttata tta                                              23
<210>  118
<211>  23
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  118
ttgtgtatat ataataatgt att                                              23
<210>  119
<211>  21
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  119
uuuuaaaaau aaauauugga g                                                21
<210>  120
<211>  21
<212>  RNA
<213>  人工序列
<220>
<223>  合成的
<400>  120
ccaauauuua uuuuuaaaaa a                                                21
<210>  121
<211>  60
<212>  DNA
<213>  人工序列
<220>
<223>  合成的
<400>  121
gaaggaaagc cctccagcct ccaggccctg ccttctgcct gcacattctg ccctgatttc      60
附图说明
下面的附图说明了本发明的各个方面以及优选的和替代的实施方案。
图1A-1C:在NG或HG中培养48小时的HREC的LncRNA微阵列结果(GEO:GSE122189)。(A)散点图展示了正常葡萄糖(NG)和高葡萄糖(HG)重复之间的lncRNA表达。一般来说,散点图是一种可视化方法,用于评估两个比较样本(或组)之间的lncRNA表达变化(或重复性)。散点图中X轴和Y轴的值是两个样本的标准化信号值(log2刻度)或两个组的平均标准化信号值(log2刻度)。绿色的线是倍数变化线(给出的默认倍数变化值是2.0)。绿色的线上面的lncRNA和绿色的线下面的lncRNA表示两个比较组或样本之间的lncRNA的变化超过2.0倍。(B)所有样本组中lncRNA的层次聚类。“红色”表示相对高表达,“蓝色”表示相对低表达。(C)维恩图描述了在NG和HG重复之间上调(上图)或下调(下图)的lncRNA的总数。
图2A-2D:用高葡萄糖(HG)培养的HREC中HOTAIR RNA表达与血管生成标记物的表达增加有关,并且似乎是葡萄糖依赖性的,在48小时有显著升高。RT-qPCR分析表明,在48小时时,与在基础葡萄糖水平下培养的HREC(正常葡萄糖;NG)相比,HREC中HG诱导的(A)HOTAIR、(B)VEGF-A和(C)ET-1增加。(D)培养48小时后,不同葡萄糖浓度下HOTAIR RNA的相对水平。β-肌动蛋白被用作内部对照。当比较两个条件时采用双尾学生t检验或单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05或**p<0.01)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图3A-3B:高血糖促进HOTAIR表达,并且HOTAIR能够在视网膜内皮细胞的细胞核和胞质中被定位。(A)48小时时HREC中HOTAIR定位的可视化通过使用人HOTAIR的StellarisFISH探针和Qasar 570染料进行RNA荧光原位杂交显示。细胞还用DAPI进行复染以可视化细胞核。原始放大倍数,20X;比例尺,100μm。(B)使用ImageJ计算HOTAIR表达的平均荧光强度(integrated density)。使用双尾学生t检验评估统计学显著性(****p<0.0001)。数据表示为每个样本捕获的50个细胞的平均值±SEM(n=4-5个独立样本/组)。
图4A-4C:HOTAIR在体外直接介导血管生成。(A)对用杂乱的siRNA(SCR)、siHOTAIR或外源性VEGF蛋白处理并在NG或HG条件下培养的HREC,6小时时,从内皮管形成试验中捕获的图像。WimTube图像分析软件被用于计算各组的(B)细管的数量和(C)总分支点。使用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(****p<0.0001)。数据表示为3个独立实验的平均值±SEM(n=8/组),并且图像从每孔至少两个视野采集。原始放大倍数,40X。
图5:使用三种不同的市售siRNA沉默(knockdown)HOTAIR。在NG或HG培养48小时之前,用杂乱的siRNA(SCR)或靶向HOTAIR的特异性siRNA对HREC进行预处理。然后用RT-qPCR来分析HOTAIR的表达。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(****p<0.0001)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图6A-6I:HOTAIR沉默能够体外防止一些血管生成因子和糖尿病相关分子的诱导。在施用SCR siRNA或siHOTAIR的HREC经48小时NG或HG培养后,RT-qPCR分析(A)HOTAIR,(B)VEGF-A,(C)ET-1,(D)ANGPTL4,(E)PGF,(F)IL-1β,(G)HIF-1α,(H)PARP1,和(I)细胞色素B的表达。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图7A-7H:HOTAIR沉默能够防止高血糖环境中一些表观遗传介质的诱导。在施用SCR siRNA或siHOTAIR的HREC经48小时NG或HG培养后,RT-qPCR分析(A)EZH2,(B)SUZ12,(C)EED,(D)DNMT1,(E)DNMT3A,(F)DNMT3B,(G)CTCF和(H)P300的表达。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图8A-8D:HOTAIR沉默能够在HREC中减少VEGF-A蛋白,提高细胞活力,以及防止葡萄糖诱导的HOXD基因组的减少。(A)VEGF-A ELISA结果(以pg/mL表示)来自用SCR siRNA或siHOTAIR预处理且进行了48小时的NG或HG培养的HREC。(B,C)HOTAIR沉默后RT-qPCR分析HOXD3和HOXD10的表达。β-肌动蛋白被用作内部对照。(D)经SCR或siHOTAIR处理的HREC的WST-1结果。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图9A-9B:2个月时糖尿病动物的视网膜中Hotair显著升高。对非糖尿病(对照组)和经链脲霉素诱导的糖尿病C57BL/6J小鼠或Sprague-Dawley大鼠进行了2个月的追踪。对视网膜组织进行分离并提取RNA。采用RT-qPCR分析(A)小鼠和(B)大鼠的视网膜Hotair表达。β-肌动蛋白被用作内部对照。采用曼-惠特尼U检验(Mann-Whitney U test)来评估统计学显著性。数据表示为平均值±SD(n=8/对照或糖尿病小鼠组,n=5/对照大鼠组,或者n=9/糖尿病大鼠组;*p<0.05)。
图10A-10F:SiRNA介导的鼠Hotair的沉默及其对鼠视网膜和肺内皮细胞中血管生成标记物的影响。在施用SCR siRNA或siHOTAIR的鼠视网膜内皮细胞(上图)和原代鼠肺内皮细胞(下图)经48小时NG或HG培养后,RT-qPCR分析(A,D)Hotair,(B,E)Vegf-a,和(C,F)Angptl4的表达。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图11A-11E:siHOTAIR毒理学实验后各种鼠组织的苏木精和伊红(H&E)染色。野生型C57BL/6小鼠接受一次玻璃体内注射,其中包含杂乱的siRNA对照(100nM;SCR)或不同浓度的siHOTAIR(25nM,50nM和100nM),并监测七天,然后安乐死以收集组织(n=3/组)。在整个实验过程中,没有观察到小鼠的行为变化或眼部并发症,并且正如H&E染色所证明的,在以25、50或100nM浓度一次玻璃体内注射siHOTAIR后,(A)视网膜、(B)心脏、(C)肺、(D)肝和(E)肾组织也没有观察到细胞异常(25nM的图像未显示)。原始放大倍数,40X;比例尺=5微米。
图12A-12C:Hotair沉默后的体内结果。(A)在来自我们的毒理学实验的C57BL/6J小鼠的视网膜组织中不同的siHOTAIR浓度通过RT-qPCR指示的相对Hotair沉默表达(n=3/组)。β-肌动蛋白被用作内部对照。(B,C)参与我们短期的一个月的治疗模型的所有C57BL/6J小鼠的体重和血糖水平,其中对非糖尿病和糖尿病小鼠眼睛进行每周一次玻璃体注射杂乱的siRNA(SCR;100nM)或siHOTAIR(100nM),持续三周。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(****p<0.0001,或者n.s.=不显著)。数据表示为平均值±SD(n=6/组)。
图13A-13O:体内Hotair的沉默能够显著防止糖尿病视网膜中早期葡萄糖诱导的血管生成和糖尿病相关分子的升高。非糖尿病和糖尿病C57BL/6J小鼠进行每周一次玻璃体内注射杂乱的siRNA(SCR)或siHOTAIR,持续3周。然后在4周(1个月)对动物进行安乐死,分离视网膜组织并提取RNA。采用RT-qPCR分析(A)Hotair、(B)Vegf-a、(C)Et-1、(D)Angptl4、(E)Parp1、(F)Mcp-1、(G)Il-1β、(H)p300、(I)Ezh2、(J)Suz12、(K)Eed、(L)Pgf、(M)Hif-1α、(N)Ctcf和(O)Hoxd3的表达。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为平均值±SD(n=6/组)。
图14A-14G:在我们短期、1个月的涉及siHOTAIR的治疗动物模型之后,各鼠组织的苏木精和伊红(H&E)染色。非糖尿病(对照组)和糖尿病C57BL/6小鼠进行每周一次玻璃体内注射杂乱的siRNA(SCR;100nM)或siHOTAIR(100nM),持续3周。在整个实验过程中对小鼠进行监测,随后在4周时对小鼠进行安乐死以收集组织(n=3/组)。与我们最初的毒理学实验类似,在小鼠中没有观察到行为变化或眼部并发症,并且通过H&E染色证明,在1个月时多次玻璃体内注射siHOTAIR后,在(A)视网膜、(B)心脏、(C)肺、(D)肝、(E)肾、(F)皮质和(G)海马组织中也没有观察到细胞的异常情况。原始放大倍数,40X;比例尺=5微米。
图15A-15C:HOTAIR在增殖性糖尿病视网膜病变(PDR)患者的血清和玻璃体中上调。RT-qPCR分析用于检查非PDR(对照组)和PDR患者的(A)玻璃体和(B)血清中的HOTAIR表达。β-肌动蛋白被用作内部对照。采用曼-惠特尼U检验来评估统计学显著性。数据表示为平均值±SD(n=10/对照组,或者n=11/PDR组;**p<0.01或****p<0.0001)。(C)双侧皮尔逊相关性(Two-sided Pearson correlations)确定HOTAIR表达在两种样本类型之间存在线性(正)相关(***p<0.001)。
图16A-16B:HOTAIR沉默能够部分防止葡萄糖诱导的线粒体去极化/功能障碍。(A)从JC-1实验捕捉的图像,HREC用杂乱的siRNA(SCR)或siHOTAIR预处理,随后在NG或HG中培养48小时。线粒体去极化由更多的绿色和更少的红色荧光表示(低ΔΨM,表明不健康/功能障碍的线粒体),而线粒体极化状态由更多的红色和更少的绿色荧光表示(正常到高ΔΨM,表明健康/功能正常的线粒体)。细胞也用DAPI进行复染以可视化细胞核。原始放大倍数,20X;比例尺,100μm。(B)用ImageJ计算JC-1红/绿荧光比。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为每个样品捕获的20个细胞的平均值±SEM(n=8独立样本/组)。
图17A-17B:HOTAIR沉默能够显著防止葡萄糖诱导的氧化损伤。(A)从8-OHdG实验捕捉的图像,HREC用杂乱的siRNA(SCR)或siHOTAIR预处理,随后在NG或HG中培养48小时。8-OHdG是细胞核和线粒体氧化性DNA损伤的生物标记物,强烈的绿色荧光表明氧化损伤加剧。细胞也用DAPI进行复染以可视化细胞核。原始放大倍数,20X;比例尺,100μm。(B)用ImageJ计算8-OHdG表达的平均荧光强度。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05或****p<0.0001)。数据表示为每个样品捕获的20个细胞的平均值±SEM(n=8独立样本/组)。
图18A-18B:HOTAIR沉默能够体外防止葡萄糖诱导的内皮细胞连接的破坏。(A)杂乱的siRNA(SCR)或(B)siHOTAIR转染的HREC在高葡萄糖培养后通过电子显微镜检测的代表图像(n=6个样本/组)。与siHOTAIR加HG细胞中连接的保留相比,SCR加HG细胞中可以看到内皮细胞连接的破坏(B中插入了一个更高的放大倍数,显示了连接[由黑色箭头指示])。直接放大倍数,1950X;比例尺=2微米;‘N’=细胞核。
图19A-19I:葡萄糖代谢体外调节HOTAIR和大多数其下游靶标。2-脱氧-D-葡萄糖处理(0.6或5mM)的HREC经48小时NG(5mM D-葡萄糖)或HG(25mM D-葡萄糖)培养后,RT-qPCR分析(A)HOTAIR、(B)VEGF-A、(C)ET-1、(D)ANGPTL4、(E)MCP-1、(F)IL-1β、(G)CTCF、(H)细胞色素B和(I)PARP1表达。2-脱氧-D-葡萄糖是一种有效的糖酵解抑制剂。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图20A-20I:糖酵解抑制能够影响某些表观遗传分子,也可以影响参与氧化应激的细胞核运输分子,而不依赖于线粒体。2-脱氧-D-葡萄糖处理(0.6或5mM)的HREC经48小时NG(5mM D-葡萄糖)或HG(25mM D-葡萄糖)培养后,RT-qPCR分析(A)EZH2、(B)SUZ12、(C)EED、(D)P300、(E)DNMT1、(F)DNMT3A、(G)DNMT3B、(H)HOXD3,和(I)HOXD10表达。2-脱氧-D-葡萄糖是一种有效的糖酵解抑制剂。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图21A-21E:DZNep预处理减少PRC2组分的表达并刺激HOXD基因座的转录。在NG或HG培养48小时之前,用DZNep(一种全面(global)组蛋白甲基化抑制剂)预处理HREC。然后用RT-qPCR分析(A)EZH2、(B)SUZ12、(C)EED、(D)HOXD3和(E)HOXD10的表达。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图22A-22J:组蛋白甲基化差异调节HOTAIR及其下游靶标。在NG或HG培养48小时之前,用DZNep(一种全面组蛋白甲基化抑制剂)预处理HREC。然后用RT-qPCR分析(A)HOTAIR、(B)VEGF-A、(C)ET-1、(D)ANGPTL4、(E)CTCF、(F)PARP1、(G)MCP-1、(H)IL-1β、(I)P300和(J)细胞色素B的表达。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图23A-23L:EZH2和CTCF直接参与了HOTAIR和一些其他下游基因的转录调控。在施用杂乱的siRNA(SCR)、siEZH2或siCTCF的HREC经48小时NG或HG培养后,RT-qPCR分析(A)HOTAIR、(B)VEGF-A、(C)ET-1、(D)ANGPTL4、(E)EZH2、(F)CTCF、(G)SUZ12、(H)EED、(I)PARP1、(J)MCP-1、(K)IL-1β和(L)细胞色素B的表达。EZH2是PRC2(一种关键的组蛋白甲基转移酶)的催化亚单位,以及CTCF是一种重要的表观遗传转录因子,参与基因的直接调控。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图24A-24F:EZH2和CTCF的沉默能够改变葡萄糖诱导的一些表观遗传分子的表达。在施用杂乱的siRNA(SCR)、siEZH2或siCTCF的HREC经48小时NG或HG培养后,RT-qPCR分析(A)DNMT1、(B)DNMT3A、(C)DNMT3B、(D)P300、(E)HOXD3和(F)HOXD10表达。EZH2是PRC2(一种关键的组蛋白甲基转移酶)的催化亚单位,以及CTCF是一种重要的表观遗传转录因子,参与基因的直接调控。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图25A-25B:高葡萄糖促进HOTAIR和表观遗传酶之间的强结合关联。使用抗IgG、抗EZH2(组蛋白甲基转移酶PRC2的催化亚基)或抗P300(一种组蛋白乙酰转移酶)抗体对用NG或HG培养48小时的HREC进行RNA免疫沉淀(RIP)实验。然后用RT-qPCR测定IgG、(A)EZH2和(B)P300拉低后HOTAIR的倍数富集。IgG抗体被用作阴性对照,以及β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=3/组)。
图26A-26F:HOTAIR在高血糖环境中能够控制VEGF-A的转录状态。ChIP-qPCR分析检查VEGF-A的远端(上图)和近端(下图)区域中(A,D)RNA聚合酶II(Pol II),(B,E)组蛋白3中赖氨酸27的三甲基化(H3K27me3;一种抑制性组蛋白标记),以及(C,F)组蛋白3中赖氨酸9、14、18、23和27的乙酰化(H3K9/14/18/23/27;一种激活的组蛋白标记)的富集。为了确定HOTAIR在转录调控中的作用,在进行ChIP-qPCR实验之前,用杂乱的siRNA(SCR)或siHOTAIR预处理HREC,随后在NG或HG中培养48小时。IgG抗体被用作阴性对照,以及β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=3/组)。
图27A-27B:HREC的DNA甲基化分析。(A)根据UCSC数据库中关于人HOTAIR基因的信息,HOTAIR的位置位于染色体12:54,356,092-54,368,740(hg19)上,其大约尺寸(对于转录本变体1)为12,649个核苷酸,共包含6个外显子(19)。(B)无监督层次聚类与热图使用所有跨越HOTAIR的HREC中的CpG,共59个探针。有趣的是,用不同的葡萄糖浓度(5mM与25mM)和培养时间(2天与7天)处理的细胞之间没有区别——这说明在不同时间的葡萄糖处理后,这些细胞中DNA甲基化的稳定的表观遗传特性。行表示CpG,列表示样本;从蓝到红的比色刻度尺(color scale)表示甲基化水平从0到1(0表示无甲基化,1表示最大甲基化)。n=由上面的颜色表示的每组有3个独立的样本;HR5_2=HREC在5mM葡萄糖中培养2天,HR25_2=HREC在25mM葡萄糖中培养2天,HR5_7=HREC在5mM葡萄糖中培养7天,以及HR25_7=HREC在25mM葡萄糖中培养7天。
图28A-28B:HREC的DNA甲基化分析。(A)描述了用NG或HG培养的HREC之间在不同时间段(2天或7天)共享HOTAIR基因组区域的稳定的DNA甲基化模式。(B)HOTAIR启动子区域的不同甲基化模式。箱线图表示映射到该区域的所有探针的中位甲基化值的分布,以葡萄糖浓度和培养时间分层。中心线:各样本区域甲基化水平的中位数;下限和上限:第一和第三四分位数;须触线:四分位距范围(n=3个独立样本/组)。
图29A-29E:5-aza-dC能够降低DNMT的表达,而促进HOXD3和HOXD10基因表达。在NG或HG培养48小时之前,用5-aza-dC(一种泛DNMT抑制剂)对HREC进行预处理。然后用RT-qPCR分析(A)DNMT1、(B)DNMT3A、(C)DNMT3B、(D)HOXD3和(E)HOXD10的表达。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图30A-30J:DNMT的全面抑制能够差异调节HOTAIR及其靶标的表达。在NG或HG培养48小时之前,用5-aza-dC(一种泛DNMT抑制剂)对HREC进行预处理。然后用RT-qPCR分析(A)HOTAIR、(B)VEGF-A、(C)ET-1、(D)ANGPTL4、(E)CTCF、(F)P300、(G)PARP1、(H)细胞色素B、(I)MCP-1和(J)IL-1β的表达。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图31A-31E:SiRNA介导的DNMT1的沉默能够影响葡萄糖诱导的DNMT和HOXD基因组的表达。在施用杂乱的siRNA(SCR)或siDNMT1的HREC经48小时NG或HG培养后,RT-qPCR分析(A)DNMT1、(B)DNMT3A、(C)DNMT3B、(D)HOXD3和(E)HOXD10的表达。DNMT1是一种组成型表达的DNA甲基转移酶。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图32A-32J:选择性的DNMT1的沉默在体外能够影响HOTAIR及一些其下游靶标的表达。在施用杂乱的siRNA(SCR)或siDNMT1的HREC经48小时NG或HG培养后,RT-qPCR分析(A)HOTAIR、(B)VEGF-A、(C)ET-1、(D)ANGPTL4、(E)CTCF、(F)P300、(G)细胞色素B、(H)PARP1、(I)MCP-1和(J)IL-1β的表达。DNMT1是一种组成型表达的DNA甲基转移酶。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为3个独立实验的平均值±SEM(n=6/组)。
图33:本实施例中使用的细胞培养模型示意图。
图34:HG处理的HREC表明在48小时时lncRNA的差异表达。RT-qPCR分析暴露于25mM(HG)或5mM(NG)葡萄糖48小时的HREC中ANRIL、H19、HOTAIR、HULC、MALAT1、MEG3、MIAT、WISPER和ZFAS1的表达[数据(平均值±SEM);N=6/组;相对于β-肌动蛋白标准化,以NG的倍数变化表示;*=与NG相比P<0.05]。
图35:ABM提供的AAV-siRNA-GFP载体的总体图。U6和H1启动子都启动了siRNA的转录,以及siRNA末端的PolyT序列停止转录。这种聚合转录系统在RNA水平上作用,不经过需要起始和终止密码子的翻译。由此,有义和反义序列两者的转录形成互补的RNA,它们将退火并形成双链的siRNA,这绕过了发夹环的形成,并将被用于形成RNA诱导的沉默复合物。
图36:DNA测序色谱图。突出显示了siRNA序列,polyT序列在siRNA的下游。
图37A-37C:AAV2-siHOTAIR的单一玻璃体内剂量能够在1个月显著降低糖尿病动物的视网膜组织中视网膜Hotair水平。对非糖尿病和糖尿病的C57BL/6J小鼠进行不注射或单次玻璃体内注射PBS(模拟对照)或AAV2-siHOTAIR。然后在4周(1个月)对动物进行安乐死,分离视网膜组织并提取RNA。采用RT-qPCR分析(A)Hotair、(B)Angptl4和(C)Vegfa表达。β-肌动蛋白被用作内部对照。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(与其他组相比,*p<0.05)。数据表示为平均值±SEM(n=4/组)。
图38A-38I:患者的血清中lncRNA的差异表达。血清样本是在接受玻璃体切除术前从患者获得。用TRIzol试剂分离RNA,然后逆转录成cDNA,用RT-qPCR来确定目标lncRNA的表达。在RT-qPCR之后,我们随后使用lncRNA表达谱进行了线性回归分析。如上所示,PDR与A)HOTAIR、B)ANRIL、C)H19、D)HULC、E)MALAT、H)WISPER和I)ZFAS1的表达之间似乎存在显著的关系。尽管我们没有发现PDR与F)MEG3或G)MIAT之间的显著关系,但我们预计样本量的增加可能有助于提高这种关系的显著性。图例:黑点表示没有PDR的对照组患者,以及黑方块表示确诊为PDR的患者。虚线为线性回归,而每个图中的方程是回归分析的结果,包括斜率和交点。我们还提供了R2值,即决定系数[P<0.05被认为显著;对照组N=10,以及PDR组N=11;DR=PDR;以及相对于β-肌动蛋白进行标准化]。
图39A-39I:患者的玻璃体液中lncRNA的差异表达。玻璃体样本从接受玻璃体切除术的患者获得。用TRIzol试剂分离RNA,然后逆转录成cDNA,用RT-qPCR来确定目标lncRNA的表达。在RT-qPCR之后,我们随后使用lncRNA表达谱进行了线性回归分析。如上所示,PDR与A)HOTAIR、B)ANRIL、D)MALAT1、F)MIAT、G)WISPER、H)ZFAS1和I)H19的表达之间似乎存在显著的关系。尽管我们没有发现PDR与C)HULC或E)MEG3之间的显著关系,但我们预计样本量的增加可能有助于提高这种关系的显著性。图例:黑点表示没有PDR的对照组患者,以及黑方块表示确诊为PDR的患者。虚线为线性回归,而每个图中的方程是回归分析的结果,包括斜率和交点。我们还提供了R2值,即决定系数[P<0.05被认为显著;对照组N=10,以及PDR组N=12;DR=PDR;以及相对于β-肌动蛋白进行标准化]。
图40A-40I:血清和玻璃体样本之间的皮尔逊相关分析。当比较血清和玻璃体样本时,观察到A)HOTAIR、B)ANRIL、C)H19、E)MALAT1、H)WISPER和I)ZFAS1有显著相关性,这表明这些lncRNA的表达能够从PDR患者的血清和玻璃体得到反映。尽管我们没有发现D)HULC、F)MEG3和G)MIAT的血清和玻璃体浓度之间的显著相关性,包括更大的样本量可能会进一步帮助确认这些标记物和样本类型之间的关系[p<0.05被认为显著;对照组N=10,以及PDR组N=11;DR=PDR;以及相对于β-肌动蛋白进行标准化]。
图41A-41D:定制的双链siRNA。开发了靶向HOTAIR的不同区域的四种不同的siRNA(表7)。用这些siRNA转染HREC,然后对HOTAIR及其靶标标记物进行分析。A)HOTAIR、B)VEGF-A、C)ET-1和D)ANGPTL4的RT-qPCR分析表明,HOTAIR的沉默能够直接影响这些血管生成转录物的表达,尽管每个siRNA存在不同的降低。具体地,与SCR HG对照组相比,使用siHOTAIRSB1、siHOTAIR SB2、siHOTAIR SB3和siHOTAIR SB4,HOTAIR表达分别减少了约67%、约41%、约57%和约32%。采用单因素方差分析进行多重比较,然后进行Tukey的事后检验来评估统计学显著性(*p<0.05,**p<0.01,***p<0.001,****p<0.0001,或者n.s.=不显著)。数据表示为平均值±SEM(n=3/组)。SCR=杂乱的siRNA;SB=定制设计的siRNA;NG=正常/基本葡萄糖;HG=高葡萄糖。
图42:显示与非糖尿病患者(无糖尿病视网膜病变)相比,糖尿病患者(糖尿病视网膜病变的不同阶段)中血清lncRNA表达是不同的图解。显示对照组患者(无DR)和患有不同阶段DR的糖尿病患者之间观察到lncRNA ANRIL、H19、HOTAIR、HULC、MALAT1、MIAT、WISPER和ZFAS1有显著的关系的图解[P<0.05被认为显著,用“#”表示;对照组N=4,以及DR组N=38;以及lncRNA表达相对于β-肌动蛋白标准化]。虽然没有显著性,但与对照组患者相比,糖尿病患者中MEG3水平显示出增加的趋势(p=0.063)。
图43:显示基于糖尿病视网膜病变不同阶段的lncRNA表达的图解。当比较不同阶段的糖尿病视网膜病变(‘0’=糖尿病且无DR的患者,‘1’=糖尿病且非增殖性DR的患者,‘2’=糖尿病且增殖性DR的患者)与对照组(无糖尿病和DR)患者的血清lncRNA及其表达水平时,与对照组相比,观察到‘0’组中仅H19,‘1’组中全部9个lncRNA和‘2’组中7个lncRNA(ANRIL、H19、HOTAIR、HULC、MALAT1、MIAT和WISPER)显著表达[P<0.05被认为显著,用“#”表示;对照组N=4,以及“0”组N=8,“1”组N=12,“2”组N=18;以及lncRNA表达相对于β-肌动蛋白标准化]。
详细描述
除非另有说明,否则本发明的实践将采用在本领域技术范围内的药理学、化学、生物化学、重组DNA技术和免疫学的常规方法。这些技术在文献中有充分的解释。参见,例如,Handbook of Experimental Immunology,Vols.I-IV(D.M.Weir and C.C.Blackwelleds.,Blackwell Scientific Publications);A.L.Lehninger,Biochemistry(WorthPublishers,Inc.,current addition);Sambrook,et al.,Molecular Cloning:ALaboratory Manual(3rd Edition,2001);Methods In Enzymology(S.Colowick andN.Kaplan eds.,Academic Press,Inc.)。
本文引用的所有出版物、专利和专利申请,无论是上文还是下文,均通过引用整体并入本文。
I.定义
在描述本发明时,将采用以下术语,并旨在如下所示进行定义。
必须注意,如在本说明书和所附权利要求书中所使用的,单数形式“一”、“一个/一种”和“该/所述”包括复数指代,除非内容明确另有规定。因此,例如,对“一种lncRNA”的提及包括两种或更多种lncRNA的混合物,或多种lncRNA,除非上下文明确相反指出,以此类推。此处使用的术语“多种”是指“一种或多种”。
在本说明书和权利要求书中,术语“包含”、“包括”和“含有”以非排他意义使用,除非上下文另有要求。同样,术语“包括”、“具有”及其语法变体旨在是非限制性的,因此列表中项目的记载不排除可以替换或添加到所列项目中的其他类似项目。
为了本说明书和所附权利要求书的目的,除非另有说明,否则本说明书和权利要求书中使用的表示量、尺寸、大小、比例、形状、配方、参数、百分比、参数、数量、特征和其他数值的所有数字,均应理解为在所有情况下都被“约”一词修饰,即使“约”这个词可能没有明确地出现在值、量或范围中。
术语“约/大约”,特别是指给定数量,旨在包括正负5%的偏差。
“HOTAIR”(HOX转录物反义RNA)是指从位于12号染色体上的人类基因(从54,356,092到54,368,740个核苷酸(GRCh37/hg19))产生的长非编码RNA转录物。在转录、剪接和聚腺苷酸化之后,HOTAIR转录物不编码蛋白质,因为这些转录物含有很少或没有开放阅读框(GENBANK ID:NR_047517.1、NR_003716.3NR_047518.1)。
VEGF-A(血管内皮生长因子A)基因是PDGF/VEGF生长因子家族的成员。它编码一种肝素结合蛋白,其以二硫键连接的同二聚体形式存在。这种生长因子诱导血管内皮细胞的增殖和迁移,对生理和病理血管生成都至关重要。事实上,VEGF-A被认为是糖尿病黄斑水肿和增殖性DR发展的重要因素[20]。
ET-1(内皮素-1)也称为内皮素前体(PPET1),是人类中的一种有效的血管收缩剂,由EDN1基因编码,由血管内皮细胞产生。除了其血管收缩特性外,ET-1还可以作为血管平滑肌上的有丝分裂原,并可能最终在血管疾病的发展中发挥作用[21]。事实上,ET-1在受慢性糖尿病并发症影响的器官中上调,并有助于DR的发展[22]。
ANGPTL4是指一种编码血管生成素样4蛋白的基因,该蛋白通过调节血管通透性、癌症细胞运动性和侵袭性参与转移过程。此外,ANGPTL4已被证明是增殖性DR中一种有效的血管生成介质[23]。
PGF(胎盘生长因子)是一种由PGF基因编码的蛋白质。胎盘生长因子是VEGF亚家族的成员,是血管生成和血管发生的关键分子,尤其是在胚胎发生过程中。此外,PGF与DR的发病机制有关[24]。
IL-1β(白细胞介素1β),也称为白细胞热原、白细胞内源性介质、单核细胞因子、淋巴细胞活化因子等名称,是一种细胞因子蛋白,在人类中由IL1B基因编码。IL-1β活性有助于增强炎症环境,也可能参与肿瘤细胞诱导的早期血管生成反应[25、26]。在DR的背景下,发现增殖性DR患者的玻璃体中IL-1β浓度升高,并在DR中具有充分的致病性[27、28、29]。
HIF-1α(低氧诱导因子1-α),是由HIF1A基因编码的异源二聚体转录因子低氧诱导因子1(HIF-1)的一个亚基。它是一种含有基本的螺旋-环-螺旋PAS结构域的蛋白质,被认为是细胞和发育对缺氧反应的主要转录调节因子。缺氧或基因改变导致HIF1A的失调和过度表达与癌症生物学以及许多其他病理生理学密切相关,特别是在血管生成和血管发生、能量代谢、细胞存活和肿瘤侵袭等领域。此外,在患有增殖性DR的糖尿病患者中,HIF-1α的玻璃体内浓度增加,并且与VEGF水平相互关联[30]。
PARP1(聚[ADP核糖]聚合酶1)是一种在人类中编码PARP-1酶的基因,PARP-1也被称为NAD+ADP-核糖转移酶1或聚[ADP-核糖]合酶1。PARP1是PARP酶家族中的一员。PARP激活是氧化剂诱导的DNA损伤的下游效应器,也是糖尿病影响组织中功能和代谢变化的关键步骤[31]。PARP1也可以参与相关DR相关分子的转录调节,如MMP-9[32]。
细胞色素B是指真核细胞线粒体中的一种蛋白质。它作为电子运输链的一部分,是跨膜细胞色素bc1和b6f复合物的主要亚基。已在受高血糖影响的各种细胞中发现细胞色素B水平升高,这种葡萄糖诱导的增加表明线粒体功能障碍,这可能进一步导致糖尿病并发症的发病[33、34]。
可根据本文所述的实施方案治疗或诊断的糖尿病诱导的病症包括非增殖性和增殖性糖尿病视网膜病变、新生血管性青光眼、缺血性视网膜病变和糖尿病并发症,例如糖尿病肾病、糖尿病心肌病和糖尿病神经病。
术语“siRNA”和“短干扰RNA”可互换,指能够诱导RNA干扰的单链或双链RNA分子。SiRNA分子通常具有长度在18至30个碱基对之间的双链区。
术语“多核苷酸”、“寡核苷酸”、“核酸”和“核酸分子”在本文中用于包括任何长度的核苷酸的聚合形式,无论是核糖核苷酸还是脱氧核糖核苷酸。该术语仅指分子的一级结构。因此,该术语包括三链、双链和单链DNA,以及三链、双链和单链RNA。它还包括修饰,例如通过甲基化和/或封端,以及未修饰形式的多核苷酸。
术语“同源区”是指与另一核酸区域同源的核酸区域。因此,参考相同或不同分子中的另一核酸区域来确定核酸分子中是否存在“同源区”。此外,由于核酸通常是双链的,所以本文中使用的术语“同源区”是指核酸分子彼此杂交的能力。例如,单链核酸分子可以具有两个能够相互杂交的同源区域。因此,术语“同源区”包括具有互补序列的核酸片段。
术语“互补的”和“互补性”是可互换的,指多核苷酸彼此形成碱基对的能力。100%互补是指一个多核苷酸链或区域的每个核苷酸单元可以与第二多核苷酸链或区域的每个核苷酸单元氢键结合的情况。不完全互补是指两条链或两个区域的部分(但不是全部)核苷酸单元可以彼此氢键结合的情况并可以用百分比表示。
“靶位点”或“靶序列”是反义寡核苷酸或抑制性RNA分子识别(即,足够地互补的杂交)的核酸序列。
向细胞“施用/给药”核酸,例如microRNA、siRNA、piRNA、snRNA、反义核酸或lncRNA,包括通过任何方式将核酸引入细胞,通过这种方式核酸可以跨细胞膜运输,包括转导、转染、电穿孔、易位、融合、吞噬、射击或弹道法等。
术语“转染”用来指细胞对外来DNA或RNA的摄取。当外源DNA或RNA被引入细胞膜内时,细胞已被“转染”。该术语指遗传物质的稳定和瞬时摄取,包括例如microRNA、siRNA、piRNA、lncRNA或反义核酸的摄取。
“药学上可接受的赋形剂或载体”是指可任选地包含在本发明组合物中且不会对患者造成显著不良毒理学影响的赋形剂。
“药学上可接受的盐”包括但不限于:氨基酸盐,用无机酸制备的盐,如氯化物、硫酸盐、磷酸盐、二磷酸盐、溴化物和硝酸盐,或由上述任何一种相应的无机酸形式制备的盐类,如盐酸盐等,或用有机酸制备的盐,如苹果酸盐、马来酸盐、富马酸盐、酒石酸盐、琥珀酸盐、琥珀酸乙酯、柠檬酸盐、乙酸盐、乳酸盐、甲磺酸盐、苯甲酸盐、抗坏血酸盐、对甲苯磺酸盐、棕榈酸盐、水杨酸盐和硬脂酸盐,以及依托酸盐(estolate)、葡庚糖酸盐和乳糖酸盐。类似地,含有药学上可接受的阳离子的盐包括但不限于钠、钾、钙、铝、锂和铵(包括取代的铵)。
“HOTAIR抑制剂”是包括HOTAIR拮抗剂的术语,是指抑制、压制至少HOTAIR介导的生物活性或导致其停止的任何分子(例如,microRNA、siRNA、piRNA、snRNA、反义核酸、核酶或小分子抑制剂),例如通过干扰HOTAIR的转录或干扰HOTAAIR与其靶(例如多梳(Polycomb)族蛋白多梳抑制复合物2(PRC2))的相互作用。
HOTAIR抑制剂或拮抗剂的“有效量”是足以产生有益或期望结果的量,例如抑制lncRNA HOTAIR活性的量。有效量可以以一次或多次给药、应用或剂量给药。
“抗血管生成活性”旨在减少分支速率,从而减少血管生成。这种活性可以使用动物模型进行评估。
HOTAIR抑制剂的“治疗有效剂量或量”是指当按本文所述给药时产生积极治疗反应(如抗血管生成活性)的量。所需的确切量因受试者而异,取决于受试者的种类、年龄和一般情况、所治疗疾病的严重程度、所用的一种或多种特定药物、给药方式等。根据本文提供的信息,本领域普通技术人员可以使用常规实验来确定任何个别情况下的适当“有效”量。
“基本上纯化的”通常指物质(化合物、多核苷酸、蛋白质、多肽、多肽组合物)的分离,使得该物质占其所在样品的大部分。通常在样品中,基本上纯化的组分占样品的50%,优选80%-85%,更优选90-95%。用于纯化感兴趣的多核苷酸和多肽的技术是本领域公知的,并且包括例如离子交换色谱、亲和色谱和根据密度的沉淀。
当提到多肽时,“分离”是指所指示的分子与该分子天然发现的或在基本上不存在相同类型的其他生物大分子的情况下存在的整个生物体分开和分离。关于多核苷酸,术语“分离的”是全部或部分缺失与之天然正常相连的序列的核酸分子;或其天然存在但具有与其相连的异源序列的序列;或与染色体分离的分子。
“同源性”是指两个多核苷酸或两个多肽部分之间的百分比同一性。当序列在分子的限定长度上表现出至少约50%的序列同一性,优选至少约75%的序列同一性,更优选至少约80%-85%的序列同一性,更优选至少约90%的序列同一性,最优选至少约95%-98%的序列同一性时,两个核酸或两个多肽序列彼此“基本上同源”。如本文所使用的,基本上同源还指与特定序列表现出完全同一性的序列。
一般来说,“同一性”是指两个多核苷酸或多肽序列的分别的精确核苷酸到核苷酸或氨基酸到氨基酸的对应关系。百分比同一性可以通过对两个分子之间的序列信息进行直接比较来确定,通过对齐序列,计算两个对齐序列之间匹配的确切数量,除以较短序列的长度,并将结果乘以100。现成的计算机程序可用于协助分析,如美国国家生物医学研究基金会(Washington,D.C.)的Atlas of Protein Sequence and Structure M.O.Dayhoff ed.,5Suppl.3:353 358中的ALIGN,Dayhoff,M.O.,其采用Smith和Waterman的Advances inAppl.Math.2:482 489,1981用于肽分析的局部同源算法。用于确定核苷酸序列同一性的程序可在Wisconsin Sequence Analysis Package,Version 8(可从Genetics ComputerGroup,Madison,Wis.获得)中获得,例如,BESTFIT、FASTA和GAP程序,它们也依赖于Smith和Waterman算法。这些程序很容易与制造商推荐的默认参数一起使用,这些参数在上文提到的Wisconsin Sequence Analysis Package中进行了描述。例如,特定核苷酸序列与参考序列的百分比同一性可以使用Smith和Waterman的同源性算法确定,使用默认评分表和六个核苷酸位置的空位罚分(gap penalty)。
用于计算序列之间的同一性或相似性百分比的其他合适的程序在本领域中是公知的,例如,另一个比对程序是BLAST,与默认参数一起使用。这些程序的详细信息随时可获得。
替代地,可以通过在同源区之间形成稳定双链体的条件下杂交多核苷酸,然后用单链特异性核酸酶消化,并测定消化片段的大小,从而确定同源性。基本上同源的DNA序列可以在Southern杂交实验中在例如为该特定系统定义的严格条件下鉴定。定义合适的杂交条件在本领域的技术范围内。参见例如Sambrook等人(见上文);DNA Cloning(见上文);Nucleic Acid Hybridization(见上文)。
本文中用于描述核酸分子的“重组”是指基因组、cDNA、病毒、半合成或合成来源的多核苷酸,由于其来源或操作,不与其天然连接的多核苷酸的全部或部分相连。用于蛋白质或多肽的术语“重组”是指通过表达重组多核苷酸产生的多肽。通常,感兴趣的基因被克隆,然后在转化的生物体中表达,如下进一步所述。宿主生物在表达条件下表达外源基因以产生蛋白质。
术语“转化”是指将外源多核苷酸插入宿主细胞,而不考虑插入使用的方法。例如,包括直接摄取、转导或f-交配。外源多核苷酸可以保持为非整合载体,例如质粒,或者可以整合到宿主基因组中。
“重组宿主细胞”、“宿主细胞”、“细胞”、“细胞系”、“细胞培养物”和其他此类术语表示作为单细胞实体培养的微生物或高等真核细胞系,是指可以或已经被用作重组载体或其他转移DNA的接受者的细胞,并包括已被转染的原始细胞的原生后代。
“可操作地链接”是指元件的排列,其中如此描述的组件被配置为执行其通常功能。因此,当存在合适的酶时,可操作地连接到编码序列的给定启动子能够影响编码序列的表达。表达意指包括来自DNA或RNA模板的microRNA、siRNA、piRNA、snRNA、lncRNA、反义核酸或mRNA的转录中的任何一种或多种的转录,并且还可以包括来自mRNA模板的蛋白质的翻译。启动子不需要与编码序列邻接,只要它起到指导其表达的作用。因此,例如,在启动子序列和编码序列之间可以存在插入的未翻译但转录的序列,而启动子序列仍然可以被认为与编码序列“可操作地连接”。
“纯化多核苷酸”是指基本上游离的感兴趣的多核苷酸或其片段,例如,含有少于约50%,优选少于约70%,更优选少于约至少90%的与该多核苷酸天然相连的蛋白质。用于纯化感兴趣的多核苷酸的技术在本领域是公知的,并且包括例如用离液剂破坏含有多核苷酸的细胞,以及通过离子交换色谱、亲和色谱和根据密度的沉淀分离多核苷酸和蛋白质。
“载体”能够将核酸序列转移到靶细胞(例如,病毒载体、非病毒载体、颗粒载体和脂质体)。通常,“载体构建体”、“表达载体”和“基因转移载体”是指能够引导感兴趣核酸表达并能够将核酸序列转移到靶细胞的任何核酸构建体。因此,该术语包括克隆和表达载体以及病毒载体。
术语“变体”是指保留所需活性(如RNA干扰(RNAi)、lncRNA抑制或转录因子抑制)的参考分子的生物活性衍生物。通常,术语“变体”是指具有天然序列和结构的分子(例如lncRNA、miRNA、siRNA、piRNA、snRNA、反义核酸或lncRNA的其他抑制剂),相对于天然分子具有一个或多个添加、取代(本质上通常保守)和/或缺失,只要修饰不破坏生物活性并且与参考分子“基本上同源”。通常,当两个序列对齐时,这些变体的序列将与参考序列具有高度的序列同源性,例如,序列同源性大于50%,通常大于60%-70%,甚至更特别地80%-85%或更高,例如至少90%-95%或更高。
“基因转移”或“基因递送”是指将感兴趣的DNA或RNA可靠地插入宿主细胞的方法或系统。此类方法可导致非整合的转移DNA的瞬时表达、染色体外复制和转移的复制子(例如,附加体)的表达,或将转移的遗传物质整合到宿主细胞的基因组DNA中。基因递送表达载体包括但不限于源自细菌质粒载体、病毒载体、非病毒载体、α病毒、痘病毒和痘苗病毒的载体。
术语“衍生自/来自”在本文中用于识别分子的原始来源,但并不意味着限制制造分子的方法,其可以例如通过化学合成或重组手段。
“衍生自/来自”指定序列的多核苷酸是指这样的多核苷酸序列,其包含与指定核苷酸序列的一个区域具有约至少约6个核苷酸、优选至少约8个核苷酸、更优选至少约10-12个核苷酸、甚至更优选至少约15-20个核苷酸对应(即相同或互补)的连续序列。衍生的多核苷酸不一定是从感兴趣的核苷酸序列物理衍生的,而是可以以任何方式产生,包括但不限于化学合成、复制、逆转录或转录,其基于由衍生多核苷酸的区域中的碱基序列提供的信息。因此,它可以代表原始多核苷酸的有义或反义取向。
在本发明的上下文中,“生物标志物”是指与对照样品(例如,从阴性诊断的人、正常或健康受试者或正常、未处理的组织或细胞中提取的可比样品)相比,在生物样品(例如经历血管生成的组织)中差异表达的lncRNA。生物标志物可以是可检测和/或定量的lncRNA。生物标志物包括但不限于HOTAIR、MALAT1、H19、WISPER、ZFAS1、HULC、MIAT、ANRIL、MEG3。
MALAT1:转移相关肺腺癌转录物1(MALAT1)是一种高度保守的基因间lncRNA,在各种癌症(35、36)、神经系统疾病(37)和心血管疾病(38)中具有意义。
H19:一种保守的、母系印迹的lncRNA,是最早鉴定的lncRNA之一(39)。
WISPER(Wisp2超增强子相关RNA)是一种新的、最近鉴定的lncRNA,在损伤后调节心脏纤维化方面发挥着重要作用(40)。
ZFAS1:在心脏中高度表达的lncRNA ZFAS1(ZNFX反义RNA 1)是器官发育、癌症生长和转移、凋亡和细胞周期调节的调节器(41、42)。
HULC:肝癌中高度上调(HULC)是一种关键的lncRNA,可调节血管生成、细胞增殖和迁移、干细胞分化和脂质代谢(43)。
MIAT:心肌梗死相关转录物(MIAT;也称为RNCR2、Gomafu或AK028326)最初是在一项病例对照全基因组关联研究中发现的,其中MIAT基因座中的6个单核苷酸多态性赋予了心肌梗死(MI)的易感性(44)。在这项初步研究之后,一些实验研究揭示了MIAT在各种生物和病理过程中的功能作用,包括精神分裂症(45)、癌症(46)、视网膜和大脑发育(47、48)以及白内障形成(49)。
ANRIL:由19个外显子组成,跨越了近126千碱基(kb)(50),INK4基因座的反义RNA(ANRIL;也称为CDKN2B-AS1)基因产生3.8-kb的lncRNA,其在心血管疾病(51)和几种癌症(52)中被显著地取消了调节。
MEG3:母体表达基因3(MEG3)是一个lncRNA基因,属于DLK1—MEG3印迹位点,具有重要的发育特性(53)。一些证据还表明,该基因的失活以及随后MEG3lncRNA的丢失在许多癌症中经常被记录,这表明该基因具有重要的抑瘤特性(54)。在糖尿病环境中,尚未报道玻璃体中存在MEG3。
短语“差异表达”是指与对照受试者相比,存在于取自患有例如DR或正在接受DR治疗的动物模型或人类患者的样本中的生物标志物的数量和/或频率的差异。例如,生物标志物可以是lncRNA,与对照受试者的样本相比,其在患有DR或正在接受DR治疗的患者的样本中以升高的水平或降低的水平存在。替代地,生物标志物可以是lncRNA,与对照受试者或对照组织的样本相比,其在患有DR或正在接受DR治疗的动物模型或患者的样本中以较高频率或较低频率检测到。生物标志物可以在数量、频率或两者方面存在差异。
如果一个样本中lncRNA的量与另一个样本的lncRNA量在统计学上显著不同,则两个样本之间lncRNA差异表达。
替代地或附加地,如果在样本中检测lncRNA的频率在统计学上显著高于或低于在对照样本中的,则lncRNA在两组样本中差异表达。
术语“受试者/对象”、“个体”和“患者”在本文中可互换使用,指任何需要诊断、预后、处理或治疗的哺乳动物对象,特别是人类。其他对象可以包括牛、狗、猫、豚鼠、兔、大鼠、小鼠、马等。在某些情况下,本发明的方法可用于实验动物、兽医应用和疾病动物模型的开发,包括但不限于啮齿类动物,包括小鼠、大鼠和仓鼠;灵长类动物和转基因动物。
如本文所使用的,“生物样本”是指从对象分离的组织或流体的样本,包括但不限于,例如,玻璃体(VH)、眼泪、尿液、血液、血浆、血清、粪便、骨髓、胆汁、脊髓液、淋巴液、细胞外囊泡(例如,外泌体)、皮肤样本、皮肤的外部分泌物、呼吸道、肠道、以及泌尿生殖道、唾液、牛奶、血细胞、器官、活检,以及含有来源于对象并在培养物中生长的细胞或组织的样品,以及体外细胞培养成分,包括但不限于培养物中细胞和组织生长产生的条件培养基、重组细胞、干细胞和细胞成分。
术语“量”、“数量”和“水平”在本文中可互换使用,可指样品中分子或分析物的绝对定量,或样品中分子和分析物的相对定量,即相对于另一个值,例如相对于本文中教导的参考值,或生物标志物的一系列值。这些值或范围可以从单个患者或从一组患者获得。
生物标志物的“测试量”是指被测试样品中存在的生物标志物的量。测试量可以是绝对量(例如μg/ml)或相对量(例如信号的相对强度)。
生物标志物的“诊断量”是指受试者样本中与DR或血管生成诊断一致的生物标志物的量。诊断量可以是绝对量(例如μg/ml)或相对量(例如信号的相对强度)。
标记物的“对照量”或“对照参考值”可以是与生物标记物的测试量进行比较的任何量或量的范围。例如,生物标志物的对照量可以是没有DR的人、正常组织或细胞、或未经治疗的组织或细胞中的生物标志物量。对照量可以是绝对量(例如μg/ml)或相对量(例如信号的相对强度)。
术语“抗体”包括多克隆和单克隆抗体制剂,以及包括杂交抗体、修饰抗体、嵌合抗体和人源化抗体的制剂,以及:杂交(嵌合)抗体分子(参见,例如,Winter et al.(1991)Nature 349:293-299;以及美国专利号4,816,567);F(ab′)2和F F(ab)片段;Fv分子(非共价异二聚体,参见,例如,Inbar et al.(1972)Proc Natl Acad Sci USA 69:2659-2662;和Ehrlich et al.(1980)Biochem 19:4091-4096);单链Fv分子(sFv)(参见,例如,Huston etal.(1988)Proc Natl Acad Sci USA 85:5879-5883);二聚体和三聚体抗体片段构建体;小抗体(参见,例如,Pack et al.(1992)Biochem 31:1579-1584;Cumber et al.(1992)JImmunology 149B:120-126);人源化抗体分子(参见,例如,Riechmann et al.(1988)Nature 332:323-327;Verhoeyan et al.(1988)Science 239:1534-1536;以及英国专利公开号GB 2,276,169,1994年9月21日公开);以及从这些分子获得的任何功能片段,其中这些片段保留母体抗体分子的特定结合特性。
“免疫测定”是一种使用抗体特异性结合抗原(例如生物标志物)的测定。免疫测定的特点是利用特定抗体的特定结合特性来分离、靶向和/或量化抗原。生物标志物的免疫测定可以使用一种抗体或几种抗体。免疫测定方案可以基于例如竞争、直接反应或使用例如标记抗体的夹心型测定。标记可以是例如荧光、化学发光、电化学或放射性的。
当提到生物标志物时,短语“特异性(或选择性)结合”抗体或“特异性(或选择性)免疫反应”指的是这样一种结合反应,它决定了生物标志物在蛋白质、核酸和其他生物物的异质群体中的存在。在这种条件下与抗体的特异性结合可能需要针对特定lncRNA的特异性而选择的抗体。例如,可以选择从特定物种(例如大鼠、小鼠或人)中产生的针对生物标记物的多克隆抗体,以仅获得那些与生物标记物特异性免疫反应而不与其他核酸(生物标记物多态性变体和等位基因除外)免疫反应的多克隆抗体。这种选择可以通过减去与其他物种的生物标记分子发生交叉反应的抗体来实现。多种免疫测定格式可用于选择与特定生物标志物特异性免疫反应的抗体。例如,固相ELISA免疫测定通常用于选择与抗原特异性免疫反应的抗体(参见,例如,Harlow&Lane.Antibodies,A Laboratory Manual(1988),描述了可用于确定特异性免疫活性的免疫测定格式和条件)。典型地,特异性或选择性反应将是背景信号或噪声的至少两倍,更典型地是背景的10至100倍。
“捕获试剂”是指与特定靶分子或靶分子组特异性结合的分子或分子组。例如,捕获试剂可包含两种或更多种抗体,每种抗体对单独的靶分子具有特异性。捕获试剂可以是有机或无机化学物质或生物分子的任何组合,以及可以特异性结合靶分子的所有片段、类似物、同系物、缀合物和衍生物。
捕获试剂可包含可与多个靶形成复合物的单个分子,例如具有不同靶的多个结合位点的多聚体融合蛋白。捕获试剂可以包括多个分子,每个分子对不同的靶具有特异性,从而产生多个捕获试剂-靶复合物。在某些实施方案中,捕获试剂由蛋白质(例如抗体)组成。
捕获试剂可以用可检测部分直接标记。例如,抗生物标志物抗体可直接偶联至可检测部分并用于本发明的方法、装置和试剂盒。在替代方案中,捕获试剂生物标志物复合物的检测可以通过特异性结合生物标志物或捕获试剂生物标记物复合物上的第二试剂进行。第二试剂可以是任何生物分子,并且优选是抗体。第二试剂用可检测部分标记。在一些实施方案中,捕获试剂或第二试剂与生物素偶联,并与具有可检测部分标签的抗生物素或链霉亲和素接触。
预期用于本发明的“可检测部分”或“可检测标记”包括但不限于放射性同位素、荧光染料,例如基于RNA Mango适配体和噻唑橙(TO)双功能染料的特异性结合的RNA Mango技术、荧光素、藻红蛋白、Cy-3、Cy-5、别藻蓝蛋白(allophycoyanin)、DAPI、德克萨斯红、罗丹明、俄勒冈绿、路西法黄等、绿色荧光蛋白(GFP)、红色荧光蛋白(DsRed)、噻唑橙双功能染料、青色荧光蛋白(CFP)、黄色荧光蛋白(YFP)、角海葵(Cerianthus)橙荧光蛋白(cOFP)、碱性磷酸酶(AP)、β-内酰胺酶、氯霉素乙酰转移酶(CAT)、腺苷脱氨酶(ADA)、氨基糖苷磷酸转移酶(neor,G418r)二氢叶酸还原酶(DHFR)、潮霉素-B-磷酸转移酶、胸苷激酶(TK)、lacZ(编码α-半乳糖苷酶)和黄嘌呤鸟嘌呤磷酸核糖转移酶(XGPRT)、β-葡糖醛酸酶(gus)、胎盘碱性磷酸酶(PLAP)、分泌的胚胎碱性磷酸酶(SEAP)或萤火虫或细菌萤光素酶(LUC)。酶标签与其同源底物一起使用。术语还包括已知荧光强度的色彩编码微球(参见例如Luminex(Austin,Tex)生产的具有xMAP技术的微球;含有量子点纳米晶体的微球,例如,含有不同比例和组合的量子点颜色(例如Life Technologies(Carlsbad,Calif.)生产的Qdot纳米晶体;玻璃涂层金属纳米颗粒(参见例如Nanoplex Technologies,Inc.(Mountain View,Calif.)生产的SERS纳米标签;条形码材料(参见例如亚微米大小的条纹金属棒,例如NanoplexTechnologies,Inc.生产的Nanobarcode)、带有彩色条形码的编码微粒(参见例如VitraBioscience生产的CellCard,vitrabio.com),和具有数字全息代码图像的玻璃微粒(参见例如Illumina(San Diego,Calif.)生产的CyVera微珠)。与本发明实践相关的许多标准程序一样,熟练的技术人员将意识到可以使用的其他标签。
本文所用的“诊断”通常包括确定受试者是否可能受到特定疾病、病症或功能障碍的影响。本领域技术人员通常基于一个或多个诊断指标(即生物标志物)进行诊断,生物标志物的存在、缺失或数量指示疾病、病症或功能障碍的存在或缺失。
本文中使用的“预后”通常指对临床状况或疾病的可能过程和结果的预测。通常通过评估疾病的因素或症状来判断患者的预后,这些因素或症状指示疾病的有利或不利的病程或结果。应了解,术语“预后”不一定指以100%准确率预测病情的过程或结果的能力。相反,本领域技术人员将理解,术语“预后”是指某一过程或结果发生的概率增加;也就是说,与没有表现出特定状况的患者相比,表现出给定状况的患者更可能出现病程或结果。
执行本发明的模式
在详细描述本发明之前,应当理解,本发明不限于特定的配方或工艺参数,因为这些配方或工艺当然可以变化。还应理解,这里使用的术语仅用于描述本发明的特定实施方案,而不旨在限制。
尽管在本发明的实践中可以使用与本文中描述的方法和材料类似或等效的许多方法和材料,但本文中描述了优选的材料和方法。
本发明基于lncRNA,其在调节高糖诱导的血管生成和糖尿病相关过程中发挥作用。此类lncRNA可作为生物标志物监测慢性糖尿病并发症,如DR。
A.生物标志物和诊断方法
可用于本发明实践的生物标记物包括lncRNA,例如但不限于HOTAIR、MALAT1、H19、WISPER、ZFAS1、HULC、MIAT、ANRIL、MEG3。
因此,在一个方面,本发明提供了一种用于诊断有风险发展成或具有增加的可能性进展到因糖尿病导致的终末器官损伤的患者的方法,包括测量源自怀疑患有糖尿病的对象的生物样品中HOTAIR、MALAT1、H19、WISPER、ZFAS1、HULC、MIAT、ANRIL和/或MEG3中的一种或多种的水平,以及分析所述生物标志物的水平并与所述生物标志物的相应对照参考值范围进行比较,其中所述生物样品中所述一种或多种生物标志物与对照样品中的所述一个或多种生物标记物相比的差异或改变的表达表明所述对象有风险发展成因糖尿病导致的终末器官损伤。生物标志物可单独使用或与相关临床参数结合使用,用于糖尿病的预后、诊断或监测治疗。在另一个实施方案中,HOTAIR单独使用或与一个或多个额外的生物标志物或临床参数组合使用,以诊断有风险发展成因糖尿病导致的终末器官损伤的患者。在对有风险发展成因糖尿病导致的终末器官损伤的患者进行阳性诊断后,该方法可进一步包括治疗患者使其不发展成所述因糖尿病导致的终末器官损伤。
在另一个实施方案中,本发明是一种诊断对象中的糖尿病视网膜病变(DR)的方法,该方法包括:a)测量源自对象的生物样品中的长非编码RNA(lncRNA)的量;以及b)将lncRNA的量与对照参考值进行比较,并且当lncRNA的量相对于对照参考值改变(即增加或减少)时,将对象诊断为患有DR,其中lncRNA是HOTAIR、H19、WISPER、ZFAS1、HULC、ANRIL、MALAT1、MIAT和MEG3中的一种或多种。在患者被诊断为患有DR后,该方法可进一步包括治疗患者的DR。
当分析生物样品中生物标志物的水平时,用于比较的参考值范围可以表示在一个或多个没有糖尿病的对象的一个或更多个样品(即,正常或阴性对照样品)中发现的一种或多种生物标志物的水平。替代地,参考值可以表示在一个或多个患有糖尿病的对象的一个或多个样品(即阳性对照样品)中发现的一种或更多生物标志物的水平。更具体地,参考值范围可以表示特定疾病阶段的一种或多种生物标志物的水平,以便于确定个体的疾病进展阶段。
在另一个实施方案中,本发明包括一种用于监测用于治疗对象中的疾病或病症的治疗的效果的方法,所述方法包括:结合所述一种或多种生物标志物的各自参考值范围,分析在对象经历所述治疗之前和之后从对象获得的样品中的一种或多种生物标志物中的每一种的水平,其中所述一个或多个生物标志物包含选自HOTAIR、MALAT1、H19、WISPER、ZFAS1、HULC、MIAT、ANRIL和/或MEG3的一种或多种lncRNA。在实施方案中,所述疾病或病症是糖尿病诱导的疾病或病症。在实施方案中,所述疾病或病症是以下中的一种或多种:非增殖性和增殖性糖尿病视网膜病变、糖尿病肾病、糖尿病心肌病、糖尿病神经病、增殖性玻璃体视网膜病变、新生血管性青光眼、缺血性视网膜病变、继发于视网膜静脉阻塞的视网膜病变、以及与年龄相关的黄斑变性、瘢痕疙瘩形成和伤口愈合。
在另一个实施方案中,本发明包括一种用于评估用于治疗对象中的疾病或病症的药剂的效果的方法,该方法包括:结合所述一种或多种生物标志物的各自参考值范围,分析在用所述药剂治疗对象之前和之后从对象获得的样品中的一种或多种生物标志物中的每一种的水平,其中一种或多种生物标志物包括一种或多种lncRNA,其选自HOTAIR、MALAT1、H19、WISPER、ZFAS1、HULC、MIAT、ANRIL和/或MEG3。在实施方案中,所述疾病或病症是糖尿病诱导的疾病或病症。在实施方案中,所述疾病或病症是以下中的一种或多种:非增殖性和增殖性糖尿病视网膜病变、糖尿病肾病、糖尿病心肌病、糖尿病神经病、增殖性玻璃体视网膜病变、新生血管性青光眼、缺血性视网膜病变、继发于视网膜静脉阻塞的视网膜病变、以及与年龄相关的黄斑变性、瘢痕疙瘩形成和伤口愈合。
在某些实施方案中,本发明包括生物标志物组,其包含选自HOTAIR、MALAT1、H19、WISPER、ZFAS1、HULC、MIAT、ANRIL和/或MEG3的多个lncRNA。
本文描述的用于疾病或病症的预后或诊断的方法可用于尚未被诊断的人(例如,预防性筛查),或已被诊断的人,或怀疑患有糖尿病的人,或有风险发展成糖尿病的人(例如,有遗传倾向或存在一个或多个发育、环境或行为风险因素)。所述方法还可用于检测疾病的不同进展阶段或严重程度。该方法还可用于检测疾病对预防性或治疗性治疗或其他干预的反应。此外,所述方法可用于帮助医生确定患者的预后(例如,恶化、现状、部分恢复或完全恢复)和适当的行动过程,从而导致进一步治疗或观察,或患者从医疗护理中心出院。
B.生物标志物的检测和测量水平
应当理解,样品中本发明生物标志物的表达水平可以通过本领域已知的任何合适的方法来确定。生物标志物水平的测量可以是直接或间接的。例如,lncRNA的丰度水平可以直接定量。替代地,生物标志物的量可以通过测量cDNA、扩增的RNA或DNA的丰度水平,或者通过测量RNA或指示生物标志物表达水平的其他分子的量或活性来间接确定。
LncRNA可以通过多种方法检测和定量,包括但不限于微阵列分析、下一代测序(如RNA测序)、聚合酶链式反应(PCR)、逆转录酶聚合酶链式反应、Northern印迹、基因表达序列分析(SAGE)、免疫测定和质谱。参见,例如,Draghici Data Analysis Tools for DNAMicroarrays,Chapman and Hall/CRC,2003;Simon et al.Design and Analysis of DNAMicroarray Investigations,Springer,2004;Real-Time PCR:Current Technology andApplications,Logan,Edwards,and Saunders eds.,Caister Academic Press,2009;Bustin A-Z of Quantitative PCR(IUL Biotechnology,No.5),InternationalUniversity Line,2004;Velculescu et al.(1995)Science 270:484-487;Matsumura etal.(2005)Cell.Microbiol.7:11-18;Serial Analysis of Gene Expression(SAGE):Methods and Protocols(Methods in Molecular Biology),Humana Press,2008,Hoffmann and Stroobant Mass Spectrometry:Principles and Applications,ThirdEdition,Wiley,2007;通过引用整体并入本文。
在一个实施方案中,使用微阵列来测量生物标志物的水平。微阵列分析的一个优点是可以同时测量每个生物标志物的表达,并且可以专门设计微阵列以提供特定疾病或病症的诊断表达谱。
通过选择包含多核苷酸序列的探针,然后将这些探针固定在固体载体或表面上,从而制备微阵列。例如,探针可以包括DNA序列、RNA序列或DNA和RNA的共聚物序列。探针的多核苷酸序列还可包含DNA和/或RNA类似物或其组合。例如,探针的多核苷酸序列可以是基因组DNA的全部或部分片段。探针的多核苷酸序列也可以是合成核苷酸序列,例如合成寡核苷酸序列。探针序列可以在体内酶促、体外酶促(例如通过PCR)或体外非酶促合成。
本发明方法中使用的探针优选固定在可以是多孔或非多孔的固体载体上。例如,探针可以是在多核苷酸的3′端或5′端共价连接到硝化纤维或尼龙膜或过滤器上的多核苷酸序列。这种杂交探针在本领域是众所周知的(参见例如Sambrook,et al.,MolecularCloning:A Laboratory Manual(3rd Edition,2001))。替代地,固体支撑物或表面可以是玻璃或塑料表面。在一个实施方案中,对由固相组成的探针微阵列测量杂交水平,所述固相的表面上固定有多核苷酸群,例如DNA或DNA模拟物群,或RNA或RNA模拟物群。固相可以是无孔的或任选的多孔材料,例如凝胶。
在一个实施方案中,微阵列包括具有结合(例如杂交)位点或“探针”的有序阵列的载体或表面,每个探针代表本文所述的生物标志物之一。优选地,微阵列是可寻址阵列,更优选地是位置可寻址阵列。更具体地,阵列的每个探针优选地位于固体载体上的已知的预定位置,使得每个探针的身份(即,序列)可以从其在阵列中的位置(即,在载体或表面上)确定。每个探针优选在单个位点共价连接到固体载体。
微阵列可以用多种方法制造,其中几种方法如下所述。无论它们是如何生产的,微阵列都具有某些特征。这些阵列是可复制的,允许生成给定阵列的多个副本,并易于相互比较。优选地,微阵列由在结合(例如核酸杂交)条件下稳定的材料制成。微阵列通常较小,例如在1cm2和25cm2之间;然而,也可以使用更大的阵列,例如,在筛选阵列中。优选地,微阵列中给定的结合位点或独特的一组结合位点将会特异性结合(例如杂交)到细胞中单个基因的产物(例如,特定mRNA、lncRNA或衍生自其的特定cDNA)。然而,一般来说,其他相关或类似的序列将会与给定的结合位点杂交。
如上所述,特定多核苷酸分子特异性杂交的“探针”包含互补多核苷酸序列。微阵列的探针通常由不超过1000个核苷酸的核苷酸序列组成。在一些实施方案中,阵列的探针由10至1000个核苷酸的核苷酸序列组成。在一个实施方案中,探针的核苷酸序列长度在10-200个核苷酸的范围内,并且是一种生物的基因组序列,从而存在多个不同的探针,其中序列互补,因此能够与这种生物的基因组杂交,顺序地平铺在基因组的全部或部分上。在其他实施方案中,探针长度在10-30个核苷酸的范围内,长度在10-40个核苷酸的范围内,长在20-50个核苷酸的范围内,长度在40-80个核苷酸的范围内,长度在50-150个核苷酸的范围内,长度在80-120个核苷酸的范围内,或长度为60个核苷酸。
探针可以包含与生物体基因组的一部分相对应的DNA或DNA“模拟物”(例如,衍生物和类似物)。在另一个实施方案中,微阵列的探针是互补的RNA或RNA模拟物。DNA模拟物是由能够与DNA进行特异性Watson-Crick样杂交或与RNA进行特异性杂交的亚基组成的聚合物。核酸可在碱基部分、糖部分或磷酸盐骨架(例如硫代磷酸酯)处修饰。
DNA可以例如通过基因组DNA或克隆序列的聚合酶链式反应(PCR)扩增获得。PCR引物优选基于基因组的已知序列来选择,该序列将导致基因组DNA的特定片段的扩增。本领域众所周知的计算机程序可用于设计具有所需特异性和最佳扩增特性的引物,例如Oligo5.0版(National Biosciences)。通常,微阵列上的每个探针的长度在10个碱基和50000个碱基之间,通常在300个碱基和1000个碱基之间。PCR方法在本领域众所周知,并描述于例如Innis et al.,eds.,PCR Protocols:A Guide To Methods And Applications,AcademicPress Inc.,San Diego,Calif.(1990);通过引用整体并入本文。本领域技术人员将清楚,受控机器人系统可用于分离和扩增核酸。
用于产生多核苷酸探针的另一种优选方法是通过合成合成多核苷酸或寡核苷酸,例如,使用N-膦酸盐或磷酰胺化学方法(Froehler et al.,Nucleic Acid Res.14:5399-5407(1986);McBride et al.,Tetrahedron Lett.24:246-248(1983))。合成序列的长度通常在约10至约500个碱基之间,更典型地在约20至约100个碱基之间,最优选地长度在约40至约70个碱基之间。在一些实施方案中,合成核酸包括非天然碱基,例如但不限于肌苷。如上所述,核酸类似物可用作杂交的结合位点。合适的核酸类似物的实例是肽核酸(参见例如Egholm et al.,Nature 363:566-568(1993);美国专利号5,539,083)。
优选使用考虑结合能、碱基组成、序列复杂性、交叉杂交结合能和二级结构的算法来选择探针。参见Friend等人的国际专利公开WO 01/05935,2001年1月25日公开;Hugheset al.,Nat.Biotech.19:342-7(2001)。
本领域技术人员还将认识到,阳性对照探针(例如,已知与靶多核苷酸分子中的序列互补并可杂交的探针)和阴性对照探针(例如,已知与靶多核苷酸分子中的序列不互补并可杂交的探针)应包括在阵列上。在一个实施方案中,沿着阵列的周边合成阳性对照。在另一个实施方案中,在阵列上以对角线条纹合成阳性对照。在又一个实施方案中,在探针的位置旁边合成每个探针的反向互补物以用作阴性对照。在另一个实施方案中,来自其他生物物种的序列被用作阴性对照或“加标(spike-in)”对照。
探针连接到固体载体或表面,其可以由例如玻璃、塑料(例如聚丙烯、尼龙)、聚丙烯酰胺、硝化纤维、凝胶或其他多孔或无孔材料制成。将核酸附着到表面的一种方法是通过在玻璃板上印刷,如Schena et al,Science 270:467-470(1995)中大体所述。该方法特别适用于制备cDNA微阵列(另见DeRisi et al,Nature Genetics 14:457-460(1996);Shalonet al.,Genome Res.6:639-645(1996);和Schena et al.,Proc.Natl.Acad.Sci.U.S.A.93:10539-11286(1995);通过引用整体并入本文)。
制造微阵列的第二种方法产生高密度寡核苷酸阵列。已知用于生产含有数千个在表面上的定义位置与定义的序列互补的寡核苷酸的阵列的技术,其使用光刻技术进行原位合成(参见,Fodor et al.,1991,Science 251:767-773;Pease et al.,1994,Proc.Natl.Acad.Sci.U.S.A.91:5022-5026;Lockhart et al.,1996,NatureBiotechnology 14:1675;美国专利号5,578,832、5,556,752和5,510,270;通过引用整体并入本文)或其他用于快速合成以及定义的寡核苷酸的沉积的方法(Blanchard et al.,Biosensors&Bioelectronics 11:687-690;通过引用整体并入本文)。当使用这些方法时,已知序列的寡核苷酸(例如,60-mers)直接在表面(例如衍生化玻片)上合成。通常,产生的阵列是冗余的,每个RNA有几个寡核苷酸分子。
也可以使用其他制备微阵列的方法,例如通过掩蔽(Maskos and Southern,1992,Nuc.Acids.Res.20:1679-1684;通过引用整体并入本文)。原则上,可以使用任何类型的阵列,例如尼龙杂交膜上的点印迹(参见Sambrook,et al.,Molecular Cloning:ALaboratory Manual,3rd Edition,2001)。然而,如本领域技术人员将认识到的,非常小的阵列将经常是优选的,因为杂交体积将更小。
微阵列也可以通过用于寡核苷酸合成的喷墨打印装置制造,例如使用Blanchard在以下文献中描述的方法和系统:美国专利号6,028,189;Blanchard et al.,1996,Biosensors and Bioelectronics 11:687-690;Blanchard,1998,in Synthetic DNAArrays in Genetic Engineering,Vol.20,J.K.Setlow,Ed.,Plenum Press,New York,第111-123页;通过引用整体并入本文。具体而言,通过在高表面张力溶剂(如碳酸丙烯酯)的“微滴”中连续沉积单个核苷酸碱基,以阵列形式(例如,在玻片上)合成此类微阵列中的寡核苷酸探针。微滴具有小体积(例如,100μL或更小,更优选50μL或更小),并且在微阵列上彼此分离(例如,通过疏水域)以形成圆形表面张力阱,其限定阵列元件(即,不同探针)的位置。通过这种喷墨方法制造的微阵列通常具有高密度,优选具有每1cm2至少约2500个不同探针的密度。多核苷酸探针在多核苷酸的3′端或5′端共价连接到载体上。
可以通过微阵列分析测量的生物标记多核苷酸可以是表达的lncRNA或从其衍生的核酸(例如,cDNA或从包含RNA聚合酶启动子的cDNA衍生的扩增RNA),包括天然存在的核酸分子以及合成的核酸分子。在一个实施方案中,靶多核苷酸分子包含RNA,包括但不限于总细胞RNA、lncRNA、poly(A)+信使RNA(mRNA)或其部分、细胞质mRNA、或从cDNA转录的RNA(即cRNA;参见例如Linsley&Schelter,1999年10月4日提交的美国专利申请序列号09/411074,或美国专利号5,545,522、5,891,636或5,716,785)。制备总RNA和poly(A)+RNA的方法在本领域中是众所周知的,并且在例如Sambrook,et al.,Molecular Cloning:ALaboratory Manual(3rd Edition,2001)中进行了一般描述。可以使用硫氰酸胍裂解后的CsCl离心法(Chirgwin et al.,1979,Biochemistry 18:5294-5299)、基于硅胶的柱子(如RNeasy(Qiagen,Valencia,Calif.)或StrataPrep(Stratagene,La Jolla,Calif.))或使用苯酚和氯仿(如Ausubel et al.,eds.,1989,Current Protocols In Molecular Biology,Vol.III,Green Publishing Associates,Inc.,John Wiley&Sons,Inc.,New York,第13.12.1-13.12.5页中所述),从感兴趣的细胞中提取RNA。可以选择Poly(A)+RNA,例如用oligo-dT纤维素进行选择,或者通过oligo-dT引发的细胞总RNA的逆转录进行选择。RNA可以通过本领域已知的方法进行破碎,例如用ZnCl2孵化,以产生RNA的片段。
在一个实施方案中,总RNA、lncRNA或其衍生的核酸分离自接受DR药物治疗的患者的样本。可使用标准化技术富集在特定细胞中表达不佳的生物标志物lncRNA(Bonaldo etal.,1996,Genome Res.6:791-806)。
如上所述,生物标志物多核苷酸可以在一个或多个核苷酸处被可检测地标记。本领域已知的任何方法均可用于标记靶多核苷酸。优选地,该标记沿着RNA的长度均匀地结合标记,更优选地,以高效率进行标记。例如,多核苷酸可以通过oligo-dT引发的逆转录来标记。随机引物(例如9-mers)可用于逆转录以在多核苷酸的全长上均匀地掺入标记的核苷酸。替代地,随机引物可与PCR方法或基于T7启动子的体外转录方法结合使用,以扩增多核苷酸。
可检测标记可以是发光标记。例如,荧光标记、生物发光标记、化学发光标记和比色标记可用于本发明的实践中。可使用的荧光标记包括但不限于荧光素、荧光粉、罗丹明或聚甲基染料衍生物。此外,可以使用商业上可获得的荧光标记,包括但不限于荧光磷酰胺,例如FluorePrime(Amersham Pharmacia,Piscataway,N.J.)、Fluoredite(Miilipore,Bedford,Mass.)、FAM(ABI,Foster City,Calif.)和Cy3或Cy5(AmershamPharmacia,Piscataway,N.J.)。替代地,可检测标记可以是放射性标记的核苷酸。
在一个实施方案中,来自患者样品的生物标志物多核苷酸分子与参考样品的相应多核苷酸分子进行差异标记。参考物可以包括来自正常生物样品(即,对照样品,例如,来自未患有糖尿病的对象或未经治疗的细胞或组织的活检)或来自参考生物样品(例如,来自患有糖尿病的患者的样品、处于不同分化或治疗阶段的细胞或细胞组织的样品)的lncRNA。
选择核酸杂交和洗涤条件,使得靶多核苷酸分子与阵列的互补多核苷酸序列特异性结合或特异性杂交,优选与其互补DNA所在的特定阵列位点。含有位于其上的双链探针DNA的阵列优选在与靶多核苷酸分子接触之前经受变性条件以使DNA变成单链。含有单链探针DNA(例如,合成的寡脱氧核糖核酸)的阵列可能需要在与靶多核苷酸分子接触之前变性,例如,从而去除由于自互补序列而形成的发夹或二聚体。
最佳杂交条件将取决于探针和靶核酸的长度(例如,寡聚物相比于大于200个碱基的多核苷酸)和类型(例如,RNA或DNA)。本领域技术人员将认识到,随着寡核苷酸变短,可能需要调整它们的长度以实现相对均匀的熔化温度以获得满意的杂交结果。核酸的特定(即严格)杂交条件的一般参数描述于Sambrook,et al.,Molecular Cloning:A LaboratoryManual(3rd Edition,2001)和Ausubel et al.,Current Protocols In MolecularBiology,vol.2,Current Protocols Publishing,New York(1994)。Schena等人的cDNA微阵列的典型杂交条件是在65℃下在5×SSC加0.2%SDS中杂交4小时,然后在25℃下在低严格的洗涤缓冲液(1×SSC加0.2%SDS)中洗涤,然后在25℃下在更严格的洗涤缓冲液(0.1×SSC加0.2%SDS)中10分钟(Schena et al.,Proc.Natl.Acad.Sci.U.S.A.93:10614(1993))。有用的杂交条件也提供在例如Tijessen,1993,Hybridization with NucleicAcid Probes,Elsevier Science Publishers B.V.;和Kricka,1992,Nonisotopic DnaProbe Techniques,Academic Press,San Diego,Calif。特别优选的杂交条件包括在1MNaCl、50mM MES缓冲液(pH 6.5)、0.5%肌氨酸钠和30%甲酰胺中,在探针的平均熔化温度或其附近的温度下(例如,在51℃内,更优选在21℃内)进行杂交。
当使用荧光标记的基因产物时,可以优选地通过扫描共焦激光显微镜检测微阵列的每个位点的荧光发射。在一个实施方案中,使用适当的激发线对所使用的两个荧光团中的每一个进行单独的扫描。替代地,可以使用激光,该激光允许在特定于两个荧光团的波长下同时照射样品,并且可以同时分析两个荧光团的发射(参见Shalon et al.,1996,“A DNAmicroarray system for analyzing complex DNA samples using two-colorfluorescent probe hybridization,”Genome Research 6:639-645,通过引用整体并入本文以用于所有目的)。阵列可以用带有计算机控制的X-Y平台和显微镜物镜的激光荧光扫描仪进行扫描。两个荧光团的顺序激发是通过多线混合气体激光器实现的,发射的光按波长分割,并通过两个光电倍增管进行检测。荧光激光扫描装置描述于Schena et al.,GenomeRes.6:639-645(1996)和本文引用的其他参考文献中。替代地,Ferguson et al.,NatureBiotech.14:1681-1684(1996)描述的光纤束可用于同时监测大量位点的mRNA丰度水平。
在一个实施方案中,本发明包括一种微阵列,其包含与选自HOTAIR、MALAT1、H19、WISPER、ZFAS1、HULC、MIAT、ANRIL和/或MEG3的一种或多种lncRNA杂交的多个探针。
多核苷酸也可以通过其他方法进行分析,包括但不限于northern印迹、核酸酶保护测定、RNA指纹、聚合酶链式反应、连接酶链式反应、Qβ复制酶、等温扩增法、链置换扩增、基于转录的扩增系统、核酸酶保护(S1核酸酶或RNA酶保护测定)、SAGE以及国际公开号WO88/10315和WO 89/06700以及国际申请号PCT/US87/00880和PCT/US89/01025(通过引用整体并入本文)中公开的方法。
根据本领域普通技术人员已知的常规Northern杂交技术,标准Northern印迹分析可用于确定RNA转录物大小、鉴定选择性剪接的RNA转录物以及样品中mRNA或lncRNA的相对量。在Northern印迹中,RNA样品首先在变性条件下通过琼脂糖凝胶电泳按大小分离。然后将RNA转移到膜上,交联,并与标记探针杂交。可以使用非同位素或高比活性放射性标记探针,包括随机引物、缺口翻译或PCR生成的DNA探针、体外转录RNA探针和寡核苷酸。此外,仅具有部分同源性的序列(例如,来自不同物种的cDNA或可能包含外显子的基因组DNA片段)可以用作探针。含有全长单链DNA或该DNA序列片段的标记探针,例如放射性标记的cDNA,其长度可为至少20、至少30、至少50或至少100个连续核苷酸。探针可以通过本领域技术人员已知的许多不同方法中的任何一种进行标记。这些研究中最常用的标记是放射性元素、酶、暴露于紫外光时发出荧光的化学物质等。许多荧光材料是已知的,可以用作标签。这些包括但不限于荧光素、罗丹明、金胺、德克萨斯红、AMCA蓝和路西法黄。一种特殊的检测材料是在山羊中制备的抗兔抗体,并通过异硫氰酸酯与荧光素偶联。蛋白质也可以用放射性元素或酶标记。放射性标签可以通过任何当前可用的计数程序检测到。可使用的同位素包括但不限于3H、14C、32P、35S、36Cl、35Cr、57Co、58Co、59Fe、90Y、125I、131I和186Re。酶标记同样有用,并且可以通过任何目前使用的比色法、分光光度法、荧光分光光度计、安培法或气体分析法检测。酶通过与桥接分子如碳二亚胺、二异氰酸酯、戊二醛等反应而与所选颗粒偶联。可以使用本领域技术人员已知的任何酶。此类酶的实例包括但不限于过氧化物酶、β-D-半乳糖苷酶、尿素酶、葡萄糖氧化酶加过氧化物酶和碱性磷酸酶。美国专利号3,654,090、3,850,752和4,016,043因其发明的替代性标记材料和方法而作为例子引用。
核酸酶保护测定(包括核糖核酸酶保护测定和S1核酸酶测定)可用于检测和定量特定的mRNA和lncRNA。在核酸酶保护测定中,反义探针(用例如放射性标记或非同位素标记)在溶液中与RNA样品杂交。杂交后,单链、未杂交探针和RNA被核酸酶降解。使用丙烯酰胺凝胶来分离剩余的受保护碎片。通常,溶液杂交比基于膜的杂交更有效,它可以容纳多达100μg的样本RNA,相比之下印迹杂交的最大值为20-30μg。
核糖核酸酶保护测定是最常见的核酸酶保护测定,需要使用RNA探针。寡核苷酸和其他单链DNA探针只能用于含有S1核酸酶的测定。单链反义探针通常必须与靶RNA完全同源,以防止核酸酶切割探针:靶杂交体。
序列分析基因表达(SAGE)也可用于确定细胞样品中RNA(例如lncRNA)的丰度。参见,例如,Velculescu et al.,1995,Science 270:484-7;Carulli,et al.,1998,Journalof Cellular Biochemistry Supplements 30/31:286-96;通过引用整体并入本文。SAGE分析不需要特殊的检测设备,是同时检测大量转录产物表达的优选分析方法之一。首先,从细胞中提取RNA。接下来,使用生物素化寡核苷酸(dT)引物将RNA转化为cDNA,并用四碱基识别限制性酶(锚定酶:AE)处理,得到AE处理的片段,其3′端含有生物素基团。接下来,AE处理的片段与链球菌素孵育以结合。将结合的cDNA分成两个部分,然后将每个部分连接到不同的双链寡核苷酸适配器(接头)A或B。这些接头由以下组成:(1)突出的单链部分,其具有与通过锚定酶的作用形成的突出部分的序列互补的序列,(2)用作标记酶(TE)的IIS型限制性酶的5核苷酸识别序列(在距离识别位点不超过20bp的预定位置切割),和(3)足够长度的附加序列,用于构建PCR特异性引物。使用标记酶切割接头连接的cDNA,并且仅保留接头连接cDNA序列部分,其以短链序列标签的形式存在。接下来,将来自两种不同类型的接头的短链序列标签池彼此连接,然后使用接头A和B的特异性引物进行PCR扩增。结果,扩增产物以包含结合到接头A、B的两个相邻序列标签(ditag)的无数序列的混合物的形式获得。扩增产物用锚定酶处理,游离的ditag部分在标准连接反应中连接成链。然后克隆扩增产物。克隆核苷酸序列的测定可用于获得恒定长度的连续序列的读数。然后,可以从克隆的核苷酸序列和序列标签的信息中识别对应于每个标签的mRNA的存在。
定量逆转录酶PCR(qRT-PCR)也可用于确定生物标志物的表达谱(参见,例如,美国专利申请公开号2005/0048542A1;通过引用整体并入本文)。通过RT-PCR进行基因表达谱分析的第一步是将RNA模板逆转录成cDNA,然后在PCR反应中进行指数扩增。最常用的两种逆转录酶是avilo骨髓母细胞增生症病毒逆转录酶(AMV-RT)和Moloney小鼠白血病病毒逆转录酶(MLV-RT)。逆转录步骤通常使用特定引物、随机六聚体或oligo-dT引物启动,这取决于环境和表达谱的目标。例如,提取的RNA可以使用GeneAmp RNA PCR试剂盒(Perkin Elmer,Calif.,USA)按照制造商的说明进行逆转录。然后可以将衍生的cDNA用作后续PCR反应中的模板。
尽管PCR步骤可以使用多种热稳定DNA依赖性DNA聚合酶,但它通常使用Taq DNA聚合酶,其具有5′-3′核酸酶活性,但缺乏3′-5′校对核酸内切酶活性。因此,TAQMAN PCR通常利用Taq或Tth聚合酶的5′核酸酶活性来水解与其目标扩增子结合的杂交探针,但可以使用具有等效5′核酸酶活性的任何酶。使用两个寡核苷酸引物产生PCR反应的典型扩增子。第三种寡核苷酸或探针被设计用于检测位于两个PCR引物之间的核苷酸序列。该探针不可被TaqDNA聚合酶延伸,并用报告荧光染料和猝灭剂荧光染料标记。当两种染料在探针上靠近时,来自报告染料的任何激光诱导发射都会被猝灭染料猝灭。在扩增反应期间,Taq DNA聚合酶以模板依赖的方式切割探针。所得探针片段在溶液中分离,并且来自释放的报告染料的信号不受第二荧光团的猝灭作用。每合成一个新分子,就会释放一个报告染料分子,而检测未猝灭的报告染料为数据的定量解释提供了基础。
TAQMAN RT-PCR可以使用市售设备进行,例如ABI PRISM 7700序列检测系统(Perkin-Elmer-Applied Biosystems,Foster City,Calif.,USA)或Lightcycler(RocheMolecular Biochemicals,Mannheim,Germany)。在一个优选实施方案中,5′核酸酶程序在实时定量PCR装置如ABI PRISM 7700序列检测系统上运行。该系统由热循环仪、激光器、电荷耦合器件(CCD)、照相机和计算机组成。该系统包括用于运行仪器和分析数据的软件。5′-核酸酶测定数据最初表示为Ct或阈值周期。在每个周期期间记录荧光值,并表示在扩增反应中扩增到该点的产物的量。当荧光信号首次被记录为具有统计意义时的点是阈值周期(Ct)。
为了最小化误差和样本间差异的影响,通常使用内部标准进行RT-PCR。理想的内部标准在不同组织中以恒定水平表达,不受实验治疗的影响。最常用于规范基因表达模式的RNA是看家(housekeeping)基因甘油醛-3-磷酸脱氢酶(GAPDH)和β-肌动蛋白(β-actin)的mRNA。
RT-PCR技术的一个最新变体是实时定量PCR,它通过双标记荧光探针(即TAQMAN探针)测量PCR产物的积累。实时PCR既与定量竞争PCR兼容,其中每个目标序列的内部竞争对手用于标准化,也与使用样品中包含的标准化基因或用于RT-PCR的看家基因的定量比较PCR兼容。有关更多详细信息,请参见,例如Held et al.,Genome Research 6:986-994(1996)。
质谱,特别是SELDI质谱,是检测本发明生物标志物的特别有用的方法。激光解吸飞行时间质谱仪可用于本发明的实施方案中。在激光解吸质谱中,将包含生物标志物的底物或探针引入入口系统。生物标志物通过激光从电离源解吸并电离到气相中。产生的离子由离子光学组件收集,然后在飞行时间质量分析仪中,离子通过短的高压场加速,并漂移到高真空室中。在高真空室的远端,加速的离子在不同的时间撞击敏感的探测器表面。由于飞行时间是离子质量的函数,因此离子形成和离子探测器撞击之间的经过时间可用于识别特定质荷比标记物的存在或不存在。
基质辅助激光解吸/电离质谱(MALDI-MS)也可用于检测本发明的生物标志物。MALDI-MS是一种质谱分析方法,涉及使用能量吸收分子(通常称为基质)从探针表面完整地解吸蛋白质。MALDI例如描述于美国专利号5,118,937(Hillenkamp等人)和美国专利号5,045,694(Beavis和Chait)。在MALDI-MS中,样品通常与基质材料混合并放置在惰性探针的表面上。示例性的能量吸收分子包括肉桂酸衍生物、芥子酸(“SPA”)、氰基羟基肉桂酸(“CHCA”)和二羟基苯甲酸。本领域技术人员已知其他合适的能量吸收分子。基质干燥,形成封装分析物分子的晶体。然后通过激光解吸/电离质谱法检测分析物分子。
表面增强激光解吸/电离质谱(SELDI-MS)代表了在复杂混合物中分离和检测生物分子(如lncRNA)方面对MALDI的改进。SELDI是一种质谱分析方法,其中使用结合在生物芯片表面的捕获试剂将生物分子(如lncRNA)捕获到生物芯片表面。通常,在查询之前,非结合分子从探针表面清洗。SELDI描述于例如:美国专利号5,719,060(“分析物解吸和电离的方法和设备”,Hutchens和Yip,1998年2月17日)、美国专利号6,225,047(“使用保留色谱法生成差异图”,Hutchens和Yip,2001年5月1日)和Weinberger et al.,“Time-of-flight massspectrometry,”in Encyclopedia of Analytical Chemistry,R.A.Meyers,ed.,pp11915-11918John Wiley&Sons Chichesher,2000。
基底表面的生物标记物可以使用气相离子光谱法解吸和电离。任何合适的气相离子光谱仪都可以使用,只要它能够分辨底物上的生物标志物。优选地,气相离子光谱仪允许生物标记物的定量。在一个实施方案中,气相离子光谱仪是质谱仪。在典型的质谱仪中,在其表面上包含生物标志物的基质或探针被引入质谱仪的入口系统。然后,生物标志物被解吸源解吸,解吸源例如是激光、快速原子轰击、高能等离子体、电喷雾电离、热喷雾电离、液体二次离子MS、场解吸等。生成的解吸、挥发物质由预先形成的离子或中性离子组成,这些离子或中性物质是解吸事件的直接结果。产生的离子由离子光学组件收集,然后质量分析仪分散并分析通过的离子。离开质量分析仪的离子由检测器检测。然后,检测器将检测到的离子的信息转换成质荷比。生物标志物或其他物质的存在的检测通常涉及信号强度的检测。反过来,这可以反映与底物结合的生物标志物的数量和特征。在本发明的实施方案中,质谱仪的任何组件(例如,解吸源、质量分析仪、检测器等)可以与本文所述的其他合适组件或本领域已知的其他组件组合。
生物标记物也可以通过基于特异性识别lncRNA生物标记物或生物标记物的多核苷酸或寡核苷酸片段的抗体的检测来检测。此类测定包括但不限于免疫组织化学(1HC)、酶联免疫吸附测定(ELISA)、放射免疫测定(RIA)、“夹心”免疫测定、荧光免疫测定、免疫沉淀测定,其程序在本领域是众所周知的(参见例如,Ausubel et al,eds,1994,CurrentProtocols in Molecular Biology,Vol.1,John Wiley&Sons,Inc.,New York,通过引用整体并入本文)。
可使用本领域已知的任何合适方法制备特异性结合生物标志物的抗体。参见例如Coligan,Current Protocols in Immunology(1991);Harlow&Lane,Antibodies:ALaboratory Manual(1988);Goding,Monoclonal Antibodies:Principles and Practice(2d ed.1986);和Kohler&Milstein,Nature 256:495-497(1975)。生物标志物抗原可用于免疫哺乳动物,如小鼠、大鼠、兔、豚鼠、猴或人,以产生多克隆抗体。如果需要,生物标志物抗原可以与载体蛋白结合,如牛血清白蛋白、甲状腺球蛋白和匙孔血蓝蛋白。根据宿主种类,可以使用各种佐剂来增加免疫反应。此类佐剂包括但不限于弗氏佐剂、矿物凝胶(例如氢氧化铝)和表面活性物质(例如溶血卵磷脂、多元醇、聚阴离子、肽、油乳剂、匙孔血蓝蛋白和二硝基苯酚)。在人类使用的佐剂中,BCG(卡介苗)和细小棒状杆菌尤其有用。
特异性结合生物标志物抗原的单克隆抗体可使用任何技术制备,该技术可通过培养中的连续细胞系产生抗体分子。这些技术包括但不限于杂交瘤技术、人B细胞杂交瘤技术和EBV杂交瘤技术(Kohler et al.,Nature 256,495-97,1985;Kozbor et al.,J.Immunol.Methods81,3142,1985;Cote et al.,Proc.Natl.Acad.Sci.80,2026-30,1983;Cole et al.,Mol.Cell.Biol.62,109-20,1984)。
此外,还可以使用为生产“嵌合抗体”而开发的技术,即将小鼠抗体基因剪接到人抗体基因上以获得具有适当抗原特异性和生物活性的分子(Morrison et al.,Proc.Natl.Acad.Sci.81,6851-55,1984;Neuberger et al.,Nature 312,604-08,1984;Takeda et al.,Nature 314,452-54,1985)。单克隆抗体和其他抗体也可以被“人源化”,以防止患者在治疗时对抗体产生免疫反应。这样的抗体在序列上可能与直接用于治疗的人抗体充分相似,或者可能需要改变几个关键残基。啮齿动物抗体和人类序列之间的序列差异可以通过通过个体残基的定点突变或通过整个互补决定区的移植来替换与人类序列中的残基不同的残基来最小化。
替代地,人源化抗体可以使用重组方法产生,如下所述。特异性结合特定抗原的抗体可包含部分或完全人源化的抗原结合位点,如美国专利号5,565,332中所述。人单克隆抗体可在体外制备,如Simmons et al.,PLoS Medicine 4(5),928-36,2007中所述。
替代地,用于生产单链抗体所述的技术可以使用本领域已知的方法进行调整,以生产特异性结合特定抗原的单链抗体。具有相关特异性但具有不同独特型组成的抗体可以通过从随机组合免疫球蛋白库中进行链重排来产生(Burton,Proc.Natl.Acad.Sci.88,11120-23,1991)。
也可以使用DNA扩增方法,如PCR,以杂交瘤cDNA为模板构建单链抗体(Thirion etal.,Eur.J.Cancer Prey.5,507-11,1996)。单链抗体可以是单特异性或双特异性的,也可以是二价或四价的。例如,在Coloma&Morrison,Nat.Biotechnol.15,159-63,1997中教授了四价双特异性单链抗体的构建。在Mallender&Voss,J.Biol.Chem.269,199-206,1994中教授了二价双特异性单链抗体的构建。
编码单链抗体的核苷酸序列可使用人工或自动核苷酸合成构建,使用标准重组DNA方法克隆到表达构建体中,并引入细胞以表达编码序列,如下所述。替代地,可以使用例如丝状噬菌体技术直接生产单链抗体(Verhaar et al.,Int.J.Cancer 61,497-501,1995;Nicholls et al.,J.Immunol.Meth.165,81-91,1993)。
特异性结合生物标志物抗原的抗体也可以通过在淋巴细胞群体中诱导体内产生或通过筛选免疫球蛋白库或高度特异性结合试剂组来产生,如文献中所公开的(Orlandiet al.,Proc.Natl.Acad.Sci.86,3833 3837,1989;Winter et al.,Nature 349,293 299,1991)。
嵌合抗体可以如WO 93/03151中所公开的那样构建。还可以制备衍生自免疫球蛋白且多价和多特异性的结合蛋白,例如WO 94/13804中描述的“双抗体”。
抗体可通过本领域公知的方法纯化。例如,抗体可通过在相关抗原结合的柱上通过而亲和纯化。然后可以使用具有高盐浓度的缓冲液从柱中洗脱结合的抗体。
抗体可用于诊断测定以检测生物样品中生物标志物的存在或定量。这种诊断测定可包括至少两个步骤:(i)使生物样品与抗体接触,其中所述样品是组织(例如,人、动物等)、细胞(例如,干细胞)、细胞外囊泡(外泌体)、生物流体(例如,血液、尿液、痰液、精液、羊水、唾液等)、生物提取物(例如,组织或细胞匀浆等)或色谱柱等;和(ii)定量结合至所述底物的抗体。该方法还可包括将抗体共价、静电或可逆地附着到固体载体上,然后将结合的抗体置于样品的初步步骤,如上文和本文其他地方所定义的。
本领域已知各种诊断分析技术,例如竞争性结合分析、直接或间接夹心分析以及在异质或同质阶段进行的免疫沉淀分析(Zola,Monoclonal Antibodies:A Manual ofTechniques,CRC Press,Inc.,(1987),第147-158页)。用于诊断测定的抗体可以用可检测部分标记。可检测部分应能够直接或间接产生可检测信号。例如,可检测部分可以是放射性同位素,如2H、14C、32P或125I,荧光或化学发光化合物,如异硫氰酸荧光素、罗丹明或荧光素,或酶,如碱性磷酸酶、β-半乳糖苷酶、绿色荧光蛋白或辣根过氧化物酶。可以采用本领域已知的用于将抗体偶联至可检测部分的任何方法,包括由以下文献描述的方法:Hunter etal.,Nature,144:945(1962);David et al.,Biochem.,13:1014(1974);Pain et al.,J.Immunol.Methods,40:219(1981);和Nygren,J.Histochem.and Cytochem.,30:407(1982)。
免疫测定可用于确定样品中生物标志物的存在或不存在以及样品中生物标记物的数量。首先,可以使用上述免疫测定方法检测样品中生物标志物的测试量。如果样品中存在生物标志物,则它将与抗体形成抗体-生物标志物复合物,该抗体如上所述在合适的培养条件下特异性结合生物标志物。抗体-生物标志物复合物的量可以通过与标准物进行比较来确定。标准物可以是例如已知化合物或已知存在于样品中的另一lncRNA。如上所述,生物标志物的测试量不需要以绝对单位测量,只要测量单位可以与对照进行比较即可。
试剂盒
在又一方面,本发明提供了用于诊断疾病或病症的试剂盒。在实施方案中,所述疾病或病症是糖尿病诱导的疾病或病症。在实施方案中,所述疾病或病症是以下中的一种或多种:非增殖性和增殖性糖尿病视网膜病变、糖尿病肾病、糖尿病心肌病、糖尿病神经病、增殖性玻璃体视网膜病变、新生血管性青光眼、缺血性视网膜病变、继发于视网膜静脉阻塞的视网膜病变以及与年龄相关的黄斑变性、瘢痕疙瘩形成和伤口愈合。在实施方案中,所述试剂盒用于检测对象具有进展到因糖尿病导致的终末器官损伤的增加的概率。
该试剂盒可用于检测本发明的lncRNA生物标志物。例如,试剂盒可用于检测本文所述的生物标记中的任何一种或多种,其在患有该疾病或病症的患者的样本中差异表达。该试剂盒可以包括一种或多种用于检测lncRNA生物标志物的试剂、用于容纳从人类对象分离的生物样品的容器、以及用于使试剂与生物样品或生物样品的一部分反应以检测生物样品中至少一种lncRNA生物标志物的存在或量的印刷说明书。试剂可包装在单独的容器中。试剂盒可进一步包含一种或多种对照参考样品和试剂,用于进行免疫测定、Northern印迹、PCR、微阵列分析或SAGE。
在某些实施方案中,试剂盒包含至少一种与生物标志物选择性杂交的探针,或至少一种选择性结合生物标志物的抗体,或用于扩增生物标记物的至少一组PCR引物。在一个实施方案中,试剂盒包括用于测量HOTAIR水平的至少一种试剂。
在实施方案中,试剂盒可包括一种或多种HOTAIR抑制剂以治疗上述疾病或病症。
试剂盒可以包括一个或多个用于试剂盒中所含组分的容器。组分可以是液体形式或可以冻干。用于组分的合适容器包括例如瓶子、小瓶、注射器和试管。容器可以由多种材料制成,包括玻璃或塑料。试剂盒还可以包括包含诊断DR(包括早期DR)或监测DR治疗的方法的书面说明的包装插页。
本发明的试剂盒具有许多应用。例如,该试剂盒可用于监测DR进展。在另一个示例中,试剂盒可用于评估DR治疗的疗效。在另一示例中,该试剂盒可用来鉴定在体外或体内动物模型中调节一种或多种生物标志物表达的化合物,以确定治疗效果。
C.HOTAIR和抑制剂
在另一方面,HOTAIR抑制剂在本发明的实践中用于治疗疾病或病症。HOTAIR的抑制剂可包括但不限于反义寡核苷酸、抑制性RNA分子(如miRNA、siRNA、piRNA和snRNA)、核酶、抗体和小分子抑制剂。用于抑制核酸功能的各种类型的抑制剂在本领域是众所周知的。参见例如国际专利申请WO/2012/018881;美国专利申请2011/0251261;美国专利号6,713,457;Kole et al.(2012)Nat.Rev.Drug Discov.11(2):125-40;Sanghvi(2011)Curr.Protoc.Nucleic Acid Chem.Chapter 4:Unit 4.1.1-22;通过引用整体并入本文。
在一个实施方案中,本发明是一种治疗与长非编码RNA HOTIAR的过度表达相关的病症的方法,该方法包括:向有需要的对象施用治疗有效量的至少一种抑制长非编码RNAHOTIAR的至少一种生物活性的药剂。在实施方案中,与长非编码RNA HOTIAR的过度表达相关的疾病或病症是糖尿病诱导的疾病或病症。在实施方案中,与长非编码RNA HOTIAR的过度表达相关的疾病或病症是以下中的一种或多种:糖尿病视网膜病变(包括非增殖性和增殖性糖尿病视网膜病变)、糖尿病肾病、糖尿病心肌病、糖尿病神经病、增殖性玻璃体视网膜病变、新生血管性青光眼、缺血性视网膜病变、继发于视网膜静脉阻塞的视网膜病变,以及与年龄相关的黄斑变性、瘢痕疙瘩形成和伤口愈合。在实施方案中,与长非编码RNA HOTIAR的过度表达相关的疾病或病症是抗VEGF治疗无效的病症。
在另一个实施方案中,本发明提供了一种治疗对抗VEGF治疗无响应的患者的方法,该方法包括:向有需要的对象施用治疗有效量的至少一种抑制长非编码RNA HOTAIR的至少一种生物活性的药剂。
本发明还提供了一种预防葡萄糖诱导的氧化损伤的方法,该方法包括:向有需要的对象施用治疗有效量的至少一种抑制长非编码RNA HOTAIR的至少一种生物活性的药剂。
抑制剂可以是单链或双链多核苷酸,并且可以包含一种或多种化学修饰,例如但不限于锁定核酸、肽核酸、糖修饰(例如2′-O-烷基(如2′-O-甲基、2′-O-甲氧基乙基)、2′-氟和4′-硫修饰),以及骨架修饰,例如一个或多个硫代磷酸酯、吗啉、或膦酸羧酸酯连接。此外,抑制性RNA分子可以具有与其3′和/或5′端共价连接的“尾部”,这可能用于稳定RNA抑制分子或增强细胞摄取。这样的尾部包括但不限于插入基团、各种报告基团和连接到RNA分子3′或5′端的亲脂性基团。在某些实施方案中,RNA抑制分子与胆固醇或吖啶缀合。例如,关于3′-胆固醇或3′-吖啶修饰的寡核苷酸的合成的描述,参见以下内容:Gamper,H.B.,Reed,M.W.,Cox,T.,Virosco,J.S.,Adams,A.D.,Gall,A.,Scholler,J.K.,and Meyer,R.B.(1993)Facile Preparation and Exonuclease Stability of 3′-ModifiedOligodeoxynucleotides.Nucleic Acids Res.21 145-150;和Reed,M.W.,Adams,A.D.,Nelson,J.S.,and Meyer,R.B.,Jr.(1991)Acridine and Cholesterol-DerivatizedSolid Supports for Improved Synthesis of 3′-ModifiedOligonucleotides.Bioconjugate Chem.2 217-225(1993);通过引用整体并入本文。可使用的其它亲脂性部分包括但不限于油基、视黄基和胆甾醇残基、胆酸、金刚烷乙酸、1-芘丁酸、二氢睾酮、1,3-双-O(十六烷基)甘油、香叶基氧基己基、十六烷基甘油、冰片、薄荷醇、1,3-丙二醇、十七烷基、棕榈酸、肉豆蔻酸、O3-(油酰基)石胆酸、O3-(油酰基)胆酸、二甲氧基三苯或苯恶嗪。另外的化合物和使用方法在美国专利公开号2010/0076056、2009/0247608和2009/0131360中有所阐述;通过引用整体并入本文。
在一个实施方案中,HOTAIR功能的抑制可以通过施用靶向HOTAIR的反义寡核苷酸来实现。反义寡核苷酸可以是核糖核苷酸或脱氧核糖核苷酸。优选地,反义寡核苷酸具有至少一种化学修饰。反义寡核苷酸可以由一种或多种“锁定核酸”组成。“锁定核酸”(LNA)是修饰的核糖核苷酸,在核糖糖部分的2′和4′碳之间含有额外的桥,从而形成“锁定”构象,从而增强了含有LNA的寡核苷酸的热稳定性。替代地,反义寡核苷酸可包含肽核酸(PNA),其包含基于肽的骨架而非糖磷酸骨架。反义寡核苷酸可包含一种或多种化学修饰,包括但不限于糖修饰,例如2′-O-烷基(例如2′-O-甲基、2′-O-甲氧基乙基)、2′-氟和4′硫修饰,以及骨架修饰,例如一个或多个硫代磷酸酯、吗啉、或膦酸羧酸酯连接(参见例如美国专利号6,693,187和7,067,641,通过引用整体并入本文)。在一些实施方案中,合适的反义寡核苷酸是2′-O-甲氧基乙基“间隙聚体(gapmer)”,其在5′和3′端都含有2′-O-甲氧基甲基修饰的核糖核苷酸,中心至少有10个脱氧核糖核苷酸。这些“间隙聚体”能够触发RNA靶的RNase H依赖性降解机制。增强稳定性和提高效力的反义寡核苷酸的其他修饰,例如描述于美国专利号6,838,283(通过引用整体并入本文)中的,是本领域已知的,并且适用于本发明的方法。反义寡核苷酸可包含与HOTAIR靶序列至少部分互补的序列,例如与HOTAAIR靶序列至少约75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%互补。在一些实施方案中,反义寡核苷酸可与HOTAIR靶序列基本上互补,即与靶多核苷酸序列至少约95%、96%、97%、98%或99%互补。在一个实施方案中,反义寡核苷酸包含与HOTAIR靶序列100%互补的序列。
在另一个实施方案中,HOTAIR的抑制剂是抑制性RNA分子(例如,miRNA、siRNA、piRNA或snRNA),其具有与HOTIAR的靶序列至少部分互补的单链或双链区域,例如,与HOTAIR靶序列约75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%互补。在一些实施方案中,抑制性RNA包含与HOTAIR的靶序列基本上互补的序列,例如,与靶多核苷酸序列互补约95%、96%、97%、98%或99%。在其他实施方案中,抑制性RNA分子可包含与靶序列具有100%互补性的区域。抑制分子可以靶向HOTAIR序列。在某些实施方案中,抑制性RNA分子可以是双链小干扰RNA或包括茎环结构的短发夹RNA分子(shRNA)。在一个实施方案中,HOTAIR抑制剂是包含选自SEQ ID NO:104、106、108和110的核苷酸序列的siRNA。
HOTAIR抑制剂(例如,microRNA、siRNA、piRNA、snRNA、反义寡核苷酸、核酶或小分子抑制剂)的“有效量”是足以产生有益或期望结果的量,例如通过干扰HOTAIR的转录或干扰HOTAAIR与其细胞靶的相互作用而降低HOTAIR活性的量。在一些实施方案中,HOTAIR抑制剂将HOTAIR的量和/或活性降低至少约10%至约100%、20%至约100%、30%至约100%、40%至约100%、50%至约100%、60%至约100%、70%至约100%、10%至约90%、20%至约85%、40%至约84%、60%至约90%,包括这些范围内的任何百分比,例如但不限于15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%和99%。
在实施方案中,HOTAIR抑制剂是siRNA。在实施方案中,HOTAIR siRNA包括SEQ IDNO:104、SEQ ID NO:106、SEQ ID NO:108、SEQ ID NO:110、N-187951-01、187951-02、187951-03、187951-04。
在某些实施方案中,本发明包括一种调节HOTAIR靶的表达的方法,该方法包括将HOTAIR的抑制剂引入细胞。在一个实施方案中,在施用HOTAIR的抑制剂后,细胞中VEGF的活性降低。
在某些实施方案中,本发明包括一种调节一种或多种凋亡抑制剂的表达的方法,所述一种或多种凋亡抑制剂可以通过公知技术可检测地标记。可检测标签包括例如放射性同位素、荧光标签、化学发光标签、生物发光标签和酶标签。此类标记的抑制剂可用于确定细胞摄取效率、定量抑制剂在靶位点的结合或可视化抑制剂定位。
在某些实施方案中,本发明包括一种调节(包括抑制)一种或多种表观遗传分子介体的表达的方法。表观遗传分子可以是EZH2、SUZ12、EED、DNMT1、DNMT3A、DNMT3B、CTCF和/或P300中的一种或多种。
在某些实施方案中,HOTAIR或HOTAIR抑制剂在体内从载体表达。“载体”是一种物质组成,可用于将感兴趣的核酸输送到细胞内部。本领域已知许多载体,包括但不限于线性多核苷酸、与离子或两亲性化合物相连的多核苷酸、质粒和病毒。因此,术语“载体”包括自主复制的质粒或病毒。病毒载体的实例包括但不限于腺病毒载体、腺相关病毒载体、逆转录病毒载体、慢病毒载体等。表达构建体可以在活细胞中复制,也可以人工合成。出于本申请的目的,术语“表达构建体”、“表达载体”和“载体”可互换地用于在一般的、说明性的意义上证明本发明的应用,而不旨在限制本发明。
在一个实施方案中,用于表达HOTAIR或HOTAIR抑制剂的表达载体包含启动子,其“可操作地连接”到编码HOTAAIR或HOTAAIR抑制剂的多核苷酸。本文中使用的短语“可操作地连接”或“在转录控制下”是指启动子相对于多核苷酸处于正确的位置和取向,以控制RNA聚合酶的转录起始和多核苷酸的表达。
在某些实施方案中,编码感兴趣多核苷酸的核酸在启动子的转录控制下。“启动子”是指由细胞的合成机器或引入的合成机器识别的DNA序列,需要其来启动基因的特定转录。这里将使用术语启动子来指代聚集在RNA聚合酶I、II或III起始位点周围的一组转录控制模块。哺乳动物细胞表达的典型启动子包括SV40早期启动子、CMV启动子(例如CMV立即早期启动子(参见美国专利号5,168,062和5,385,839,通过引用整体并入本文))、小鼠乳腺肿瘤病毒LTR启动子、腺病毒主要晚期启动子(Ad MLP)和单纯疱疹病毒启动子等。其他非病毒启动子,如源自小鼠金属硫蛋白基因的启动子,也将用于哺乳动物的表达。这些和其他启动子可以使用本领域熟知的技术从市售质粒获得。参见,例如Sambrook等人(见上文)。增强子元件可与启动子联合使用以增加构建体的表达水平。实例包括如Dijkema et al.,EMBO J.(1985)4:761中描述的SV40早期基因增强子、Gorman et al.,Proc.Natl.Acad.Sci.USA(1982b)79:6777中描述的源自Rous肉瘤病毒的长末端重复序列(LTR)的增强子/启动子、以及Boshart et al.,Cell(1985)41:521中描述的来源于人CMV的元件,例如CMV内含子A序列中包含的元件。
通常,转录终止子/聚腺苷酸化信号也将存在于表达构建体中。此类序列的实例包括但不限于Sambrook等人(见上文)中描述的源自SV40的序列,以及牛生长激素终止序列(参见例如美国专利号5,122,458)。此外,5′-UTR序列可以放置在编码序列附近,以增强编码序列的表达。这样的序列包括UTR,其包括存在于小核糖核酸病毒如脑心肌炎病毒(EMCV)UTR的前导序列中的内部核糖体进入位点(IRES)(Jang et al.J.Virol.(1989)63:1651-1660)。也可用于本发明的其他小RNA病毒UTR序列包括脊髓灰质炎前导序列、甲型肝炎病毒前导序列和丙型肝炎IRES。
在本发明的某些实施方案中,含有本发明核酸构建体的细胞可通过在表达构建体中包含标记物而在体外或体内鉴定。这样的标记物将赋予细胞可识别的改变,从而允许容易地识别含有表达构建体的细胞。通常,包含药物选择标记有助于克隆和选择转化体,例如,赋予新霉素、嘌呤霉素、潮霉素、DHFR、GPT、zeocin和组氨酸抗性的基因是有用的选择标记。替代地,可以使用诸如单纯疱疹病毒胸苷激酶(tk)或氯霉素乙酰转移酶(CAT)的酶。也可以使用荧光标记(例如,绿色荧光蛋白(GFP)、EGFP或Dronpa)或免疫标记。所使用的选择性标记物被认为不重要,只要它能够与编码基因产物的核酸同时表达即可。可选标记的其他示例是本领域技术人员公知的。
表达载体可以通过多种方式引入细胞。在本发明的某些实施方案中,表达构建体包含衍生自病毒基因组的病毒或工程构建体。某些病毒通过受体介导的内吞作用进入细胞、整合到宿主细胞基因组中并稳定高效地表达病毒基因的能力,使其成为将外源基因转移到哺乳动物细胞中的有吸引力的候选者(Ridgeway,1988;Nicolas和Rubenstein,1988;Baichwal和Sugden,1986;Temin,1986)。
体内递送的优选方法之一涉及使用腺病毒表达载体。“腺病毒表达载体”是指含有腺病毒序列的构建体,这些腺病毒序列足以(a)支持构建体的包装和(b)表达其中已克隆的多核苷酸。表达载体包含基因工程形式的腺病毒。腺病毒(一种36kB的线性双链DNA病毒)的遗传组织知识允许用高达7kB的外来序列替换大块腺病毒DNA(Grunhaus和Horwitz,1992)。与逆转录病毒相反,宿主细胞的腺病毒感染不会导致染色体整合,因为腺病毒DNA可以以附加方式复制,而没有潜在的遗传毒性。此外,腺病毒结构稳定,在广泛扩增后未检测到基因组重排。腺病毒可以感染几乎所有的上皮细胞,无论其细胞周期阶段如何。
腺病毒因其中等大小的基因组、易于操作、高滴度、广泛的靶细胞范围和高传染性而特别适合用作基因转移载体。病毒基因组的两端含有100-200个碱基对反向重复序列(ITR),它们是病毒DNA复制和包装所必需的顺式元件。
除了腺病毒载体是复制缺陷的或至少有条件缺陷的要求之外,腺病毒载体的性质被认为对本发明的成功实践不是至关重要的。腺病毒可以是42种不同的已知血清型或A-F亚群中的任何一种。C亚群的5型腺病毒是获得用于本发明的条件复制缺陷型腺病毒载体的优选起始材料。这是因为5型腺病毒是一种人类腺病毒,其大量生化和遗传信息是已知的,并且它历史上被用于大多数使用腺病毒作为载体的构建。
根据本发明的典型载体是复制缺陷的,并且不具有腺病毒E1区。因此,将编码感兴趣基因的多核苷酸引入已去除E1编码序列的位置将是最方便的。然而,构建体在腺病毒序列内的插入位置对本发明不是关键的。如Karlsson等人(1986)所述,编码感兴趣基因的多核苷酸也可插入E3替换载体中取代缺失的E3区,或插入辅助细胞系或辅助病毒补充E4缺陷的E4区。
腺病毒载体已用于真核基因表达(Levrero等人,1991;Gomez-Foix等人,1992)和疫苗开发(Grunhaus和Horwitz,1992;Graham和Prevec,1991)。最近,动物研究表明重组腺病毒可用于基因治疗(Stratford-Perricaudet和Perricaude,1991;Stratford-Perricaudet等人,1990;Rich等人,1993)。向不同组织施用重组腺病毒的研究包括气管滴注(Rosenfeld等人,1991;Rosenfeld等人,1992)、肌肉注射(Ragot等人,1993)、外周静脉注射(Herz和Gerard,1993)和脑立体定向接种(Le Gal La Salle等人,1993)。
逆转录病毒载体也适用于在细胞中表达HOTAIR或HOTAIR抑制剂。逆转录病毒是一组单链RNA病毒,其特征是能够通过逆转录过程将其RNA转化为感染细胞中的双链DNA(Coffin,1990)。然后,产生的DNA作为前病毒稳定地整合到细胞染色体中,并指导病毒蛋白质的合成。整合导致病毒基因序列保留在受体细胞及其后代中。逆转录病毒基因组包含三个基因,gag、pol和env,分别编码衣壳蛋白、聚合酶和包膜成分。gag基因上游发现的一个序列包含将基因组包装成病毒体的信号。病毒基因组的5′和3′端存在两个长末端重复序列(LTR)。它们包含强大的启动子和增强子序列,也是整合宿主细胞基因组所必需的(Coffin,1990)。
为了构建逆转录病毒载体,将编码感兴趣基因的核酸插入病毒基因组中某些病毒序列的位置,以产生复制缺陷的病毒。为了产生病毒粒子,构建了含有gag、pol和env基因但不含LTR和包装成分的包装细胞系(Mann等人,1983)。当将含有cDNA的重组质粒与逆转录病毒LTR和包装序列一起引入该细胞系(例如通过磷酸钙沉淀)时,包装序列允许重组质粒的RNA转录物包装成病毒颗粒,然后将其分泌到培养基中(Nicolas和Rubenstein,1988;Temin,1986;Mann等人,1983)。然后收集含有重组逆转录病毒的培养基,任选地浓缩,并用于基因转移。逆转录病毒载体能够感染多种细胞类型。然而,整合和稳定表达需要宿主细胞的分裂(Paskind等人,1975)。
其他病毒载体可以用作本发明中的表达构建体。可以使用源自病毒的载体,例如牛痘病毒(Ridgeway,1988;Baichwal和Sugden,1986;Coupar等人,1988)、腺相关病毒(AAV)(Ridgeway,1988;Baichewal和Sugden,1988;Hermonat和Muzycska,1984)和疱疹病毒。它们为各种哺乳动物细胞提供了几个吸引人的特征(Friedmann,1989;Ridgeway,1988;Baichwal和Sugden,1986;Coupar等人,1988;Horwich等人,1990)。
为了实现有义或反义基因构建体的表达,必须将表达构建体递送到细胞中。这种递送可以在体外完成,如在转化细胞系的实验室程序中,或在体内或离体完成,如治疗某些疾病状态。一种递送机制是通过病毒感染,其中表达构建体包裹在感染性病毒颗粒中。
本发明还考虑了将表达构建体转移到培养的哺乳动物细胞中的几种非病毒方法。这些包括磷酸钙沉淀(Graham和Van Der Eb,1973;Chen和Okayama,1987;Rippe等人,1990)、DEAE葡聚糖(Gopal,1985)、电穿孔(Tur-Kaspa等人,1986;Porter等人,1984)、直接显微注射(Harland和Weintraub,1985)、DNA负载脂质体(Nicolau和Sene,1982;Fraley等人,1979)和脂质体DNA复合物、细胞超声处理(Fechheimer等人,1987)、使用高速微突起的基因轰击(Yang等人,1990)和受体介导的转染(Wu和Wu,1987;Wu和Wu,1988)。这些技术中的一些可能成功地适用于体内或体外使用。
一旦表达构建体已被递送到细胞中,则编码感兴趣的HOTAIR或HOTAIR抑制剂的核酸可被定位并在不同位点表达。在某些实施方案中,编码HOTAIR或HOTAIR抑制剂的核酸可以稳定地整合到细胞的基因组中。这种整合可以通过同源重组(基因替换)在同源位置和定向中进行,也可以在随机的非特异位置进行整合(基因扩增)。在进一步的实施方案中,核酸可以作为单独的附加DNA片段稳定地保持在细胞中。这种核酸片段或“附加体”编码的序列足以允许独立于宿主细胞周期或与宿主细胞周期同步的维持和复制。表达构建体如何递送至细胞以及核酸在细胞中的位置取决于所使用的表达构建体的类型。
在本发明的另一个实施方案中,表达构建体可以简单地由裸重组DNA或质粒组成。构建体的转移可以通过上述物理或化学渗透细胞膜的任何方法进行。这特别适用于体外转移,但也可应用于体内使用。Dubensky等人(1984)成功地将磷酸钙沉淀形式的多瘤病毒DNA注射到成年和新生小鼠的肝脏和脾脏中,显示出活跃的病毒复制和急性感染。Benvenisty和Neshif(1986)还证明,直接腹腔注射磷酸钙沉淀质粒可导致转染基因的表达。可以设想,编码感兴趣基因的DNA也可以在体内以类似的方式转移并表达基因产物。
在本发明的另一个实施方案中,将裸DNA表达构建体转移到细胞中可能涉及粒子轰击。这种方法取决于将DNA包被的微珠加速到高速的能力,使其能够穿透细胞膜并进入细胞而不会杀死细胞(Klein等人,1987)。已经开发了几种加速小颗粒的装置。一种这样的装置依靠高压放电产生电流,电流进而提供动力(Yang等人,1990)。所用的微发射体由钨或金珠等生物惰性物质组成。
在本发明的另一个实施方案中,表达构建体可以包埋在脂质体中。脂质体是以磷脂双层膜和内部水介质为特征的泡状结构。多层脂质体具有由水性介质分离的多个脂质层。当磷脂悬浮在过量的水溶液中时,它们会自发形成。脂质组分在形成封闭结构之前经历自重排,并在脂质双层之间截留水和溶解的溶质(Ohosh和Bachawat,1991)。还考虑脂质体DNA复合物。
在本发明的某些实施方案中,脂质体可与血凝病毒(HVJ)复合。这已被证明有助于与细胞膜融合,并促进脂质体包裹的DNA进入细胞(Kaneda等人,1989)。在其他实施方案中,脂质体可以与核非组蛋白染色体蛋白(HMG-I)复合或结合使用(Kato等人,1991)。在进一步的实施方案中,脂质体可以与HVJ和HMG-I两者复合或结合使用。由于这种表达构建体已成功地用于体外和体内核酸的转移和表达,因此它们适用于本发明。在DNA构建体中使用细菌启动子的情况下,还需要在脂质体中包含适当的细菌聚合酶。
可用于将编码特定lncRNA或抑制剂的核酸递送到细胞中的其他表达构建体是受体介导的递送载体。它们利用了几乎所有真核细胞中受体介导的内吞作用对大分子的选择性摄取。由于各种受体的细胞类型特异性分布,递送可能具有高度特异性(Wu和Wu,1993)。
受体介导的基因靶向载体通常由两种成分组成:细胞受体特异性配体和DNA结合剂。几种配体已用于受体介导的基因转移。最广泛表征的配体是脱唾液酸血清类粘蛋白(asialoorosomucoid,ASOR)(Wu和Wu,1987)和转铁蛋白(Wagner等人,1990)。最近,一种识别与ASOR相同受体的合成新糖蛋白被用作基因递送载体(Ferkol等人,1993;Perales等人,1994),表皮生长因子(EGF)也被用于向鳞状细胞癌细胞递送基因(Myers,EPO 0273085)。
在其他实施方案中,递送载体可以包括配体和脂质体。例如,Nicolau等人(1987)使用乳糖基神经酰胺(一种半乳糖末端的去唾液神经节苷脂),将其掺入脂质体中,并观察到肝细胞对胰岛素基因的摄取增加。因此,编码特定基因的核酸也可以通过具有或不具有脂质体的任何数量的受体-配体系统特异性递送到细胞类型中是可行的。例如,血管内皮生长因子(VEGF)可用作介导将核酸递送到表现出VEGF受体上调的细胞中的受体。
在某些实施方案中,基因转移可以更容易地在离体条件下进行。离体基因治疗是指从动物体内分离细胞,在体外将核酸输送到细胞中,然后将经修饰的细胞送回动物体内。这可能涉及手术切除动物的组织/器官或细胞和组织的原代培养。
本发明还包括包含一种或多种HOTAIR抑制剂和药学上可接受的载体的药物组合物。在预期临床应用的情况下,将以适合于预期应用的形式制备药物组合物。通常,这将需要制备基本上不含热原以及可能对人类或动物有害的其他杂质的组合物。
胶体分散系统,例如大分子复合物、纳米胶囊、微球、珠粒和脂质基系统,包括水包油乳液、胶束、混合胶束和脂质体,可用作本文所述HOTAIR抑制剂的递送载体。适于将本发明的核酸递送至组织(例如心肌组织和平滑肌组织)的市售脂肪乳剂包括Intralipid、Lipsyn、Lipsyn II、Lipssyn III、Nutrilipid和其他类似的脂肪乳剂。体内用作递送载体的优选胶体系统是脂质体(即,人工膜囊泡)。这种系统的制备和使用在本领域是众所周知的。示例性制剂还描述于美国专利号5,981,505、6,217,900、6,383,512、5,783,565、7,202,227、6,379,965、6,127,170、5,837,533、6,747,014和WO 03/093449,通过引用整体并入本文。
人们通常希望使用合适的盐和缓冲液,以使递送载体稳定并允许目标细胞摄取。当重组细胞被引入患者体内时,也将使用缓冲液。本发明的水性组合物包含有效量的递送载体,其溶解或分散在药学上可接受的载体或水性介质中。术语“药学上可接受”或“药理学上可接受的”是指给动物或人服用时不会产生不良、过敏或其他不良反应的分子实体和组合物。如本文所用,“药学上可接受的载体”包括溶剂、缓冲剂、溶液、分散介质、涂层、抗菌剂和抗真菌剂、等渗剂和吸收延迟剂等,可用于配制药物,例如适用于人类施用的药物。这种介质和试剂用于药物活性物质的用途在本领域是众所周知的。除了任何常规介质或试剂与本发明的活性成分不相容外,其在治疗组合物中的用途是可预期的。补充的活性成分也可以掺入组合物中,只要它们不灭活组合物的核酸。
适用于注射使用或导管递送的药物形式包括,例如,无菌水溶液或分散液以及用于临时制备无菌注射溶液或分散液的无菌粉末。一般来说,这些制剂都是无菌的,并且在一定程度上是流动的,因此易于注射。制剂应在制造和储存条件下保持稳定,并应防止微生物(如细菌和真菌)的污染作用。合适的溶剂或分散介质可包含例如水、乙醇、多元醇(例如甘油、丙二醇和液体聚乙二醇等)、其合适的混合物和植物油。适当的流动性可以保持,例如,通过使用涂层,例如卵磷脂,通过在分散的情况下保持所需的粒度,以及通过使用表面活性剂。可以通过各种抗菌和抗真菌剂来防止微生物的作用,例如,对羟基苯甲酸酯、氯丁醇、苯酚、山梨酸、硫柳汞等。在许多情况下,优选包括等渗剂,例如糖或氯化钠。可注射组合物的延长吸收可通过在组合物中使用延迟吸收的试剂(例如单硬脂酸铝和明胶)来实现。
无菌注射溶液可通过将适量的活性化合物与任何其他成分(例如上文列举的成分)一起按需加入溶剂中,然后过滤灭菌来制备。通常,分散体是通过将各种无菌活性成分加入到包含基本分散介质和期望的其他成分的无菌载体中来制备的,例如,如上所述。在用于制备无菌注射溶液的无菌粉末的情况下,优选的制备方法包括真空干燥和冷冻干燥技术,其从先前无菌的过滤溶液中产生活性成分加上任何额外的所需成分的粉末。
本发明的组合物通常可以以中性或盐的形式配制。药学上可接受的盐包括,例如,衍生自无机酸(如盐酸或磷酸)或有机酸(如乙酸、草酸、酒石酸、扁桃酸等)的酸加成盐(与蛋白质的游离氨基形成)。与蛋白质的游离羧基形成的盐也可衍生自无机碱(如钠、钾、铵、钙或氢氧化铁)或有机碱(例如异丙胺、三甲胺、组氨酸、普鲁卡因等)。
在配制时,溶液优选以与剂量制剂相容的方式并且以治疗有效的量施用。该制剂可以容易地以多种剂型给药,例如可注射溶液、药物释放胶囊等。例如,对于在水溶液中的肠外给药,溶液通常被适当缓冲,并且液体稀释剂首先例如用足够的盐水或葡萄糖等渗。这种水溶液可用于例如静脉内、肌肉内、皮下和腹腔内给药。优选地,如本领域技术人员所知,特别是根据本发明,使用无菌水性介质。举例来说,单次剂量可溶解在1ml等渗NaCl溶液中,并添加到1000ml皮下注射液中或在拟定的输注部位注射(参见例如,“Remington'sPharmaceutical Sciences”第15版,第1035-1038页和第1570-1580页)。根据受试者的情况,剂量一定会发生一些变化。在任何情况下,负责给药的人员将确定个体受试者的适当剂量。此外,对于人类给药,制剂应符合FDA生物制品办公室标准要求的无菌性、热原性和一般安全性和纯度标准。
D.施用
将会施用至少一种治疗有效剂量的HOTAIR抑制剂。HOTAIR抑制剂可以是反义寡核苷酸或抑制性RNA分子,例如miRNA、siRNA、piRNA或snRNA或核酶,如本文所述。
这些试剂中的每一种的“治疗有效剂量或量”是指当组合施用时,对糖尿病患者的治疗产生积极的治疗反应的量。
实际给药剂量将根据受试者的年龄、体重和一般情况以及所治疗疾病的严重程度、卫生保健专业人员的判断以及给药的缀合物而变化。治疗有效量可由本领域技术人员确定,并将根据每个特定情况的特定要求进行调整。
在某些实施方案中,将根据每日给药方案或间歇地施用至少一种HOTAIR抑制剂中的每一种的多个治疗有效剂量。“间歇”施用是指治疗有效剂量可以例如每隔一天、每两天、每三天等施用。例如,在一些实施方案中,至少一种HOTAIR抑制剂将在延长的时间段内每周两次或每周三次施用,例如1、2、3、4、5、6、7、8……10……15……24周等。
在本发明的其他实施方案中,包含所述试剂(例如一种或多种HOTAIR抑制剂)的药物组合物是缓释制剂或使用缓释装置给药的制剂。此类装置在本领域中是公知的,并且包括例如透皮贴剂和微型可植入泵,其可以在各种剂量下以连续、稳定的方式随时间提供药物递送,以实现非持续释放药物组合物的缓释效果。
包含一种或多种HOTAIR抑制剂的药物组合物可以根据本领域已知的任何医学上可接受的方法使用相同或不同的给药途径给药。合适的给药方式包括玻璃体内给药、胃肠外给药,例如皮下(SC)、腹腔内(IP)、肌肉内(IM)、静脉内(IV)或输注、口服和肺、鼻、局部、透皮和栓剂。当组合物通过肺递送给药时,调整治疗有效剂量,使得血液中的试剂(如HOTAIR抑制剂)的可溶性水平与通过肠外给药的治疗有效剂量所获得的水平相等。
影响待给药的各种组合物的各自量的因素包括但不限于给药模式、给药频率(即每天或间隙给药,例如每周两次或三次)、正在接受治疗的特定疾病、疾病的严重程度、疾病的历史、个人是否正在与另一种治疗剂同时接受治疗,以及接受治疗的个人的年龄、身高、体重、健康状况和身体状况。通常,随着接受治疗的受试者体重的增加,优选更高剂量的该试剂。
如果根据上述给药方案接受治疗的受试者表现出部分反应,或在长期缓解后复发,则可能需要随后的并行治疗以实现疾病的完全缓解。因此,在从第一治疗期开始的一段时间之后,受试者可以接受一个或多个额外的治疗期,该治疗期包括HOTAIR抑制剂,其可以与用于治疗糖尿病的任何其他药剂组合施用。
E.试剂盒
本文所述的任何组合物可包含在试剂盒中。例如,试剂盒中可包括至少一种HOTAIR抑制剂和/或至少一种抗糖尿病剂或其任何组合。试剂盒还可以包括一种或多种转染试剂,以促进寡核苷酸或多核苷酸向细胞的递送。
试剂盒的组件可以以水性介质或冻干形式包装。试剂盒的容器装置通常包括至少一个小瓶、试管、烧瓶、瓶子、注射器或其他容器装置,可将组件放入其中,优选适当等分。如果试剂盒中有一种以上的组件(标记试剂和标签可以一起包装),则试剂盒通常还将包含第二个、第三个或其他额外的容器,额外的组件可以单独放入其中。然而,组件的各种组合可以包含在小瓶中。本发明的试剂盒还将典型地包括用于容纳核酸的装置,以及用于商业销售的封闭的任何其他试剂容器。这种容器可以包括注射或吹塑塑料容器,期望的小瓶被保持在其中。
试剂盒还将包括使用试剂盒组件以及使用试剂盒中未包含的任何其他试剂的说明。说明可以包括可以实现的变体。试剂盒还可以包括用于通过各种给药途径施用HOTAIR抑制剂的器具或装置,例如肠外给药或导管给药或涂层支架。
本发明还提供至少一种抑制HOTAIR的药剂在制备用于治疗糖尿病诱导的血管化的药物中的用途。
实验性
以下是实施本发明的具体实施方案的实施例。这些实施例只是为了说明问题,并不旨在以任何方式限制本发明的范围。
我们已经努力确保所使用的数字(如量、温度等)的准确性,但当然也应允许有一些实验误差和偏差。
实施例1
方法
细胞培养
人视网膜微血管内皮细胞((HREC;Cell Systems,Kirkland,WA,USA;产品目录号ACBRI 181)、鼠视网膜微血管内皮细胞(MREC;Applied Biological Materials Inc.,Richmond,BC,CAN)和来自C57BL/6J小鼠的初级肺内皮细胞(MLEC)在含有内皮生长介质-2(EGM-2)SingleQuots(Lonza)的内皮基础介质2(EBM-2,Lonza,Walkersville,MD,USA)中培养。所有的细胞都生长在75cm2的培养瓶中,并被保持在含有5%CO2的37℃的加湿培养箱中。如前所述(22,55,56),为了减少实验的可变性,细胞在三到六代之间被使用,细胞密度根据每个实验使用的培养板类型相应确定。一般来说,一旦接种后获得80%的汇合度,将EC在无血清和生长因子的培养基中培养过夜,然后暴露于不同的D-葡萄糖水平(最终葡萄糖浓度为:5mmol/L模拟正常血糖[NG],以及25mmol/L模拟高血糖[HG])持续时间不同;所选择的葡萄糖水平是基于大量以前的实验(22,27,33,55-57)。所有的体外或体内实验都独立重复至少三次,并进行六次重复,除非特别说明。
siRNA转染
用杂乱的siRNA(ID号:AM4635[SCR],Thermo Fisher Scientific)或预先设计的靶向人HOTAIR(ID:n272221[si1-HOTAIR],Thermo Fisher Scientific;n272222[si2-HOTAIR],Thermo Fisher Scientific;R-187951-00-0005[SMARTpool siHOTAIR],HorizonDiscovery;表6,上部分)、EZH2(ID:M-004218-03-0005[SMARTpool si-EZH2],HorizonDiscovery)、CTCF(ID:M-020165-02-0005[SMARTpool siCTCF],Horizon Discovery)、DNMT1(ID:s4216[siDNMT1],Thermo Fisher Scientific)或鼠Hotair(ID:R-173526-00-0005[SMARTpool siHOTAIR],Horizon Discovery,表6,下部分)的siRNA使用Lipofectamine2000(Invitrogen,Burlington,ON,Canada)和Opti-MEM还原血清培养基(Thermo Fisher Scientific)转染HREC。正如我们以前记录的(22,27,33,55-57),用100nM的每种siRNA转染细胞3-4小时,随后在完全EBM-2中过夜恢复。然后在第二天早上,在18-24小时之间对细胞进行血清饥饿,然后用特定的葡萄糖浓度(5mmol/L或25mmol/L)培养48小时。然后用RT-qPCR确认目标基因的沉默。
酶联免疫吸附试验(ELISA)
人VEGF-A(R&D Systems,Minnesota,USA)ELISA试剂盒被用来测量HREC上清液的细胞因子水平。细胞因子浓度用BCA蛋白测定试剂盒(Pierce,Rockford,IL,USA)进行量化,根据制造商的说明,ELISA试剂盒使用100μg的蛋白浓度。使用Multiskan FC微孔板光度计(Thermo Fisher Scientific,Massachusetts,USA)在450nm处测定每个孔的光密度并在568nm处进行校正。
内皮细胞管形成试验
当进行管形成试验时,将大约1.5x104个HREC(经SCR siRNA或siHOTAIR预处理)接种到96孔板中,每孔含有100μL的BD无酚红Matrigel基质(BD Biosciences,Bedford,MA,USA)。在有生长介质存在时,让细胞在37℃、5%CO2的加湿培养箱中附着一小时。孵育一小时后,用含有适当葡萄糖浓度(5mM或25mM)和/或外源性VEGF-A蛋白浓度(50ng/mL)的无血清培养基替换生长培养基。在六小时后,用尼康Diaphot显微镜(Nikon Canada,Mississauga,ON,CAN)和PixeLINK相机(PixeLINK,Ottawa,ON,CAN)以40x放大倍数拍摄图像,每孔至少拍摄两个视野的图像(n=8个独立样本/组)。为了评估图像中细管和分支点的总数,使用了WimTube图像分析软件(Wimasis),并将这些结果绘制成图形。
RNA荧光原位杂交(RNA-FISH)
如前所述(56,57),将HREC以75%的汇合度接种在12孔板的玻璃盖玻片上,血清饥饿过夜,用各种葡萄糖浓度(NG或HG)处理48小时。根据制造商的方案对粘附细胞进行RNA荧光原位杂交(FISH)(https://www.biosearchtech.com/support/resources/stellaris-protocols),以及使用人HOTAIR的Stellaris FISH探针与Quasar 570染料(5nmol;Biosearch Technologies,Petaluma,CA,USA)用于杂交。HREC还用4’,6-二脒基-2-苯基吲哚(DAPI;Vector Laboratories,Burlingame,CA,USA)复染,并用Vectashield封片介质(Vector Laboratories)封片。用Cytation 5细胞成像多模式阅读器(BioTek,Winooski,VT,USA)拍摄图像,放大倍数为20X,由对实验组一无所知的研究人员进行。使用黄色荧光蛋白(YFP)、DAPI和相位对比滤镜,随后用ImageJ软件(NIH,Bethesda,MD,USA)分析图像。
RNA免疫沉淀(RIP)
使用Magna RIP RNA结合蛋白免疫沉淀试剂盒(Millipore,Etobicoke,ON,CAN)(27,57),按照制造商的说明,在48小时后收集在NG或HG中培养的HREC的细胞裂解液进行免疫沉淀。抗IgG(对照)和抗EZH2抗体(Millipore)被用来共沉淀感兴趣的RNA结合蛋白。然后提取的RNA被反转录为cDNA,通过RT-qPCR分析,并相对于B肌动蛋白mRNA(编码一种管家蛋白)的水平进行标准化。
3-去氮腺嘌呤A(DZNep)、5-氮杂-2’-脱氧胞苷(5-aza-dC)和2-脱氧葡萄糖(2-DG)处理
按照之前研究中记录的浓度,在加入D-葡萄糖之前,将DZNep(Cayman Chemical,Ann Arbor,MI,USA;5μM)、5-aza-dC(Sigma,St.Louis,USA;5μM)或2-DG(Sigma;0.6mM和5mM)预处理应用于HREC 1小时(22,27,55,58)。在48小时内收集经DZNep、5-aza-dC或2-DG处理的HREC和它们各自的对照组用于进一步分析。
JC-1试验
为了评估线粒体的健康和功能状态,我们采用了JC-1试验(33)。简单地说,在葡萄糖培养之前,用SCR siRNA或siHOTAIR处理HREC,在48小时后,用10μM的JC-1染料(5,5’,6,6’-四氯-1,1’,3,3’-四乙基苯并咪唑-羰花青碘化物;Abcam,Toronto,ON,CAN)孵育细胞10分钟。按照制造商的说明,然后用JC-1稀释缓冲液洗涤HREC三次。为了对细胞核区域进行染色,在JC-1染色后使用DAPI(Vector Laboratories)。使用Zeiss LSM410倒置激光扫描显微镜(Carl Zeiss Canada,North York,ON,CAN)以20X放大倍数拍摄荧光图像,并用ImageJ分析图像。
8-OH-dG染色
在siRNA预处理后,HREC被置于在八室组织培养载玻片并在葡萄糖挑战(NG或HG)后培养48小时(33)。按照制造商的说明,用甲醇固定细胞,然后用8-羟基-2’-脱氧鸟苷(一种氧化性DNA损伤标记物;8-OHdG;1:50,Santa Cruz Biotechnology,Dallas,TX,USA)染色。还使用DAPI(Vector Laboratories)进行细胞核染色。显微镜由不知道样品身份的盲检人员使用Zeiss LSM 410倒置激光扫描显微镜(Carl Zeiss Canada)进行操作,图像以20X放大倍数拍摄并随后用ImageJ分析。
染色质免疫分析-qPCR(ChIP-qPCR)
ChIP试验(Milipore,Temecula,CA,USA)是按照我们以前的描述进行的(55)。简单地说,用SCR siRNA或siHOTAIR预处理HREC,随后在NG或HG中培养48小时。然后用1%的甲醛固定细胞,在37℃孵育10分钟,然后裂解并超声处理以剪切DNA。使用抗三甲基组蛋白H3(Lys27;H3k27me3;Millipore)、抗RNA聚合酶II(Millipore)、抗IgG(Millipore)和抗乙酰组蛋白H3(K9、K14、K18、K23、K27;Abcam)抗体进行ChIP试验。抗鼠IgG被用来作为阴性对照。通过RT-qPCR检测免疫沉淀的DNA,使用VEGF-A的启动子特异性引物:远端启动子区域(正向:5’-GTAGTCCCAGGGTGCAAC-3’(SEQ ID NO:111),反向:5’-GACTGGCTGAATGGCATC-3’(SEQID NO:112),相对于转录起始点[TSS]的位置:-4896bp);以及近端启动子区域(正向:5’-CGGTGCTGGAATTTGATTCATTGAT-3’(SEQ ID NO:113),反向:5’-TTCAAGTGAATGGCATC-3’(SEQID NO:112)。5’-TTCAAGTGGGAATGGCAAGC-3’(SEQ ID NO:114),相对于TSS的位置:-189bp)(59)。
WST-1细胞存活率&增殖试验
在葡萄糖和siHOTAIR处理后,HREC的活力是用WST-1细胞活力分析(罗氏)在48小时时测定的。使用Multiskan FC微孔板光度计(Thermo Fisher Scientific),首先在450nm处测量吸光度,然后用690nm作为参考波长进行校正。
电子显微镜
在盖玻片上转染HREC后,用2.5%戊二醛磷酸盐缓冲液固定附着的细胞,并按照之前的描述进行EPON包埋(60)。用乙酸铀酰和柠檬酸铅对200目镍网的超薄切片进行染色,并进行电子显微镜(Phillips EM-420TEM)检查。
HOTAIR的CpG位点的甲基化分析
使用Illumina Infinium MethylationEPIC BeadChip阵列(Illumina,CA,USA)在NG或HG环境中孵育2天(48小时)或7天(168小时)的HREC中鉴定HOTAIR基因的CpG位点的差异甲基化模式。在各自的时间点,从这些细胞中提取基因组DNA,1μg的DNA被用于使用血液&细胞培养DNA迷你试剂盒(Qiagen,Toronto,ON,CAN)亚硫酸盐转化。使用HiScan系统(Illumina,CA,USA)获得阵列读数,然后将甲基化和非甲基化的信号强度数据导入R 3.5.2进行分析。按照我们之前公布的方案(61),使用Illumina标准化方法进行标准化,并使用minfi软件包进行背景校正。检测p值大于0.01的探针被排除在下游分析之外。此外,已知在CpG疑问处或单核苷酸延伸处含有单核苷酸多态性(SNP)的探针被移除。每个探针的甲基化水平以β值(β值)来衡量,β值是根据甲基化信号与非甲基化和甲基化信号总和的比值计算的,范围在0(无甲基化)和1(完全甲基化)之间。每组使用三个独立样本。
糖尿病动物模型
西方大学理事会动物护理委员会批准了本研究中使用的所有动物模型,并且实验是按照《实验动物护理和使用指南》(NIH出版物85-23,1996年修订)进行的。从我们最初的两个月的体内模型开始,雄性大鼠(Sprague-Dawley;~175克,6周龄)或雄性小鼠(C57/BL6背景;~25克,8周龄)被获得(Charles River,Wilmington,MA,USA)并随机分为对照组和糖尿病组。链脲霉素(STZ)被用来生成1型糖尿病动物模型,糖尿病的诱导和监测方法之前已经描述过(27,56,57)。在糖尿病诱导后两个月,对动物进行安乐死(两组小鼠均n=8;对照组大鼠n=5,糖尿病大鼠n=9),收集视网膜组织进行RNA提取,用RT-qPCR评估Hotair RNA水平。
对于我们的短期治疗体内模型(持续时间为4周),获得野生型小鼠(CharlesRiver;C57BL/6J背景;~25克,8周大)并随机分为四组(n=6/组):对照组小鼠进行玻璃体内注射SCR siRNA(阴性对照)或siHOTAIR,以及糖尿病小鼠进行玻璃体内注射SCR siRNA或siHOTAIR。在进行玻璃体内注射之前,首先用上述方法确认糖尿病动物(血糖水平>20mmol/L)中STZ诱导的糖尿病。糖尿病发生后,将含有SCR siRNA或siHOTAIR的1μl溶液(100nmol/L)与Lipofectamine 2000(Invitrogen)一起注射到糖尿病小鼠眼睛的玻璃体腔内,每周一次,持续三周。对照组小鼠也被相似地注射相同体积的SCR siRNA或siHOTAIR和Lipofectamine。所有小鼠都用异氟醚(2.25%与900毫升/分钟的氧气混合)进行麻醉,用33号针头连接10μl玻璃注射器(Hamilton,Reno,USA)进行玻璃体内注射。针头的手术定位和每次玻璃体内注射的一般持续时间之前已经描述过(62)。在为期4周的研究中,没有发生手术后的眼部并发症。
毒性和组织病理学分析
为了确定siHOTAIR对小鼠的潜在不利影响,除了对小鼠(C57/BL6背景)进行常规监测外,还进行了毒性分析(64)。年龄匹配的小鼠被分为四组:SCR siRNA组(阴性对照;100nmol/L;n=3),siHOTAIR低剂量组(25nmol/L;n=3),siHOTAIR中剂量组(50nmol/L;n=3)和siHOTAIR高剂量组(100nmol/L;n=3)。将SCR siRNA或siHOTAIR作为单剂量在玻璃体内注射一次,并对小鼠进行连续7天的追踪。在这个时间点之后,切除器官,用10%的缓冲福尔马林溶液固定和包埋,并切成5μm厚的切片。然后用苏木精和伊红(H&E)对组织切片进行常规组织学染色。盲法病理学家用光学显微镜评估组织病理学损伤,并拍摄图像(Nikon,Japan)。值得注意的是,为了研究siHOTAIR的长期毒性,我们还对4周治疗模型中获得的小鼠组织进行了H&E染色(n=3/组)。
临床样本采集
西部研究伦理委员会和西安大略大学劳森健康研究所(London,ON,CAN)批准了本研究的临床部分。在采集标本前向患者提供了知情同意书,所有的样本都是按照《赫尔辛基宣言》处理的。血清和未稀释的玻璃体液(VH)都是由经验丰富的玻璃体视网膜外科医生从接受平面玻璃体切除术的患者收集的。两种样本都被分为两组:对照组和增殖性糖尿病视网膜病变(PDR)。PDR组由被诊断为DR晚期的患者组成(PDR;n=11;平均年龄±SD=60.7±10.72岁;10名男性和1名女性),而对照组由以前没有PDR病史且被诊断为特发性黄斑孔或单独的非糖尿病眼病的患者组成(n=10;平均年龄±SD=69.2±8.87岁;2名男性和8名女性)。PDR被定义为视网膜上的盘或其他部位出现新生血管或纤维增生。如前所述(27,56),使用TRIzol试剂(Invitrogen)和血清RNA提取试剂盒(Bio Basic Inc.,Markham,ON,CAN)按照制造商的协议从500μL的VH样本和200μL的血清样本中提取总RNA。转录为cDNA后,用RT-qPCR来评估这些样品中HOTAIR的表达。
RNA分离和实时定量聚合酶链反应(RT-qPCR)
正如我们广泛描述的(22,27,33,55-57),使用TRIzol试剂(Invitrogen)提取总RNA。一旦获得总RNA,使用分光光度计(260nm;Gene Quant,Pharmacia Biotech,USA)来量化RNA浓度,其中使用高容量cDNA逆转录试剂盒(Applied Biosystems/Thermo FisherScientific)将1-2μg的总RNA逆转录成互补DNA(cDNA)。然后在LightCycler 96系统(RocheDiagnostics,Laval,QC,CAN)中使用SYBR-green master mix(Takara Bio,MountainView,CA,USA)和感兴趣的基因的特定引物(Sigma;表1-2)扩增cDNA。使用LightCycler96SW 1.1软件(罗氏)分析RT-qPCR结果,并通过相对标准曲线法计算表达水平,使用β-肌动蛋白作为样本标准化的内部对照。
统计学分析
使用GraphPad Prism 7(La Jolla,CA,USA)评估各组之间的统计学差异。如果P值小于0.05,则认为数据具有统计学显著性。体外实验的所有定量数据表示为平均值±SEM,而所有体内数据表示为平均值±SD。实验以一式三份进行(n=6/组),除非特别说明。非参数分布的样本的统计学显著性使用曼-惠特尼U检验,而双尾学生t检验(当比较两个条件时)或单因素方差分析(用于多重比较;随后进行Tukey的事后检验)适用于参数变量。
结果
HOTAIR RNA表达是葡萄糖依赖性的利用微阵列分析,我们之前探索了用NG或HG培养48小时的人视网膜内皮细胞(HREC)中lncRNA的全表达谱(基因表达总库[GEO]ID:GSE122189)。有趣的是,经过严格的过滤标准(倍数变化≤或≥2且调整后的p值<0.05),数以千计的lncRNA在HG葡萄糖培养后差异表达;特别是,当检查重复之间时,在HG挑战的HREC中发现2669-3518个lncRNA被上调,发现890-1991个lncRNA被下调(图1A-C)。在上调的lncRNA中,与NG对照组相比,HG处理的HREC中的lncRNA HOTAIR增加了2.67倍(表3)。实时定量反转录PCR(RT-qPCR)进一步证实了HREC中HG培养48小时后HOTAIR的表达升高(图2A),这也与VEGF-A和ET-1转录物的表达增强有关(图2B和2C)。由于lncRNA已被报道在不同的时间点表现出不同的表达模式(27,63),我们研究了6、12、24、48和72小时时HOTAIR RNA表达(数据未示出)。有趣的是,与各自的NG对照组相比,仅在48小时时HOTAIR表现出显著的HG诱导性升高(图2A;p=0.0014)。此外,为了确定特定的葡萄糖浓度是否会影响HOTAIR表达,我们将HREC在5、10、15、20和25mmol/L(mM)的D-葡萄糖存在下培养48小时。正如RT-qPCR所证明的那样,与用5mM葡萄糖(模拟血糖正常)培养的细胞相比,25mM葡萄糖(模拟高血糖)培养后,HOTAIR RNA表达明显达到了顶峰(p=0.0077;图2D)。因此,根据本研究结果和我们之前发表的研究(22,27,55-57),我们在随后的体外实验中采用了48小时的时间点和5mM和25mM的葡萄糖浓度。值得注意的是,对于上述实验,使用渗透对照(25mM L-葡萄糖;数据未显示)时,没有观察到HOTAIR表达的明显差异。
为了描述HREC中HOTAIR的亚细胞定位,我们进行了RNA荧光原位杂交(RNA FISH)。RNA FISH显示,HOTAIR可以存在于HREC的细胞核和细胞质区,主要定位在细胞核周围/细胞质区(图3A)。此外,进一步证实了我们的微阵列和RT-qPCR结果,RNA FISH分析表明,与NG对照组相比,HG显著促进HOTAIR的表达升高(图3B;p<0.0001)。综上所述,这些数据揭示了HG是HOTAIR表达的诱导剂,另外还暗示了HOTAIR在HG压力下的内皮特异性作用,HOTAIR可能参与了细胞核和细胞质过程的调节。
体外高血糖环境中HOTAIR直接介导血管生成
为了确定HOTAIR的血管生成作用,我们使用HREC并进行了内皮细胞管形成试验,这是一种广泛使用的模拟血管生成的重组阶段的体外试验,是一种能确定参与血管生成的基因或途径的快速的方法。如图4A中的图像所示,在6小时后,与在NG中孵育的经预处理的SCR细胞相比,用杂乱的siRNA(表示为‘SCR’)预处理并在HG存在下培养的细胞的毛细血管样结构(细管)的存在有所提高。然而,当细胞用siHOTAIR处理后,在NG和HG条件下,6小时时,分支的程度和细管的总数都显著减少(图4B和4C;p<0.0001)。更有趣的是在6小时的时候,当HREC用siHOTAIR预处理,与HG对照组相比,外源性VEGF蛋白和HG的存在都不能完全恢复分支的程度和细管的数量,这意味着HOTAIR的沉默可以使EC对HG中其他外部血管生成的致病因子进一步脱敏。这些结果鼓励我们探索其他血管生成因子(64),如血管生成素样4(ANGPTL4)、胎盘生长因子(PGF)、低氧诱导因子(HIF)、白细胞介素-1β(IL-1β)和糖尿病相关分子(包括聚[ADP-核糖]聚合酶1(PARP1)(65)、细胞色素B(33)),以及下面一组实验中的一些另外的表观遗传介质。
HOTAIR沉默能够体外防止一些血管生成因子和糖尿病相关分子的诱导
为了确定HOTAIR在体外对上述具有致病意义的分子的直接调节能力,我们进行了功能缺失的实验,即在HREC中通过siRNA介导的HOTAIR沉默。在测试的三个siRNA中,尽管在所有的siRNA处理中都观察到HOTAIR表达的显著下降,但与HG SCR对照组相比,‘SMARTpoolsiHOTAIR’在HG培养的HREC中引起HOTAIR RNA水平的最大下降(约91%,p<0.0001)(图5)。因此,我们选择‘SMARTpool’siRNA进行后续的下游分析。
与HG对照组相比,经siHOTAIR处理的受到HG挑战的HREC中伴随着HOTAIR水平的降低,与血管生成(VEGF-A、ET-1、ANGPTL4、PGF、IL-1β、HIF-1α;图6A-G)、DNA和氧化损伤(PARP-1和细胞色素B;图6H和6I)以及表观遗传调节(EZH2、SUZ12、DNMT1、DNMT3A、DNMT3B、CTCF和P300;图7A-H)有关的各种RNA转录物的表达也明显地显著下降。这些结果表明,lncRNA HOTAIR与一些DR相关分子的转录调节直接相关。为了确定这些分子变化是否也反映在蛋白质水平上,我们选择了其中一个血管生成标记物(VEGF-A)通过ELISA进行进一步跟踪。与我们的RNA结果同步,HOTAIR的沉默能够显著防止HREC中葡萄糖诱导的VEGF-A蛋白的上调(图8A;p<0.0001)。为了扩展我们的结果,我们还检查了HOXD3和HOXD10的表达,因为HOTAIR与HOXD基因座的转录抑制相关(66)。事实上,与SCR HG对照组相比,在用HG培养的HREC中HOTAIR的沉默能够诱导HOXD3(p=0.0473)和HOXD10(p=0.0001)的显著上调(图8B和8C)。此外,开发了靶向HOTAIR的特定区域(近5’端、中间基因体和近3’端)的定制双链siRNA,随后转染HREC。与SCR HG对照组相比(图41),使用siHOTAIR SB1、siHOTAIR SB2、siHOTAIR SB3和siHOTAIR SB4,HOTAIR表达分别减少了~67%、~41%、~57%和~32%。HOTAIR的沉默也直接影响了VEGF-A、ET-1和ANGPTL4的转录水平,尽管每个siRNA的减少量各不相同(设计为靶向HOTAIR的5'端的siRNA:SB1和SB2,减少量最大)。我们还研究了siHOTAIR处理后HREC的生存能力,正如我们的WST-1结果所证明的,与SCR对照组相比,siRNA介导的HOTAIR的沉默能够显著提高细胞的生存能力(图8D;p<0.0001)。总之,这些结果表明,HOTAIR是体外葡萄糖诱导的EC功能障碍的关键调节因子。
糖尿病小鼠和大鼠2个月时视网膜中HOTAIR显著升高
根据我们的体外结果,我们想在体内确认HOTAIR是否在糖尿病的视网膜中具有类似的致病表型。因此,我们采用了链脲霉素(STZ)诱导的糖尿病动物模型,包括C57/BL6小鼠和Sprague-Dawley大鼠,随后提取了糖尿病2个月后的视网膜组织。糖尿病动物表现出高血糖和葡萄糖尿症,以及体重增加减少和高血糖(数据未显示)。与我们在体外实验中观察到的趋势平行,对照组和糖尿病动物的视网膜之间明显存在不同的Hotair RNA表达模式,在2个月时糖尿病小鼠(p=0.0281;图9A)和大鼠(p=0.0420;图9B)的视网膜中Hotair都显著上调,表明视网膜Hotair表达与糖尿病正相关。
在确认Hotair在糖尿病视网膜中的重要性后,我们试图评估siRNA介导的HOTAIR调控作为治疗DR的新方法的治疗潜力。为了确定这一点,我们首先获得了特异性靶向鼠Hotair的SMARTpool siHOTAIR,在两个EC特异性鼠细胞系(鼠视网膜微血管EC[MREC]和原发鼠肺EC[MLECs](C57/BL6))上测试这种siRNA化合物,然后用短期的一个月的糖尿病动物模型说明了siHOTAIR的治疗显著性。从我们的体外和离体实验开始,我们发现,与SCR HG对照相比,50nM和100nM浓度的siHOTAIR能够引起HG培养的两个EC细胞系的Hotair RNA水平的显著降低(图10)。事实上,与SCR HG对照组相比,使用50nM的浓度,在受到HG挑战的MREC和MLEC中分别观察到~79%和~53%减少;而在100nM的浓度,在HG培养的MREC和MLEC中分别观察到~80%和~43%减少(图10A和10D)。同样地,与对照组相比,MREC中Hotair沉默后,观察到Vegf-a和Angptl4两者转录物也有统计学显著性的减少(在100nM浓度;图10B和10C)。相反,在MLEC中没有观察到这些血管生成转录物的显著减少(图10E和10F),这表明转染效率在EC亚型之间可能不同。然而,基于MREC的结果,我们选择鼠特异性的siHOTAIR用于我们随后的动物实验。
siHOTAIR的玻璃体内施用是无毒的且防止早期DR相关的视网膜变化
我们最初进行了涉及siHOTAIR的毒理学研究。野生型C57BL/6小鼠进行一次性包括杂乱的siRNA对照(100nM;SCR)或不同浓度的siHOTAIR(25nM,50nM和100nM)的玻璃体内注射,并监测七天,然后安乐死以收集组织。在整个实验过程中,没有观察到小鼠的行为变化或眼部并发症。苏木精和伊红(H&E)染色证明,在玻璃体内注射25、50或100nM浓度的siHOTAIR后,没有观察到视网膜、心脏、肺、肝和肾组织的结构异常(图11A-11E)。此外,在7天的时候,与SCR对照组和其他浓度的siHOTAIR相比,100nM剂量的siHOTAIR的视网膜HOTAIR表达似乎是最低的(减少~50%)(图12A)。利用这些信息,我们选择了100nM作为我们siHOTAIR用于治疗动物模型的最佳浓度。
为了了解siHOTAIR的治疗效果,在C57BL/6小鼠中使用STZ注射诱发糖尿病。所有的糖尿病小鼠都表现出明显的高血糖和体重的逐渐下降(图12B和12C),以及多尿和葡萄糖尿(数据示出)。与SCR糖尿病对照组相比,Hotair沉默并没有进一步影响体重和血糖水平(图12B和12C)。在研究与DR相关的微血管功能障碍相关的致病分子时,我们发现施用SCRsiRNA的糖尿病小鼠的视网膜组织中Hotair、Vegf-a、Et-1、Angptl4、Parp、Mcp-1、Il-1β、p300、多硫抑制复合体2[Prc2]成分(Ezh2、Suz12和Eed)、Pgf、Hif-1α和Ctcf的RNA表达升高(图13A-13N)。而Hotair的沉默(减少~58%)能够显著减少糖尿病引起的Hotair、Vegf-a、Et-1、Angptl4、Mcp-1、Ctcf、Hif-1α、p300、Prc2成分(Ezh2、Suz12和Eed)和Parp1的上调——表明HOTAIR沉默能够减轻糖尿病环境在视网膜内引起的早期分子异常(图13A-13F,13H-13K和13M-13N)。值得注意的是,虽然可以观察到下降的趋势,但在SCR和siHOTAIR处理的糖尿病动物之间我们没有发现Il-1β(图13G)、Pgf(图13L)和Hoxd3(图13O)的视网膜表达有统计学显著性的变化。此外,如H&E染色所示,与SCR对照组相比,在注射100nM siHOTAIR1个月后的视网膜、心脏、肺、肝、肾和脑组织中我们没有发现任何可观察到的细胞异常或毒性作用(图14A-14G)。
PDR患者的玻璃体和血清中HOTAIR被上调
在确定了糖尿病动物中HOTAIR的生物学重要性后,我们想从潜在的生物标记物角度确定HOTAIR表达是否具有类似的临床重要性。为此,我们研究了PDR患者的血清和玻璃体(VH)中的HOTAIR表达。根据我们的RT-qPCR分析,PDR患者的玻璃体(p<0.0001;图15A)和血清(p=0.0021;图15B)中HOTAIR表达不同于且显著高于无PDR的患者。此外,我们进行了双侧Pearson相关以确定HOTAIR表达在两种样本类型之间是否存在线性关联。有趣的是,血清和玻璃体样本之间发现了HOTAIR的统计学意义上的相关性,其中血清HOTAIR表达的增加与玻璃体HOTAIR表达的增加呈正相关(p=0.0005,R2=0.482;图15C)。综上所述,我们的临床结果表明,玻璃体和血清中HOTAIR的表达与PDR有关,其能够作为DR的预后和诊断生物标记物。
HOTAIR沉默能够体外部分防止葡萄糖引起的DNA和线粒体损伤,以及内皮细胞连接的破坏
然后,我们想进一步探索HOTAIR在体外的一些分子机制。由于之前的报告记录了HOTAIR在HeLa细胞中对线粒体功能障碍的影响(67),并基于我们RNA FISH实验中HOTAIR的定位以及siHOTAIR对细胞色素B RNA水平的影响,我们首先通过检测JC-1信号来评估HOTAIR沉默后HREC中的线粒体跨膜电位(ΔΨM)。如图16A所示,与杂乱的NG对照组相比,HG明显诱发线粒体去极化(由更多的绿色和更少的红色荧光表示;低ΔΨM)(P<0.0001),表明在HREC中HG诱导线粒体去极化/功能障碍。相反,与SCR NG对照组相比,用NG培养的细胞中HOTAIR的沉默能够明显增加线粒体的活性(由更多的红色和更少的绿色荧光表示;正常到高ΔΨM;P<0.0001;图16B)。正如预期的,当与SCR HG对照组相比,HOTAIR沉默部分降低了HG诱导的线粒体功能障碍/去极化(p=0.0459;图16B)。总之,JC-1的结果表明,高血糖环境中HOTAIR有助于线粒体的畸变。
我们研究了HG、HOTAIR和8-羟基-2’-脱氧鸟苷(8-OHdG,一种氧化性DNA损伤的生物标记物)水平之间的关系。事实上,与SCR NG细胞相比,在SCR siRNA和HG存在下的HREC表现出8-OHdG的显著表达(绿色荧光的增加;p<0.0001,图17A-17B)。然而,与此相反,与SCRHG细胞相比,HOTAIR沉默显著降低了葡萄糖诱导的8-OHdG表达的增加(p=0.0264),这表明HOTAIR可能与HG诱导的氧化损伤有关。此外,DR发展的一个重要前提是内皮细胞的损失,这是由慢性高血糖暴露引起的,表现为内皮细胞与细胞连接的异常(2)。为了在我们的细胞培养模型中研究这一点,我们用电子显微镜检查了HG中SCR或siHOTAIR处理的HREC。在用SCRsiRNA处理的HREC中,HG诱导细胞连接的破坏(图18A)。然而,相反,HOTAIR的沉默在HG培养后保留了EC连接的完整(图18B)。这些结果进一步表明,HOTAIR有助于DR相关的EC功能障碍。HOTAIR诱导的DR相关分子的产生依赖于糖酵解代谢
为了更好地了解调节机制,我们试图研究葡萄糖对HOTAIR及其靶标分子的表达的上游作用。我们采用了2-脱氧-D-葡萄糖(一种糖酵解途径的抑制剂;2-DG),并研究了这种葡萄糖类似物体外对HREC的影响。据此,尽管2-DG具有细胞凋亡的性质(通过台盼蓝拒染实验显示约45-55%的存活率[数据未显示]),但2-DG处理明显阻断了HG诱导的HOTAIR、VEGF-A、ET-1、ANGPTL4、MCP-1、IL-1β、CTCF和细胞色素B的表达(图19A-19H),这进一步强调了葡萄糖发挥的上游调节作用。此外,抑制有效的葡萄糖代谢(5mM的2-DG)引起表观遗传分子的明显减少,包括EZH2、SUZ12、EED和DNMT1(图20A-C和20E),但对DNMT3A和DNMT3B没有观察到差异(图20F和20G)。有趣的是,即使在5mM浓度,2-DG处理也没有诱导PARP1(图19I)和P300(图20D)表达的显著减少,也没有增强细胞色素B表达,这可能表明糖酵解的阻断可能通过涉及PARP1和P300的细胞核转运机制而不是来自线粒体的氧化损伤的贡献继续产生直接氧化压力(68)。此外,在5mM浓度,与HG对照组相比,在2-DG处理的用HG培养的HREC中,HOXD3和HOXD10表达显著上调(图20H和20I),进一步突出了HOTAIR和HOXD表达之间共享的反向关系。综上所述,并与之前证实2-DG对EC的抗血管生成和凋亡作用的报告相一致(58),我们的数据表明,葡萄糖在HOTAIR的上游起作用,并且抑制葡萄糖摄取能够最终防止HOTAIR及其下游靶标的大多数的上调。
组蛋白甲基化表观遗传地调控HOTAIR及其下游靶标
从全面组蛋白甲基化抑制剂(被称为3-去氮腺嘌呤A(DZNep))的施用开始,我们证实,与SCR HG细胞相比,在HG和DZNep的存在下,HREC的PRC2成分的表达显著减少;特别是EZH2、SUZ12和EED转录物,分别减少了~72%(p<0.0001)、~48%(p=0.0005)和~61%(p<0.0001)(图21A-C)。与SCR HG对照组相比,伴随着用DZNep和HG处理的HREC中PRC2成分的表达的减少,HOTAIR、VEGF-A、ANGPTL4、CTCF、PARP1、P300和细胞色素B转录物也有明显的统计学上显著的减少(图22A-22B、22D-22F、22I-22J)。相反,在ET-1(图22C)、MCP-1(图22G)、IL-1β(图22H)、HOXD3和HOXD10转录物观察到相反的趋势,DZNep预处理和HG培养的HREC显著增强了上述分子的表达(图21D和21E,以及图22)。这些动态观察与我们之前的研究一致(27,57),并可能表明DZNep不是完全有选择性的,因此,可能在高血糖环境下破坏了EC中一些不同的细胞相互作用。
为了证实和扩大我们使用DZNep的实验结果,我们选择EZH2(PRC2的催化亚基(69))和CTCF(一种关键的转录因子,能够维持染色体组织且可能与HOTAIR的直接调节有关(70,71))进行随后的siRNA介导的沉默。在siRNA处理后,与SCR HG对照组相比,我们确认EZH2(~77%沉默;图23E)和CTCF(~55%沉默;图23F)显著减少。有趣的是,与SCR HG对照相比,在HG条件下抑制EZH2的表达也引起了HOTAIR、VEGF-A、ET-1、ANGPTL4、CTCF、SUZ12、PARP1、MCP-1、IL-1β、细胞色素B和DNMT1RNA表达的显著减少,而P300、HOXD3和HOXD10转录水平显著增加(图23和图24A、24D-F)。siEZH2处理后,DNMT3A和DNMT3B的表达没有观察到显著差异(图24B和24C)。综上所述,这些结果意味着在高血糖环境下EZH2(PRC2的关键成分)也直接参与了HOTAIR和其他几个下游基因的转录调控。值得注意的是,在DZNep和siEZH2处理中观察到的ET-1、MCP-1和IL-1βRNA表达的差异可能是由于每种化合物的特殊选择性(即siRNA一般在基因沉默中比全抑制剂对组蛋白甲基化更有特异性)。
另一方面,在用HG培养的HREC中CTCF的沉默产生了一些基因的不同表达,包括与它们各自的SCR HG对照组相比,HOTAIR、ANGPTL4、EED、IL-1β、细胞色素B、HOXD3和HOXD10显著增加,以及ET-1、EZH2、PARP1、MCP-1、DNMT1和P300转录转录物显著下降(图23)。同样,在用HG培养的HREC中沉默CTCF后,没有观察到VEGF-A、SUZ12、DNMT3A和DNMT3B转录物的显著差异(图23和24)。基于这些结果,我们的总研究结果暗示了CTCF在基因调控中的不同作用,其中siRNA介导的CTCF耗尽既能够增强葡萄糖诱导的某些基因的表达(可能是通过CTCF无法阻止增强子和启动子之间的相互作用,导致随后的基因诱导),也可以抑制选定基因的表达,这可能是由于染色质结构的变化防止了基因的诱导而发生的(71,72)。
HOTAIR结合组蛋白修饰酶并调节VEGF转录
然后,我们研究了HOTAIR与HREC中关键组蛋白修饰酶之间可能存在的直接关系,因此,我们进行了RNA免疫沉淀(RIP)。与IgG对照组相比,我们的结果表明,HOTAIR RNA水平在从HG培养的HREC获得的沉淀的抗EZH2和P300抗体片段中明显富集(p<0.0001;图25),这表明HG促进HOTAIR与EZH2和P300的强结合关联。我们的结果与之前的报告一致,这些报告记录了HOTAIR和这些表观遗传介质的类似关系(19,73)。
接下来,为了证明组蛋白修饰在基因组水平的参与,我们使用IgG(阴性对照)、RNA聚合酶II(指示转录活性;Pol II)、H3K27me3(指示转录抑制)和泛H3K9/14/18/23/27乙酰化(指示转录激活)的抗体进行染色质免疫沉淀(ChIP)-qPCR。我们用siHOTAIR处理HREC,并采用特异性地跨越VEGF-A的近端和远端启动子区域的引物进行随后的ChIP-qPCR分析。因此,与NG对照组相比,在用HG培养的HREC中,RNA Pol II水平在VEGF-A的远端(p<0.0001;图26A)和近端启动子(p<0.0001;图26D)区域都显著富集;而与HG对照组相比,HOTAIR的沉默能够显著减少这些区域中的Pol II富集。相反,在HG刺激下,观察到在VEGF-A远端(p<0.0001;图26B)和近端启动子(p<0.0001;图26E)区域中H3K27me3富集的显著减少,并且siHOTAIR处理显著逆转了葡萄糖诱导的VEGF-A启动子中H3K27me3的减少。此外,与NG对照组相比,HG条件显著增强了两个VEGF-A启动子区域中H3K9/14/18/23/27乙酰化的富集,而与NG对照组相比,HOTAIR的沉默显著防止整个VEGF-A远端(p<0.0001;图26C)和近端启动子(p<0.0001;图26F)区域的葡萄糖诱导的H3K9/14/23/27的泛乙酰化水平的增加。因此,我们得出结论,在基因的转录调控中,HOTAIR、组蛋白修饰酶和RNA Pol II之间存在着动态的相互作用,使得HOTAIR可能在高血糖压力期间对调节表观基因组有积极的作用。值得注意的是,IgG NG组和HG组之间没有观察到明显差异,证实了抗体的特异性。
HREC中没有观察到持续时间依赖的和葡萄糖诱导的HOTAIR基因的CpG甲基化模式的改变
为了研究葡萄糖诱导的DNA甲基化对HOTAIR调节的影响,我们将HREC在NG和HG条件中孵育2天和7天,然后使用Infinium EPIC阵列和质量控制进行全基因组DNA甲基化实验。在检测了>860,000个CpG位点(探针)后,我们专门选择了跨越HOTAIR基因的CpG位点(基因的上游5kb到下游1kb),对应于59个探针(图27)。我们发现大多数探针的平均甲基化强度普遍较低(β值<0.3),除了7个探针的甲基化强度稍大(0.2<β值<0.5;这些位点主要对应于North/South Shelf和North/South Shore区域;图27)。此外,当检查HOTAIR基因组区域(染色体12:54,351,994至54,373,040;图28A)各组之间的甲基化模式时,有趣的是,观察到尽管培养时间(2天和7天)和葡萄糖浓度(NG和HG)不同,但所有组的DNA甲基化模式都保持稳定。然而,值得注意的是,尽管没有统计学显著性,但与各自的NG对照组相比,用HG刺激2天和7天的HREC显示出HOTAIR启动子中DNA甲基化强度降低的轻微趋势(图28B)。然而,这些结果可能暗示高血糖应激期间HREC中DNA甲基化标记的稳定表观遗传性质(61)。
DNA甲基转移酶的阻断差异调节HOTAIR及其一些靶标的表达
然后,我们想研究全基因组DNA甲基化对HOTAIR及其下游靶标的表达的因果关系。因此,在NG或HG培养前,我们用DNA去甲基化剂(5-氮杂-2'-脱氧胞苷(5-aza-dC))预处理HREC。5-aza-dC施用后,与HG对照组相比,DNMT1、DNMT3A和DNMT3B的RNA水平分别降低了~69%、~58%和~69%(p<0.0001;图29A-C)。伴随着经5-aza-dC处理的HREC中DNMTs的表达显著减少,我们还观察到HOTAIR、ET-1、CTCF、细胞色素B、MCP-1、IL-1β、HOXD3和HOXD10转录物的显著升高,而观察到ANGPTL4、P300和PARP1表达没有显著差异(图29D和29E,图30)。然而,有趣的是,全抑制DNMTs的表达显著防止葡萄糖诱导的VEGF-A RNA表达的增加(p<0.0001;图30B),这与之前其他人记录的观察结果一致(74,75)。
为了进一步证实5-aza-dC实验的结果,我们用siRNA介导的方法特异性地沉默了DNMT1(一种组成型表达的DNMT)。在施用siDNMT1和HG后,DNMT1RNA水平降低~71%(p<0.0001;图31A),DNMT3A和DNMT3B也表现出转录物表达分别显著降低~43%(p=0.0005;图31B)和~51%(p<0.0001;图31C)。同时,相对于SCR HG对照组,HG培养的细胞中DNMT1沉默后,观察到HOTAIR、ET-1、CTCF、细胞色素B、PARP1、IL-1β、HOXD3和HOXD10的RNA表达显著增加(图31D和31E,图32)。虽然HG条件下沉默后,观察到ANGPTL4、P300和MCP-1的转录物没有显著差异,但在经siDNMT1处理的用HG培养的HREC中VEGF-A的转录物仍然显著减少(p<0.0001;图32B),证实了我们5-aza-dC实验中的观察。事实上,有可能根据基因组的位置,DNA甲基化的抑制能够对具有不同程度CpG密度的远端或基因内调控元件产生不同的甲基化作用,从而决定了对基因表达的调控(76)。尽管如此,我们的结果表明,在高血糖环境中DNA甲基化对HOTAIR及其靶标分子的调控起着关键作用。
表1.用于所有人特异性基因的qPCR引物
Figure BDA0004108423440000721
Figure BDA0004108423440000731
表2.所有鼠特异性基因的qPCR引物。
Figure BDA0004108423440000732
Figure BDA0004108423440000741
表3.HOTAIR的具体微阵列读数。
Figure BDA0004108423440000742
Figure BDA0004108423440000751
实施例2
本发明公开了一种新型的基于lncRNA的板(panel)以准确地监测糖尿病并发症的进展。目前,还没有建立用于糖尿病及其并发症的基于lncRNA的诊断板。患者通常很难接触到拥有多模态视网膜成像工具的眼科专家,因此,有了本文所述的板,检查患者血清中的这些标记物对患者来说将更有效率(这些标记物能够在患者提供年度血液检查时进行分析)。
方法
临床样本收集
西部研究伦理委员会和西安大略大学劳森健康研究所(London,ON,CAN)批准了本研究的临床部分。在采集标本前向患者提供了知情同意书,所有的样本都是按照《赫尔辛基宣言》处理的。血清和未稀释的玻璃体液(VH)都是由经验丰富的玻璃体视网膜外科医生从接受平面玻璃体切除术的患者收集的。两种样本都被分为两组:对照组和增殖性糖尿病视网膜病变(PDR)。PDR组由被诊断为DR晚期的患者组成(PDR;n=11;平均年龄±SD=60.7±10.72岁;10名男性和1名女性),而对照组由以前没有PDR病史且被诊断为特发性黄斑孔或单独的非糖尿病眼病的患者组成(n=10;平均年龄±SD=69.2±8.87岁;2名男性和8名女性)。PDR被定义为视网膜上的盘或其他部位出现的新生血管或纤维增生。如前所述(27,56),使用TRIzol试剂(Invitrogen)和血清RNA提取试剂盒(Bio Basic Inc.,Markham,ON,CAN)按照制造商的协议从500μL的VH样本和200μL的血清样本中提取总RNA。转录为cDNA后,用RT-qPCR来评估这些样品中HOTAIR的表达。
多lncRNA PCR板的开发
开发定制的人lncRNA引物(表4),随后将其等分并冻干到96孔的塑料qPCR板中。冻干后,定制的qPCR板在使用前被储存在-20℃。lncRNA PCR板中的单一板(由10个孔组成)检查9个不同的lncRNA(MALAT1、HOTAIR、H19、MEG3、ANRIL、MIAT、WISPER、ZFAS1和HULC)和一个管家基因(β-actin)。合成的cDNA(按照上述RNA分离和RT-qPCR方案)被稀释并与SYBR-绿色反应混合物组合,然后等分到含有预先等分的PCR板的96孔PCR板中。然后将该板插入LightCycler 96系统中进行扩增。
结果
HG培养的HREC在48小时表现出lncRNA的差异表达。
使用我们高度建立的细胞培养模型(图33)和RT-qPCR,我们从我们的阵列中确认了暴露于25mM(HG)或5mM(NG)葡萄糖48小时的HREC中ANRIL、H19、HOTAIR、HULC、MALAT1、MEG3、MIAT、WISPER和ZFAS1的lncRNA表达(图34)。
此外,我们还想确定所选的lncRNAs是否能在人DR中被检测到。因此,我们从接受玻璃体切除术的非糖尿病患者和糖尿病患者获得玻璃体液和血清样本(通过与眼科医生合作),并使用我们定制的基于qPCR的面板直接测量HOTAIR、MALAT1、H19、WISPER、ZFAS1、HULC、MEG3、MIAT和ANRIL的RNA水平。与我们在内皮细胞中观察到的趋势相似,我们发现与非PDR患者相比,PDR患者的玻璃体和血清中lncRNA差异表达——进一步证实了lncRNA在人层面的生物相关性。
患者的血清中lncRNA的差异表达。
如图38所示,PDR与HOTAIR(图38A)、ANRIL(图38B)、H19(图38C)、HULC(图38D)、MALAT1(图38E)、WISPER(图38H)和ZFAS1(图38I)的血清表达之间有显著的关系。虽然我们没有发现PDR与MEG3(图38F)或MIAT(图38G)的血清表达之间有显著的的关系,但我们预计样本量的增加可能有助于提高这种关系的显著性。
患者的玻璃体液中lncRNA的差异表达。
如图39所示,PDR与HOTAIR(图39A)、ANRIL(图39B)、MALAT1(图39D)、MIAT(图39F)、WISPER(图39G)、ZFAS1(图39H)和H19(图39I)的玻璃体表达之间有显著的关系。虽然我们没有发现PDR与HULC(图39C)或MEG3(图39E)之间的显著关系,但我们预计样本量的增加可能有助于提高这种关系的显著性。
血清和玻璃体样本之间的皮尔逊相关分析。
当比较血清和玻璃体样本时,观察到HOTAIR(图40A)、ANRIL(图40B)、H19(图40C)、MALAT1(图40E)、WISPER(图40H)和ZFAS1(图40I)有显著相关性,这表明这些lncRNA的表达能够从PDR患者的血清和玻璃体得到反映。尽管我们没有发现HULC(图40D)、MEG3(图40F)和MIAT(图40G)的血清和玻璃体浓度之间的显著相关性,包括更大的样本量可能会进一步帮助确认这些标记物和样本类型之间的关系。
表4:用于lncRNA阵列的人lncRNA qPCR引物。
Figure BDA0004108423440000771
表5-非糖尿病患者(C)和患有增殖性糖尿病视网膜病变的糖尿病患者(P)的血清分析。个体分析物的灵敏度和特异性是以任意的截止值(cut-off value)来确定的。正如这些数据所证明的,这种方法可以作为一种相对非侵入性的方法,用于筛查糖尿病视网膜病变和其他可能与糖尿病相关的终末器官损伤。
Figure BDA0004108423440000781
表6–关于我们实验中使用的SMARTpool溶液(市售)中靶向人HOTAIR(上)和鼠Hotair(下)的siRNA的分子量和序列的详细信息。
Figure BDA0004108423440000782
Figure BDA0004108423440000791
表7-由我们设计的4个定制的siHOTAIR序列的详细信息。寡核苷酸被转化为2’-羟基,退火,和脱盐的双链。SB=定制设计的。
Figure BDA0004108423440000792
Figure BDA0004108423440000801
实施例3
前言:
鉴于本发明所记载的结果,我们试图识别对HOTAIR表达及其下游靶标有抑制作用的化合物,这些化合物与糖尿病视网膜病变和本发明所概述的其他情况有关。
实验方法:
我们的实验采用了以下方法:
1)表观遗传药物文库筛选以识别抑制HOTAIR表达的化合物,以及
2)对现有化合物进行化学调控,
对于第一方法,进行小分子的表观遗传药物文库筛选,以识别在上述情况下能够抑制HOTAIR及其致病能力的新型药物化合物。
对于第二方法,我们已经识别了一些能够降低HOTAIR表达和其下游靶标的表观遗传化合物(DZNep和5-aza-dC)。因此,我们将这些化合物作为先导化合物,并对其进行化学调控,以识别能够被用于在糖尿病诱导的血管化背景下阻断HOTAIR的潜在的新的、无毒的、靶向性更好的化合物。
3)使用新识别的药物化合物进行功能评估。
第一和第二方法的化合物被用来进行各种细胞实验,这些实验涉及用不同水平的葡萄糖和适当浓度的上述方法1和2中识别的新化合物处理内皮细胞。在对毒性进行分析后,进一步评估化合物对HOTAIR表达和下游机制的抑制作用。为了确定具体的生物学意义,我们通过血管生成试验进行功能评估。
这些实验的数据将确定感兴趣的特定化合物,并在临床前模型中进一步测试。
实施例4
材料和方法
AAV-siRNA的制备:将靶向鼠Hotair的定制双链siRNA序列(反义链=UUUAAAAAUAAAUUGGAG(SEQ ID NO:119);有义链=CCAAUUAUUUAAAA(SEQ ID NO:120)逆转录成DNA序列,随后克隆到含有eGFP(增强型绿色荧光蛋白)的AAV2载体中,该载体由AppliedBiological Materials Inc.用专利方法生产(ABM;Richmond,British Columbia,Canada;通用载体图见图35))。
使用qPCR AAV滴度试剂盒(G931)将病毒滴度确定为每毫升的基因组拷贝(gc)(1012gc/mL),并使用ABM的DNA测序确认序列(见图36)。
动物:
与siRNA实验类似,雄性小鼠(C57/BL6J背景;21.5±3.5g;8周龄)(Charles RiverLaboratories,Wilmington,MA,USA)被用于基于AAV的实验,并随机分为对照组和糖尿病组(n=4/组)。链脲霉素(STZ)被用来生成1型糖尿病的动物模型。当小鼠准备好进行实验时,单剂量的AAV(1μL),在PBS中的滴度为1x 1012gc/mL,被玻璃体内注射到有或没有糖尿病的小鼠(n=4)的左眼。而右眼接受PBS的假注射(n=4)用于比较。注射后,所有小鼠被监测1个月,然后安乐死以进行后续的视网膜组织提取和RT-qPCR分析。
结果
与用假对照组处理的糖尿病小鼠的视网膜组织的Hotair水平相比(仅PBS;图37A),AAV-siHOTAIR的单次玻璃体内施用能够使糖尿病小鼠1个月时的视网膜Hotair RNA表达减少~97.3%。在一次性注射AAV-siHOTAIR后1个月,观察到糖尿病小鼠的视网膜组织中Angptl4(图37B)和Vegfa(图37C)表达也出现下降趋势。
实施例5
材料和方法
来自平面玻璃体切除术前的人患者的未稀释的血清样本被收集在BD金顶(gold-top)血清分离管中,这些血清样本。血清样本被提交到研究实验室,在那里使用TRIzol试剂(Invitrogen)和血清RNA提取试剂盒(Bio Basic Inc.,Markham,ON,CAN)按照制造商的方案从200μL的血清样本中提取总RNA。用RT-qPCR评估9个特异性lncRNA(ANRIL、H19、HOTAIR、HULC、MALAT1、MEG3、MIAT、WISPER和ZFAS1)的表达水平,研究技术人员对样本类型(即对照组与糖尿病视网膜病变)一无所知。样本被分为两组:对照组(‘C’)和糖尿病视网膜病变组(‘P’;DR)。‘P’组由被诊断为DR的不同阶段的糖尿病患者组成(表示为:‘0’=无视网膜病变的糖尿病患者,‘1’=非增殖性DR[NPDR]的糖尿病患者,以及‘2’=增殖性DR[PDR]的糖尿病患者)(n=38;平均年龄±SD=62.87±12.49岁;32名男性和6名女性),而对照组由以前没有DR病史且被诊断为特发性黄斑孔或单独的非糖尿病眼病的非糖尿病患者组成(n=4;平均年龄±SD=65.25±12.04岁;1名男性和3名女性)。PDR被定义为视网膜上的盘或其他部位出现新生血管或纤维增生。
统计学:
使用GraphPad Prism 7(La Jolla,CA,USA)和Microsoft Excel(Washington,USA)评估各组之间的统计学显著性。如果p值小于0.05,则认为数据具有统计学显著性。临床样本(非正态分布)的统计学显著性使用曼-惠特尼U检验(当比较两个条件时)或克鲁斯卡尔-沃利斯(Kruskal-Wallis)单因素方差分析(用于多组比较)确定。
结果
如图42中的箱线图(box and whisker plots)所示,与非糖尿病患者(无DR;‘C’组)相比,糖尿病患者(有DR的不同阶段;‘P’组)的血清中观察到ANRIL、H19、HOTAIR、HULC、MALAT1、MIAT、WISPER和ZFAS1的lncRNA表达显著增加。与对照组患者相比,虽然没有显著性,但糖尿病患者的MEG3lncRNA水平也显示出增加的趋势(p=0.063)。此外,从‘C’组和‘P’组的患者收集肌酸酐和血红蛋白A1c数据点,并将这些数据点与每个lncRNA表达值进行比较。lncRNA表达谱与肌酸酐或血红蛋白A1c水平之间没有显示出显著的相关性(数据未显示)。
‘P’组被进一步分层为不同的子组,其中‘0’表示糖尿病且无DR患者,‘1’表示糖尿病且NPDR患者,‘2’表示糖尿病且PDR患者。如图43所示,与对照组的lncRNA表达谱相比,9个lncRNA的平均表达水平在所有‘P’子组(‘0’、‘1’和‘2’)中普遍增加。此外,将每个病人亚组的lncRNA表达水平与对照组的lncRNA表达水平进行比较。特别是,比较对照组和‘0’组之间时,只观察到lncRNA H19的显著性,而其余8个lncRNA没有表现出统计学显著性(表8)。当对照组的lncRNA与亚组‘1’(患有NPDR的糖尿病患者)的lncRNA进行比较时,观察到所有lncRNA都有显著性。此外,比较对照组和组‘2’(患有PDR的糖尿病患者)之间的lncRNA表达值,显示ANRIL、H19、HOTAIR、HULC、MALAT1、MIAT和WISPER有统计学显著性,而MEG3和ZFAS1没有显示出显著性。总之,结果表明,这9个lncRNA能够作为DR的生物标记物。
根据ROC曲线分析(表9),曲线下面积(AUC)表明,感兴趣的lncRNA在区分糖尿病患者亚组(糖尿病、NPDR和PDR)和对照组非糖尿病患者方面具有良好的诊断价值。具体来说,使用AUC,对照组患者和无DR的糖尿病患者之间的比较显示出所有9个lncRNA的显著差异,其中HULC的AUC最高(AUC=0.85,p<0.001),9个lncRNA中有8个的AUC值大于0.7(除了H19;AUC=0.68)。此外,当分析对照组患者和NPDR患者(组‘’1)的AUC值时,所有9个lncRNA都表现出统计学显著性,9个lncRNA中有6个的AUC值在0.8到0.89之间,除了ANRIL(AUC=0.90,p<0.001)、MALAT1(AUC=0.97,p<0.001)和ZFAS1(AUC=0.94,p<0.001)。此外,对照组患者和PDR患者(组‘2’)之间的AUC值比较显示出所有的lncRNA标记物都有显著性,9个lncRNA中有7个的AUC值大于0.9,除了HOTAIR(AUC=0.89,p<0.001)和ZFAS1(AUC=0.83,p<0.001)。这些结果表明,所研究的9个lncRNA能够被作为区分非糖尿病和糖尿病DR患者的预后工具。这些lncRNA也可以用于区分不同阶段的DR(轻度NPDR到严重PDR)和无DR的糖尿病患者。
表8-对照组的lncRNA表达与每个‘P’子组(‘0’、‘1’或‘2’)的lncRNA表达的P值比较。
Figure BDA0004108423440000831
图例:‘0’=无DR的糖尿病患者,‘1’=非增殖性DR的糖尿病患者,以及‘2’=增殖性DR的糖尿病患者。
表9-对照组患者和每个‘P’子组(‘0’、‘1’或‘2’)之间lncRNA表达的曲线下面积(AUC)值。
Figure BDA0004108423440000841
图例:‘0’=无DR的糖尿病患者,‘1’=非增殖性DR的糖尿病患者,以及‘2’=增殖性DR的糖尿病患者。“A”:ANRIL;“H”:HOTAIR;“M”:MALAT1;“W”:WISPER;“Z”:ZFAS1
参考文献
1.Cho,N.H.,Shaw,J.E.,Karuranga,S.,Huang,Y.,da Rocha Fernandes,J.D.,Ohlrogge,A.W.,&Malanda,B.(2018).IDF Diabetes Atlas:Global estimates ofdiabetes prevalence for 2017and projections for 2045.Diabetes Research andClinical Practice,138,271–281.http://doi.org/10.1016/j.diabres.2018.02.023
2.Biswas,S.,&Chakrabarti,S.(2017).Pathogenetic Mechanisms in DiabeticRetinopathy:From Molecules to Cells to Tissues.In Mechanisms of VascularDefects in Diabetes Mellitus(pp.209–247).http://doi.org/10.1007/978-3-319-60324-7_9
3.Nentwich,M.M.(2015).Diabetic retinopathy-ocular complications ofdiabetes mellitus.World Journal of Diabetes,6(3),489.http://doi.org/10.4239/wjd.v6.i3.489
4.Garg,S.,&Davis,R.M.(2009).Diabetic retinopathy screeningupdate.Clinical Diabetes.http://doi.org/10.2337/diaclin.27.4.140
5.Arroyo,A.G.,&Iruela-Arispe,M.L.(2010).Extracellular matrix,inflammation,and the angiogenic response.Cardiovascular Research.http://doi.org/10.1093/cvr/cvq049
6.Grant,M.B.,Afzal,A.,Spoerri,P.,Pan,H.,Shaw,L.C.,&Mames,R.N.(2004).The role of growth factors in the pathogenesis of diabeticretinopathy.Expert Opinion on Investigational Drugs.http://doi.org/10.1517/13543784.13.10.1275
7.Levy,A.P.,Levy,N.S.,Wegner,S.,&Goldberg,M.A.(1995).Transcriptionalregulation of the rat vascular endothelial growth factor gene byhypoxia.Journal of Biological Chemistry,270(22),13333–13340.http://doi.org/10.1074/jbc.270.22.13333
8.Wang,Y.,Zang,Q.S.,Liu,Z.,Wu,Q.,Maass,D.,Dulan,G.,…Nwariaku,F.E.(2011).Regulation of vegf-induced endothelial cell migration by mitochondrialreactive oxygen species.American Journal of Physiology-Cell Physiology,301(3).http://doi.org/10.1152/ajpcell.00322.2010
9.Okamoto,T.,Yamagishi,S.ichi,Inagaki,Y.,Amano,S.,Koga,K.,Abe,R.,…Makita,Z.(2002).Angiogenesis induced by advanced glycation end products andits prevention by cerivastatin.The FASEB Journal:Official Publication of theFederation of American Societies for Experimental Biology,16(14),1928–1930.http://doi.org/10.1096/fj.02-0030fje
10.Angelo,L.S.,&Kurzrock,R.(2007).Vascular endothelial growth factorand its relationship to inflammatory mediators.Clinical CancerResearch.http://doi.org/10.1158/1078-0432.CCR-06-2416
11.Carmeliet,P.,&Jain,R.K.(2011).Molecular mechanisms and clinicalapplications of angiogenesis.Nature.http://doi.org/10.1038/nature10144
12.Turunen,M.P.,Lehtola,T.,Heinonen,S.E.,Assefa,G.S.,Korpisalo,P.,Girnary,R.,…
Figure BDA0004108423440000851
S.(2009).Efficient regulation of VEGF expression bypromoter-targeted lentiviral shRNAs based on epigenetic mechanism a novelexample of epigenetherapy.Circulation Research,105(6),604–609.http://doi.org/10.1161/CIRCRESAHA.109.200774
13.Van Wijngaarden,P.,Coster,D.J.,&Williams,K.A.(2005).Inhibitors ofocular neovascularization:Promises and potential problems.Journal of theAmerican Medical Association.http://doi.org/10.1001/jama.293.12.1509
14.Falavarjani,K.G.,&Nguyen,Q.D.(2013).Adverse events andcomplications associated with intravitreal injection of anti-VEGF agents:Areview of literature.Eye(Basingstoke).http://doi.org/10.1038/eye.2013.107
15.Duh,E.J.,Sun,J.K.,&Stitt,A.W.(2017).Diabetic retinopathy:currentunderstanding,mechanisms,and treatment strategies.JCI Insight.http://doi.org/10.1172/jci.insight.93751
16.Bouckenheimer,J.,Assou,S.,Riquier,S.,Hou,C.,Philippe,N.,Sansac,C.,…De Vos,J.(2016).Long non-coding RNAs in human early embryonicdevelopment and their potential in ART.Human Reproduction Update,23(1),19–40.http://doi.org/10.1093/humupd/dmw035
17.Prensner,J.R.,&Chinnaiyan,A.M.(2011).The emergence of lncRNAs incancer biology.Cancer Discovery.http://doi.org/10.1158/2159-8290.CD-11-0209
18.Wang,D.Q.,Fu,P.,Yao,C.,Zhu,L.S.,Hou,T.Y.,Chen,J.G.,…Zhu,L.Q.(2018).Long Non-coding RNAs,Novel Culprits,or Bodyguards in NeurodegenerativeDiseases.Molecular Therapy-Nucleic Acids,10,269–276.http://doi.org/10.1016/j.omtn.2017.12.011
19.Rinn,J.L.,Kertesz,M.,Wang,J.K.,Squazzo,S.L.,Xu,X.,Brugmann,S.A.,…Chang,H.Y.(2007).Functional Demarcation of Active and Silent ChromatinDomains in Human HOX Loci by Noncoding RNAs.Cell,129(7),1311–1323.http://doi.org/10.1016/j.cell.2007.05.022
20.Gupta,N.,Mansoor,S.,Sharma,A.,Sapkal,A.,Sheth,J.,Falatoonzadeh,P.,…Kenney,M.(2013).Diabetic Retinopathy and VEGF.The Open OphthalmologyJournal,7(1),4–10.http://doi.org/10.2174/1874364101307010004
21.Lam,H.-C.,Lee,J.-K.,Lu,C.-C.,Chu,C.-H.,Chuang,M.-J.,&Wang,M.-C.(2005).Role of Endothelin in Diabetic Retinopathy.Current VascularPharmacology,1(3),243–250.http://doi.org/10.2174/1570161033476600
22.Biswas,S.,Feng,B.,Thomas,A.,Chen,S.,Aref-Eshghi,E.,Sadikovic,B.,&Chakrabarti,S.(2018).Endothelin-1 regulation is entangled in a complex web ofepigenetic mechanisms in diabetes.Physiological Research,67,S115–S125.http://doi.org/10.33549/physiolres.933836
23.Babapoor-Farrokhran,S.,Jee,K.,Puchner,B.,Hassan,S.J.,Xin,X.,Rodrigues,M.,…Sodhi,A.(2015).Angiopoietin-like 4 is a potent angiogenicfactor and a novel therapeutic target for patients with proliferativediabetic retinopathy.Proceedings of the National Academy of Sciences of theUnited States of America,112(23),E3030–E3039.http://doi.org/10.1073/pnas.1423765112
24.Khaliq,A.,Foreman,D.,Ahmed,A.,Weich,H.,Gregor,Z.,McLeod,D.,&Boulton,M.(1998).Increased expression of placenta growth factor inproliferative diabetic retinopathy.Laboratory Investigation,78(1),109–116.
25.Dinarello,C.A.(2011).Interleukin-1 in the pathogenesis andtreatment of inflammatory diseases.Blood,117(14),3720–3732.http://doi.org/10.1182/blood-2010-07-273417
26.Carmi,Y.,Dotan,S.,Rider,P.,Kaplanov,I.,White,M.R.,Baron,R.,…Voronov,E.(2013).The Role of IL-1βin the Early Tumor Cell–Induced AngiogenicResponse.The Journal of Immunology,190(7),3500–3509.http://doi.org/10.4049/jimmunol.1202769
27.Biswas,S.,Thomas,A.A.,Chen,S.,Aref-Eshghi,E.,Feng,B.,Gonder,J.,…Chakrabarti,S.(2018).MALAT1:An Epigenetic Regulator of Inflammation inDiabetic Retinopathy.Scientific Reports,8(1).http://doi.org/10.1038/s41598-018-24907-w
28.Zhou,J.,Wang,S.,&Xia,X.(2012).Role of intravitreal inflammatorycytokines and angiogenic factors in proliferative diabeticretinopathy.Current Eye Research,37(5),416–420.http://doi.org/10.3109/02713683.2012.661114
29.Kowluru,R.A.,&Odenbach,S.(2004).Role of interleukin-1βin thepathogenesis of diabetic retinopathy.British Journal of Ophthalmology,88(10),1343–1347.http://doi.org/10.1136/bjo.2003.038133
30.Wang,X.,Wang,G.,&Wang,Y.(2009).Intravitreous Vascular EndothelialGrowth Factor and Hypoxia-Inducible Factor 1a in Patients With ProliferativeDiabeticRetinopathy.American Journal of Ophthalmology,148(6),883–889.http://doi.org/10.1016/j.ajo.2009.07.007
31.Obrosova,I.G.,Li,F.,Abatan,O.I.,Forsell,M.A.,Komjáti,K.,Pacher,P.,…Stevens,M.J.(2004).Role of Poly(ADP-Ribose)Polymerase Activation inDiabetic Neuropathy.Diabetes,53(3),711–720.http://doi.org/10.2337/diabetes.53.3.711
32.Mishra,M.,&Kowluru,R.A.(2017).Role of PARP-1 as a noveltranscriptional regulator of MMP-9 in diabetic retinopathy.Biochimica etBiophysica Acta-Molecular Basis of Disease,1863(7),1761–1769.http://doi.org/10.1016/j.bbadis.2017.04.024
33.Liu,J.,Chen,S.,Biswas,S.,Nagrani,N.,Chu,Y.,Chakrabarti,S.,&Feng,B.(2020).Glucose-induced oxidative stress and accelerated aging in endothelialcells are mediated by the depletion of mitochondrial SIRTs.PhysiologicalReports,8(3).http://doi.org/10.14814/phy2.14331
34.Al-Kafaji,G.,Sabry,M.A.,&Bakhiet,M.(2016).Increased expression ofmitochondrial DNA-encoded genes in human renal mesangial cells in response tohigh glucose-induced reactive oxygen species.Molecular Medicine Reports,13(2),1774–1780.http://doi.org/10.3892/mmr.2015.4732
35.Hirata,H.;Hinoda,Y.;Shahryari,V.;Deng,G.;Nakajima,K.;Tabatabai,Z.L.;Ishii,N.;Dahiya,R.Long noncoding RNA MALAT1 promotes aggressive renalcell carcinoma through Ezh2 and interacts with miR-205.Cancer Res.2015,75,1322–1331.
36.Ren,S.;Liu,Y.;Xu,W.;Sun,Y.;Lu,J.;Wang,F.;Wei,M.;Shen,J.;Hou,J.;Gao,X.;et al.Long noncoding RNA MALAT-1 is a new potential therapeutic targetfor castration resistant prostate cancer.J.Urol.2013,190,2278–2287.
37.Zhang,Q.S.;Wang,Z.H.;Zhang,J.L.;Duan,Y.L.;Li,G.F.;Zheng,D.L.Beta-asarone protects against MPTP-induced Parkinson’s disease via regulating longnon-coding RNA MALAT1 and inhibitingα-synuclein protein expression.Biomed.Pharmacother.2016,83,153–159.
38.Vausort,M.;Wagner,D.R.;Devaux,Y.Long noncoding RNAs in patientswith acute myocardial infarction.Circ.Res.2014,115,668–677.
39.Pachnis,V.;Belayew,A.;Tilghman,S.M.Locus unlinked to alpha-fetoprotein under the control of the murine raf and Rifgenes.Proc.Natl.Acad.Sci.USA 2006,81,5523–5527.
40.Micheletti,R.et al.,2017.The long noncoding RNA Wisper controlscardiac fibrosis and remodeling.Science Translational Medicine,9(395).
41.Askarian-Amiri ME,Crawford J,Franch JD,Smart CE,Smith MA,Clark MB,Ru K,M TM,Thompson ER,Lakhani SR,Vargas AC,Campbell IG,Brown MA,Dinger ME,Mattick JS.SNORD-host RNA Zfas1 is a regulator of mammary development and apotential marker for breast cancer.RNA.,2011.17:878-891.
42.Faltejskova-Vychytilova P,Hombach S,Mlcochova J,Kretz M,Svoboda M,Slaby O.Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer.Oncotarget.,2016.7:622-637.
43.Panzitt K,Tschernatsch MM,Guelly C,Moustafa T,Stradner M,Strohmaier HM,Buck CR,Denk H,Schroeder R,Trauner M,ZatloukalK.Characterization of HULC,a novel gene with striking up-regulation inhepatocellular carcinoma,as noncoding RNA.Gastroentology.,2007.132:330-342.
44.Ishii,N.;Ozaki,K.;Sato,H.;Mizuno,H.;Saito,S.;Takahashi,A.;Miyamoto,Y.;Ikegawa,S.;Kamatani,N.;Hori,M.;et al.Identification of a novelnon-coding RNA,MIAT,that confers risk of myocardialinfarction.J.Hum.Genet.2006,51,1087–1099.
45.Barry,G.;Briggs,J.A.;Vanichkina,D.P.;Poth,E.M.;Beveridge,N.J.;Ratnu,V.S.;Nayler,S.P.;Nones,K.;Hu,J.;Bredy,T.W.;et al.The long non-codingRNA Gomafu is acutely regulated in response to neuronal activation andinvolved in schizophrenia-associated alternative splicing.Mol.Psychiatry2014,19,486–494.
46.Zhang,H.Y.;Zheng,F.S.;Yang,W.;Lu,J.Bin.The long non-coding RNAMIAT regulates zinc finger E-box binding homeobox 1 expression by spongingmiR-150 and promoteing cell invasion in non-small-cell lung cancer.Gene 2017,633,61–65.
47.Blackshaw,S.;Harpavat,S.;Trimarchi,J.;Cai,L.;Huang,H.;Kuo,W.P.;Weber,G.;Lee,K.;Fraioli,R.E.;Cho,S.H.;et al.Genomic analysis of mouse retinaldevelopment.PLoS Biol.2004,2,1–21.
48.Aprea,J.;Prenninger,S.;Dori,M.;Ghosh,T.;Monasor,L.S.;Wessendorf,E.;Zocher,S.;Massalini,S.;Alexopoulou,D.;Lesche,M.;et al.Transcriptomesequencing during mouse brain development identifies long non-coding RNAsfunctionally involved in neurogenic commitment.EMBO J.2013,32,3145–3160.
49.Shen,Y.;Dong,L.F.;Zhou,R.M.;Yao,J.;Song,Y.C.;Yang,H.;Jiang,Q.;Yan,B.Role of long non-coding RNA MIAT in proliferation,apoptosis and migrationof lens epithelial cells:A clinical and in vitro study.J.Cell Mol.Med.2016,20,537–548.
50.Pasmant,E.;Laurendeau,I.;Héron,D.;Vidaud,M.;Vidaud,D.;Bièche,I.Characterization of a germ-line deletion,including the entire INK4/ARFlocus,in a melanoma-neural system tumor family:Identification of ANRIL,anantisense noncoding RNA whose expression coclusters with ARF.Cancer Res.2007,67,3963–3969.
51.Broadbent,H.M.;Peden,J.F.;Lorkowski,S.;Goel,A.;Ongen,H.;Green,F.;Clarke,R.;Collins,R.;Franzosi,M.G.;Tognoni,G.;et al.Susceptibility tocoronary artery disease and diabetes is encoded by distinct,tightly linkedSNPs in the ANRIL locus on chromosome 9p.Hum.Mol.Genet.2008,17,806–814.
52.Li,Z.;Yu,X.;Shen,J.ANRIL:A pivotal tumor suppressor long non-coding RNA in human cancers.Tumor Biol.2016,37,5657–5661.
53.da Rocha,S.T.;Edwards,C.A.;Ito,M.;Ogata,T.;Ferguson-Smith,A.C.Genomic imprinting at the mammalian Dlk1-Dio3 domain.Trends Genet.2008,24,306–316.
54.Zhou,Y.;Zhang,X.;Klibanski,A.MEG3 noncoding RNA:A tumor suppressor.J.Mol.Endocrinol.2012,48,1–16.
55.Ruiz,M.A.,Feng,B.,&Chakrabarti,S.(2015).Polycomb repressivecomplex 2 regulates MiR-200b in retinal endothelial cells:Potential relevancein diabetic retinopathy.PLoS ONE,10(4).http://doi.org/10.1371/journal.pone.0123987
56.Thomas,A.A.,Biswas,S.,Feng,B.,Chen,S.,Gonder,J.,&Chakrabarti,S.(2019).lncRNA H19 prevents endothelial–mesenchymal transition in diabeticretinopathy.Diabetologia,62(3),517–530.http://doi.org/10.1007/s00125-018-4797-6
57.Thomas,A.A.,Feng,B.,&Chakrabarti,S.(2017).ANRIL:A regulator ofVEGF in diabetic retinopathy.Investigative Ophthalmology and Visual Science,58(1),470–480.http://doi.org/10.1167/iovs.16-20569
58.Merchan,J.R.,Kovács,K.,Railsback,J.W.,Kurtoglu,M.,Jing,Y.,
Figure BDA0004108423440000901
Y.,…Lampidis,T.J.(2010).Antiangiogenic activity of 2-deoxy-D-glucose.PLoSONE,5(10).http://doi.org/10.1371/journal.pone.0013699
59.Kungulovski,G.,Nunna,S.,Thomas,M.,Zanger,U.M.,Reinhardt,R.,&Jeltsch,A.(2015).Targeted epigenome editing of an endogenous locus withchromatin modifiers is not stably maintained.Epigenetics and Chromatin,8(1).http://doi.org/10.1186/s13072-015-0002-z
60.Chen,S.,Apostolova,M.D.,Cherian,M.G.,&Chakrabarti,S.(2000).Interaction of endothelin-1 with vasoactive factors in mediating glucose-induced increased permeability in endothelial cells.Laboratory Investigation,80(8),1311–1321.http://doi.org/10.1038/labinvest.3780139
61.Aref-Eshghi E,Biswas S,Chen C,Sadikovic B,Chakrabarti S.(2020).Glucose-induced duration-dependent genome-wide DNA methylation changes inhuman endothelial cells.Am J Physiol Cell Physiol.Published online ahead ofprint,2020 May 27,1-20.doi:10.1152/ajpcell.00011.2020
62.Turchinovich,A.,Zoidl,G.,&Dermietzel,R.(2010).Non-viral siRNAdelivery into the mouse retina in vivo.BMC Ophthalmology,10(1).http://doi.org/10.1186/1471-2415-10-25
63.Clark,M.B.,Johnston,R.L.,Inostroza-Ponta,M.,Fox,A.H.,Fortini,E.,Moscato,P.,…Mattick,J.S.(2012).Genome-wide analysis of long noncoding RNAstability.Genome Research,22(5),885–898.http://doi.org/10.1101/gr.131037.111
64.Qazi,Y.,Maddula,S.,&Ambati,B.K.(2009).Mediators of ocularangiogenesis.Journal of Genetics.http://doi.org/10.1007/s12041-009-0068-0
65.Pacher,P.,&Szabó,C.(2005).Role of poly(ADP-ribose)polymerase-1activation in the pathogenesis of diabetic complications:Endothelialdysfunction,as a common underlying theme.Antioxidants and RedoxSignaling.http://doi.org/10.1089/ars.2005.7.1568
66.Li,L.,Liu,B.,Wapinski,O.L.,Tsai,M.C.,Qu,K.,Zhang,J.,…Chang,H.Y.(2013).Targeted Disruption of Hotair Leads to Homeotic Transformation andGene Derepression.Cell Reports,5(1),3–12.http://doi.org/10.1016/j.celrep.2013.09.003
67.Zheng,P.,Xiong,Q.,Wu,Y.,Chen,Y.,Chen,Z.,Fleming,J.,…Ge,F.(2015).Quantitative proteomics analysis reveals novel insights into mechanisms ofaction of long noncoding RNA hox transcript antisense intergenic RNA(HOTAIR)in HeLa cells.Molecular and Cellular Proteomics,14(6),1447–1463.http://doi.org/10.1074/mcp.M114.043984
68.Hoffmann,S.,Spitkovsky,D.,Radicella,J.P.,Epe,B.,&Wiesner,R.J.(2004).Reactive oxygen species derived from the mitochondrial respiratorychain are not responsible for the basal levels of oxidative basemodifications observed in nuclear DNA of mammalian cells.Free Radical Biologyand Medicine,36(6),765–773.http://doi.org/10.1016/j.freeradbiomed.2003.12.019
69.Tan,J.Z.,Yan,Y.,Wang,X.X.,Jiang,Y.,&Xu,H.E.(2014).EZH2:Biology,disease,and structure-based drug discovery.Acta Pharmacologica Sinica.http://doi.org/10.1038/aps.2013.161
70.Hajjari,M.,&Rahnama,S.(2017).HOTAIR Long Non-coding RNA:Characterizing the Locus Features by the In Silico Approaches.Genomics&Informatics,15(4),170–177.http://doi.org/10.5808/gi.2017.15.4.170
71.Cuddapah,S.,Jothi,R.,Schones,D.E.,Roh,T.Y.,Cui,K.,&Zhao,K.(2009).Global analysis of the insulator binding protein CTCF in chromatin barrierregions reveals demarcation of active and repressive domains.Genome Research,19(1),24–32.http://doi.org/10.1101/gr.082800.108
72.Ong,C.T.,&Corces,V.G.(2008).Modulation of CTCF Insulator Functionby Transcription of a Noncoding RNA.Developmental Cell.http://doi.org/10.1016/j.devcel.2008.09.013
73.Li,H.,An,J.,Wu,M.,Zheng,Q.,Gui,X.,Li,T.,…Lu,D.(2015).LncRNAHOTAIR promotes human liver cancer stem cell malignant growth throughdownregulation of SETD2.Oncotarget,6(29),27847–27864.http://doi.org/10.18632/ oncotarget.4443
74.Xie,M.Y.,Yang,Y.,Liu,P.,Luo,Y.,&Tang,S.B.(2019).5-aza-2’-deoxycytidine in the regulation of antioxidant enzymes in retinal endothelialcells and rat diabetic retina.International Journal of Ophthalmology,12(1),1–7.http://doi.org/10.18240/ijo.2019.01.01
75.Miki,K.,Shimizu,E.,Yano,S.,Tani,K.,&Sone,S.(2000).Demethylation by5-aza-2′-deoxycytidine(5-azadC)of p16INK4A gene results in downregulation ofvascular endothelial growth factor expression in human lung cancer celllines.Oncology Research,12(8),335–342.http://doi.org/10.3727/096504001108747783
76.Wan,J.,Oliver,V.F.,Wang,G.,Zhu,H.,Zack,D.J.,Merbs,S.L.,&Qian,J.(2015).Characterization of tissue-specific differential DNA methylationsuggests distinct modes of positive and negative gene expressionregulation.BMC Genomics,16(1).http://doi.org/10.1186/s12864-015-1271-4
通过图示和描述的实施方案,描述了目前考虑的制造和使用本发明的最佳模式。无需进一步阐述,相信本领域的普通技术人员可以根据本文的描述充分地利用本发明。本文引用的所有出版物都是通过引入而并入的。
尽管上述描述包含许多具体内容,但这些内容不应该被解释为限制本发明的范围,而只是提供本发明的一些现有实施方案的说明。

Claims (41)

1.一种识别具有增加的可能性进展到因糖尿病导致的终末器官损伤的对象的方法,其包含:a)测量来自对象的生物样本中长非编码RNA(lncRNA)的量;以及b)将所述lncRNA的量与对照参考值进行比较,以及当所述lncRNA的量相对于所述对照参考值改变时,识别所述对象具有增加的可能性进展到因糖尿病导致的终末器官损伤,其中所述lncRNA是HOTAIR、H19、WISPER、ZFAS1、HULC、ANRIL、MALAT1、MIAT和MEG3中的一个或多个。
2.根据权利要求1所述的方法,其中如果样本中lncRNA HOTAIR的量表明对象具有增加的可能性进展到因糖尿病导致的终末器官损伤,所述方法进一步包含治疗所述对象因糖尿病导致的终末器官损伤。
3.根据权利要求1所述的方法,其中如果样本中lncRNA HOTAIR的量表明对象具有增加的可能性进展到因糖尿病导致的终末器官损伤,所述方法进一步包含向所述对象施用治疗有效量的抑制lncRNA HOTAIR的至少一种生物活性的药剂。
4.根据权利要求1、2或3所述的方法,其中lncRNA的量是通过使用能够扩增lncRNA多核苷酸序列的至少一组寡核苷酸引物进行聚合酶链反应(PCR)来测量的,所述引物包括正向引物和反向引物,其中至少一组引物选自:当对象是人时,包含SEQ ID NO:3、77、79、81、83、85、87、89、91或93的序列的正向引物和包含SEQ ID NO:4、78、80、82、84、86、88、90、92或94的序列的相应反向引物,以及当对象是鼠时,包含SEQ ID NO:43的序列的正向引物和包括SEQ ID NO:44的序列的反向引物。
5.根据权利要求1至3中任一项所述的方法,其中所述生物样本是血清或玻璃体液。
6.一种诊断对象中糖尿病视网膜病变(DR)的方法,所述方法包含:a)测量来自所述对象的生物样本中长非编码RNA(lncRNA)的量;以及b)将所述lncRNA的量与对照参考值进行比较,当所述lncRNA的量相对于所述对照参考值发生变化时,诊断所述对象具有DR,其中所述lncRNA是HOTAIR、H19、WISPER、ZFAS1、HULC、ANRIL、MALAT1、MIAT和MEG3中的一个或多个。
7.根据权利要求6所述的方法,其中,当所述对象被诊断患有DR时,所述方法进一步包含治疗对象的DR。
8.根据权利要求6所述的方法,其中,当所述对象被诊断患有DR时,所述方法进一步包含向所述对象施用治疗有效量的抑制lncRNA HOTAIR的至少一种生物活性的药剂。
9.根据权利要求6至8中任一项所述的方法,其中所述lncRNA的量是通过使用能够扩增lncRNA多核苷酸序列的至少一组寡核苷酸引物进行聚合酶链反应(PCR)来测量的,所述引物包括正向引物和反向引物,其中至少一组引物选自:当对象是人时,包含SEQ ID NO:3、77、79、81、83、85、87、89、91或93的序列的正向引物和包含SEQ ID NO:4、78、80、82、84、86、88、90、92或94的序列的相应反向引物,以及当对象是鼠时,包含SEQ ID NO:43的序列的正向引物和包括SEQ ID NO:44的序列的反向引物。
10.根据权利要求6至9中任一项所述的方法,其中所述生物样本是血清或玻璃体液。
11.一种治疗病症的方法,所述方法包含:向有此需要的对象施用治疗有效量的至少一种抑制长非编码RNA HOTAIR的至少一种生物活性的药剂,其中所述病症是以下一种或多种:糖尿病视网膜病变(DR)、糖尿病肾病、糖尿病心肌病、糖尿病神经病变、增殖性玻璃体视网膜病变、新生血管性青光眼、缺血性视网膜病变、继发于视网膜静脉阻塞的视网膜病变、年龄相关性黄斑变性、眼内肿瘤、瘢痕形成和创伤愈合。
12.根据权利要求11所述的治疗病症的方法,其中所述病症是DR。
13.根据权利要求12所述的治疗病症的方法,其中所述DR是非增殖性DR或增殖性DR。
14.一种治疗对抗VEGF疗法没有反应的患者的方法,所述方法包含:向有此需要的对象施用治疗有效量的至少一种抑制长非编码RNA HOTAIR的至少一种生物活性的药剂。
15.一种防止葡萄糖诱导的氧化损伤的方法,所述方法包含:向有此需要的对象施用治疗有效量的至少一种抑制长非编码RNA HOTAIR的至少一种生物活性的药剂。
16.一种防止高血糖环境中表观遗传介质的诱导的方法,所述方法包含:向有此需要的对象施用治疗有效量的至少一种抑制长非编码RNA HOTAIR的表达的药剂。
17.根据权利要求16所述的方法,其中所述表观遗传介质是EZH2、SUZ12、EED、DNMT1、DNMT3A、DNMT3B、CTCF或P300。
18.根据权利要求3、8、11-17中任一项所述的方法,其中所述至少一种药剂是抗长非编码RNA HOTAIR抗体或抗体片段中的一种或多种。
19.根据权利要求3、8、11-17中任一项所述的方法,其中所述至少一种药剂是siRNA、piRNA、snRNA、miRNA、核酶或反义寡核苷酸中的一种或多种。
20.根据权利要求1至19中任一项所述的方法,其中所述对象是人。
21.根据权利要求3、8、11-17中任一项所述的方法,其中所述对象是人且所述至少一种药剂是siRNA,其中所述siRNA是SEQ ID NO:104、SEQ ID NO:106、SEQ ID NO:108、SEQ IDNO:110、N-187951-01、187951-02、187951-03、187951-04。
22.根据权利要求3、8、11-17中任一项所述的方法,其中所述至少一种药剂是DNMT抑制剂或组蛋白甲基化抑制剂。
23.根据权利要求22所述的方法,其中所述DNMT抑制剂是5-aza-dC或siDNMT1。
24.根据权利要求22所述的方法,其中所述组蛋白甲基化抑制剂是DZNep和/或siEZH2。
25.根据权利要求3、8、11-24中任一项所述的方法,其中所述至少一种药剂与另一种治疗剂组合施用,用于治疗与糖尿病诱导的新生血管相关的病症,例如抗VEGF药剂。
26.一种分离的siRNA,其选自SEQ ID NO:104、106、108或110。
27.抑制长非编码RNA HOTAIR的至少一种生物活性的至少一种药剂在治疗病症中的应用,其中所述病症是以下一种或多种:糖尿病视网膜病变、糖尿病肾病、糖尿病心肌病、糖尿病神经病变、增殖性玻璃体视网膜病变、新生血管性青光眼、缺血性视网膜病变、继发于视网膜静脉阻塞的视网膜病变、年龄相关性黄斑变性、瘢痕形成和创伤愈合。
28.根据权利要求27所述的应用,其中所述病症是糖尿病视网膜病变。
29.根据权利要求28所述的应用,其中所述糖尿病视网膜病变是非增殖性糖尿病视网膜病变或增殖性糖尿病视网膜病变。
30.抑制长非编码RNA HOTAIR的至少一种生物活性的至少一种药剂在治疗对抗VEGF疗法无效的病症中的应用。
31.抑制长非编码RNA HOTAIR的至少一种生物活性的至少一种药剂在防止葡萄糖诱导的氧化损伤中的应用。
32.抑制长非编码RNA HOTAIR的至少一种生物活性的至少一种药剂在防止高血糖环境中表观遗传介质的诱导中的应用。
33.根据权利要求32所述的应用,其中所述表观遗传介质是EZH2、SUZ12、EED、DNMT1、DNMT3A、DNMT3B、CTCF或P300。
34.根据权利要求27-33中任一项所述的应用,其中所述至少一种药剂是抗长非编码RNA HOTAIR抗体或抗体片段中的一种或多种。
35.根据权利要求27-33中任一项所述的应用,其中所述至少一种药剂是siRNA、piRNA、snRNA、miRNA、核酶或反义寡核苷酸中的一种或多种。
36.根据权利要求27-35中任一项所述的应用,其中所述对象是人。
37.根据权利要求35所述的应用,其中所述至少一种药剂是siRNA,其中所述siRNA是SEQ ID NO:104、SEQ ID NO:106、SEQ ID NO:108、SEQ ID NO:110、N-187951-01、187951-02、187951-03、187951-04。
38.根据权利要求27-33中任一项所述的应用,其中所述至少一种药剂是DNMT抑制剂或组蛋白甲基化抑制剂。
39.根据权利要求38所述的应用,其中所述DNMT抑制剂是5-aza-dC或siDNMT1。
40.根据权利要求38所述的应用,其中所述组蛋白甲基化抑制剂是DZNep和/或siEZH2。
41.根据权利要求27-40中任一项所述的应用,其中所述药剂与另一种治疗剂组合施用,用于治疗与糖尿病诱导的新生血管相关的病症,例如抗VEGF药剂。
CN202180054733.1A 2020-07-06 2021-07-06 使用长非编码rna作为靶标诊断和治疗慢性糖尿病并发症 Pending CN116133659A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063048389P 2020-07-06 2020-07-06
US63/048,389 2020-07-06
PCT/CA2021/050924 WO2022006667A1 (en) 2020-07-06 2021-07-06 Diagnosis and treatment of chronic diabetic complications using long non-coding rnas as targets

Publications (1)

Publication Number Publication Date
CN116133659A true CN116133659A (zh) 2023-05-16

Family

ID=79553402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180054733.1A Pending CN116133659A (zh) 2020-07-06 2021-07-06 使用长非编码rna作为靶标诊断和治疗慢性糖尿病并发症

Country Status (4)

Country Link
US (1) US20230250478A1 (zh)
CN (1) CN116133659A (zh)
CA (1) CA3188744A1 (zh)
WO (1) WO2022006667A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117286240A (zh) * 2022-09-30 2023-12-26 兰州大学第一医院 lncRNA m6A甲基化基序作为反复种植失败的诊断标志物及其应用

Also Published As

Publication number Publication date
US20230250478A1 (en) 2023-08-10
WO2022006667A1 (en) 2022-01-13
CA3188744A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
US9062351B2 (en) Diagnostic, prognostic and therapeutic uses of long non-coding RNAs for cancer and regenerative medicine
EP2999797B1 (en) Isoforms of gata6 and nkx2-1 as markers for diagnosis and therapy of cancer and as targets for anti-cancer therapy
US9127078B2 (en) Methods and compositions using splicing regulatory proteins involved in tumor suppression
JP2010510769A (ja) 食道癌の診断ならびに患者の生存の予後および改善のための方法および組成物
CN107083433B (zh) lncRNA在肝癌诊疗中的应用
TWI816712B (zh) 癌促進因子表現抑制劑的有效成分之篩選用試藥及其篩選方法、癌之預防或治療劑的有效成分之篩選用試藥及其篩選方法、癌促進因子表現抑制劑及癌之預防或治療劑
CN111630183A (zh) 透明细胞肾细胞癌生物标志物
WO2016152352A1 (ja) メラノーマ特異的バイオマーカー及びその利用
CN107586850B (zh) 非编码基因在肝癌诊疗中的应用
US20140228236A1 (en) Biomarkers, methods, and compositions for inhibiting a multi-cancer mesenchymal transition mechanism
Sun et al. Long noncoding RNA AI662270 promotes kidney fibrosis through enhancing METTL3‐mediated m6A modification of CTGF mRNA
US8841269B2 (en) Polynucleotides for use in treating and diagnosing cancers
CN107267616B (zh) 一种非编码基因生物标记物在肝癌中的应用
CN116133659A (zh) 使用长非编码rna作为靶标诊断和治疗慢性糖尿病并发症
WO2016089928A1 (en) Methods for treating and assessing tumor invasion and metastasis
CN108707672B (zh) Duxap8在肝细胞癌诊断和治疗中的应用
CN108192977B (zh) 一种与胃癌发生发展相关的分子标志物
CN107227362B (zh) 一种与肝癌相关的基因及其应用
Zhang et al. CircHIPK2 promotes proliferation of nasopharyngeal carcinoma by down-regulating HIPK2
KR102025005B1 (ko) 전암성 병변에서 조기 간암을 진단 및 예측할 수 있는 바이오 마커 및 이의용도
US10865415B2 (en) Prevention, diagnosis and treatment of cancer overexpressing GPR160
CN111378755A (zh) 一种肝癌诊断用lncRNA生物标志物及其应用
JPWO2008038832A1 (ja) 乳癌および卵巣癌の治療薬、検出方法ならびに検出用キット
JP2016518812A (ja) 線維症治療において有用な分子標的及び前記標的のインヒビター
Huang et al. RBM7 deficiency promotes breast cancer metastasis by coordinating MFGE8 splicing switch and NF-kB pathway

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40093667

Country of ref document: HK