CN116065054A - 一种形状记忆合金粉末及其同轴送粉激光增材制造方法 - Google Patents

一种形状记忆合金粉末及其同轴送粉激光增材制造方法 Download PDF

Info

Publication number
CN116065054A
CN116065054A CN202111275677.2A CN202111275677A CN116065054A CN 116065054 A CN116065054 A CN 116065054A CN 202111275677 A CN202111275677 A CN 202111275677A CN 116065054 A CN116065054 A CN 116065054A
Authority
CN
China
Prior art keywords
parts
powder
shape memory
memory alloy
laser additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111275677.2A
Other languages
English (en)
Inventor
刘玉国
田浩然
吕玮
张峰
李硕
李娜
李明
李玉宝
张连煜
黄灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Research Institute of Petroleum Engineering Shengli Co
Original Assignee
China Petroleum and Chemical Corp
Sinopec Research Institute of Petroleum Engineering Shengli Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Research Institute of Petroleum Engineering Shengli Co filed Critical China Petroleum and Chemical Corp
Priority to CN202111275677.2A priority Critical patent/CN116065054A/zh
Publication of CN116065054A publication Critical patent/CN116065054A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及激光增材制造技术领域,具体涉及一种形状记忆合金粉末及其同轴送粉激光增材制造方法。按质量份数计,包括以下组分:48~51份的Ni、30~35份的Ti、15~20份的Pt以及0.6~2.4份的TiN。采用本发明提供的合金粉末激光增材制造制备的样品没有裂纹、组织结构致密。

Description

一种形状记忆合金粉末及其同轴送粉激光增材制造方法
技术领域
本发明涉及激光增材制造技术领域,具体涉及一种形状记忆合金粉末及其同轴送粉激光增材制造方法。
背景技术
3D打印技术也被称为“增材制造技术”或是“快速成型技术”,自1987年以立体平版印刷技术模式实现商业化以来,已经有30年的历史。利用3D技术打印所产生的零件已广泛用于新产品的原型制造,以及通过传统制造技术无法实现的结构的制造。随着3D打印技术的发展,根据美国材料与试验协会(ASTM)的标准,将其分为7个工艺类别:材料挤压、材料喷射、薄板层压、黏结剂喷射、粉末床融化、定向能量沉积和光固化成型。3D打印技术的使用目前已经非常广泛,它正逐渐从一种原型方法转变为一种成熟的制造方法。由于材料的局限性、尺寸和成本问题,3D打印仍然无法取代大多数传统的制造方法。但是反过来,它却弥补了传统制造业生产的一些不足,可以制造出更加复杂和功能更加多样的新产品。3D打印技术应用的前景很大程度上依赖于新材料的开发。在过去的20年里,关于形状记忆材料的研究已经有很多,也被称之为“智能”材料。这些材料具有在适当的刺激下改变其形状或性质的能力。金属合金和聚合物是这些材料中最受欢迎的,并且已经引起了广泛的关注。
3D打印“智能”材料的发展推动3D打印技术达到了更高的水平,即4D打印。4D打印是3D打印和第四维度(即时间维度)的结合。这种技术允许打印的物体在适应环境的同时进行形状变化。这一突破性的技术主要是由于智能材料的快速发展和多材料打印的最新进展而发展起来的。虽然4D打印的前景在包装、医疗、建筑和汽车等许多应用领域被广泛看好,但不可否认的是,它仍然是一个非常原始的新技术,也面临着许多挑战和问题。
常用NiTi及CuZnAl记忆合金的马氏体相变起始温度MS通常不超过100℃,而航空航天、核电、石油工程中记忆合金智能支撑结构、紧固件、驱动件、夹紧机构的工作温度非常高,最高使用温度达600℃,因此常用记忆合金无法满足航空航天、核工业、石油钻探等极端温度环境条件对记忆合金的需求。高温记忆合金除了在航空航天、核工业、石油钻探等领域方面的应用,在火灾或过热情形的预警及自动防护系统中也有需求。
与传统的合金材料相比,形状记忆合金可成形性较差,制造形状复杂的结构在技术上很困难,经济上也很昂贵。增材制造用逐层堆积的方法来制造形状记忆合金能避开传统制造方法的一些问题。近年来针对形状记忆合金增材制造的研究包括激光增材制造、电子束增材制造和电弧增材制造等。其中激光增材制造的报道最多。形状记忆合金激光增材制造按照粉末添加方式不同,包括铺粉和送粉两种形式。铺粉激光增材制造国内外研究机构命名统一为:selective laser melting (SLM);送粉激光增材制造还没有统一,包括laser engineered net shaping (LENS), laser solid forming(LSF), direct metaldeposition , laser rapid manufacturing (LRM), (laser) direct energydeposition (DED, LDED)等。铺粉激光增材制造的特点主要是:粉末单一;制造精度高,后续加工处理相对简单;效率低、加工尺寸受铺粉缸限制。送粉激光增材制造特点主要是: 易实现多种材料制造,可制备梯度材料;零件尺寸不受铺粉装置限制;可用于快速修复零件;效率大大高于铺粉激光增材制造。
从形状记忆合金激光增材制造已有的报道可以看出,不管是送粉增材制造还是铺粉增材制造,都存在一些共性的问题:激光增材制造反复熔凝、反复热循环的过程,以及较大的温度梯度,使组织容易形成粗大柱状晶、不规则的第二相和产生热裂纹。事实上,目前仅有少数金属合金可以真正实现3D打印,而超过5000多种合金由于打印过程中的熔化和凝固动力学问题,和记忆合金一样,都容易形成粗大柱状晶和周期性裂缝,不适合3D打印。因此,这些金属的3D打印往往只能用于制备一些模型,不能实现规模化生产。针对这个问题,传统的思路是通过优化工艺参数来控制晶粒生长,减少或消除裂纹。但有些材料怎么优化都避免不了。
发明内容
本发明的目的是针对现有技术中的不足,提供一种形状记忆合金粉末及其同轴送粉激光增材制造方法。
本发明能够提高马氏体相变起始温度,并解决形状记忆合金激光增材制造工艺中容易产生裂纹,孔洞等缺陷的问题,用于制造航空航天、核电、石油工程等领域的夹紧机构。
其技术方案如下:
一种形状记忆合金粉末,按质量份数计,包括以下组分:
48~51份的Ni、30~35份的Ti、15~20份的Pt以及0.6~2.4份的TiN。
进一步的,按质量份数计,包括以下组分:
49~50份的Ni、31~33份的Ti、17~19份的Pt以及0.8~2.0份的TiN。
进一步的,所述Ni、Ti、Pt气雾化后一起形成微米级的球形合金粉末,平均粒径为30~180 微米。
进一步的,所述TiN为纳米级的粉末,平均粒径为50~200纳米。
更进一步的一种形状记忆合金同轴送粉激光增材制造方法,包括如下步骤:
(1)按比例称量合金粉末;
(2)将粉末混合后进行低能球磨;
(3)在干燥箱内160℃的温度干燥8小时;
(4)将钛合金表面清洁干净,用无水乙醇超声清洗;
(5)在高纯氩气保护下在钛合金基板上进行同轴送粉激光增材制造。
进一步的,所述步骤(2)具体包括:
卧式球磨机加酒精球磨4~5小时,球磨转速为150r/min。
进一步的,步骤(5)中所述激光增材制造参数为:
光斑直径3 mm~4 mm,激光功率1.5 kW~2 kW,扫描速度300 mm/min~400 mm/min,多道搭接率45-55%,送粉速率7-9 g/s。
本发明的有益效果是:
1、合金粉末在NiTi形状记忆合金的基础上,添加Pt元素,可以提高马氏体相变起始温度。
2、微量纳米TiNi主要起着形核剂的作用:激光增材制造反复熔凝、反复热循环的过程,以及较大的温度梯度,使组织容易形成不规则的第二相,而微量纳米TiNi可以在熔池里面起着非均匀形核的作用,提高形核率,从而使组织生成等轴细晶,避免粗大的晶粒和不规则的第二相。激光增材制造是快速冷却的过程,对形核剂与基体的晶格匹配要求没有铸造高,基于错配度理论等考虑选出的纳米TiN陶瓷颗粒作为形核剂是可以起到异质形核作用的。
3、Ni、Ti、Pt气雾化后一起形成的微米级球形合金粉末相对纳米TiNi陶瓷颗粒硬度较低,在优化的球磨参数下,TiN会被压入合金粉末的表面,从而形成纳米TiN陶瓷修饰球形合金粉的复合粉,并会尽可能避免团聚。激光增材制造过程,由于陶瓷颗粒量很少,且Marangoni 流有利于纳米陶瓷颗粒在熔池中均匀分布,即使纳米陶瓷颗粒会有团聚,也是非常小尺寸的。
4、采用本发明提供的合金粉末激光增材制造制备的样品没有裂纹、组织结构致密。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
实施例一:
步骤1,按质量份数计49份的Ni、30份的Ti、20份的Pt气雾化形成微米级球形合金粉末,加上0.8份的纳米TiN颗粒,在转速为150r/min卧式球磨机中加酒精球磨4.5 h,并在160℃条件下干燥8小时。
步骤2,将钛合金基板表面清洁干净,并用无水乙醇超声清洗。
步骤3,在高纯氩气保护下,以步骤1得到的材料在步骤2得到的基板上进行激光增材制造,参数为:光斑直径3mm,激光功率1.8 kW,熔覆速度350 mm/min,多道搭接率50%,送粉速率8g/s。
实施例二:
步骤1,按质量份数计50份的Ni、33份的Ti、17份的Pt气雾化形成微米级球形合金粉末,加上1.6份的纳米TiN颗粒,在转速为150r/min卧式球磨机中加酒精球磨5 h,并在160℃条件下干燥8小时。
步骤2,将钛合金基板表面清洁干净,并用无水乙醇超声清洗。
步骤3,在高纯氩气保护下,以步骤1得到的材料在步骤2得到的基板上进行激光增材制造,参数为:光斑直径4mm,激光功率2 kW,熔覆速度310 mm/min,多道搭接率50%,送粉速率8g/s。
对比例1
与示例1相比,仅是没有含TiN,其他条件均相同。
对比例2
与示例1相比,仅是TiN含量为3%,其他条件均相同。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权力要求限定。

Claims (7)

1.一种形状记忆合金粉末,其特征在于,按质量份数计,包括以下组分:
48~51份的Ni、30~35份的Ti、15~20份的Pt以及0.6~2.4份的TiN。
2.根据权利要求1所述的一种形状记忆合金粉末,其特征在于,按质量份数计,包括以下组分:
49~50份的Ni、31~33份的Ti、17~19份的Pt以及0.8~2.0份的TiN。
3.根据权利要求1或2所述的一种形状记忆合金粉末,其特征在于,所述Ni、Ti、Pt气雾化后一起形成微米级的球形合金粉末,平均粒径为30~180 微米。
4.根据权利要求3所述的一种形状记忆合金粉末,其特征在于,所述TiN为纳米级的粉末,平均粒径为50~200纳米。
5.一种形状记忆合金同轴送粉激光增材制造方法,其特征在于,包括如下步骤:
(1)按比例称量合金粉末;
(2)将粉末混合后进行低能球磨;
(3)在干燥箱内160℃的温度干燥8小时;
(4)将钛合金表面清洁干净,用无水乙醇超声清洗;
(5)在高纯氩气保护下在钛合金基板上进行同轴送粉激光增材制造。
6.根据权利要求5所述的一种形状记忆合金同轴送粉激光增材制造方法,其特征在于,所述步骤(2)具体包括:
卧式球磨机加酒精球磨4~5小时,球磨转速为150r/min。
7.根据权利要求5所述的一种形状记忆合金同轴送粉激光增材制造方法,其特征在于,步骤(5)中所述激光增材制造参数为:
光斑直径3 mm~4 mm,激光功率1.5 kW~2 kW,扫描速度300 mm/min~400 mm/min,多道搭接率45-55%,送粉速率7-9 g/s。
CN202111275677.2A 2021-10-29 2021-10-29 一种形状记忆合金粉末及其同轴送粉激光增材制造方法 Pending CN116065054A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111275677.2A CN116065054A (zh) 2021-10-29 2021-10-29 一种形状记忆合金粉末及其同轴送粉激光增材制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111275677.2A CN116065054A (zh) 2021-10-29 2021-10-29 一种形状记忆合金粉末及其同轴送粉激光增材制造方法

Publications (1)

Publication Number Publication Date
CN116065054A true CN116065054A (zh) 2023-05-05

Family

ID=86180673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111275677.2A Pending CN116065054A (zh) 2021-10-29 2021-10-29 一种形状记忆合金粉末及其同轴送粉激光增材制造方法

Country Status (1)

Country Link
CN (1) CN116065054A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109513943A (zh) * 2019-01-07 2019-03-26 华南理工大学 一种经纳米陶瓷颗粒修饰的3d打印铝合金粉末及制备方法
WO2019223083A1 (zh) * 2018-05-21 2019-11-28 江苏大学 激光增材制造用功能低损型形状记忆合金微纳粉芯丝材
CN113210626A (zh) * 2021-05-13 2021-08-06 江苏海宇机械有限公司 一种4d打印功能梯度钛镍形状记忆合金构件的方法
CN113512668A (zh) * 2021-04-23 2021-10-19 广东省科学院材料与加工研究所 一种含硼形状记忆合金及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019223083A1 (zh) * 2018-05-21 2019-11-28 江苏大学 激光增材制造用功能低损型形状记忆合金微纳粉芯丝材
CN109513943A (zh) * 2019-01-07 2019-03-26 华南理工大学 一种经纳米陶瓷颗粒修饰的3d打印铝合金粉末及制备方法
CN113512668A (zh) * 2021-04-23 2021-10-19 广东省科学院材料与加工研究所 一种含硼形状记忆合金及其制备方法
CN113210626A (zh) * 2021-05-13 2021-08-06 江苏海宇机械有限公司 一种4d打印功能梯度钛镍形状记忆合金构件的方法

Similar Documents

Publication Publication Date Title
Nie et al. Magnesium matrix composite reinforced by nanoparticles–a review
Aversa et al. A study of the microstructure and the mechanical properties of an AlSiNi alloy produced via selective laser melting
CN108330344B (zh) 一种3D打印7xxx铝合金及其制备方法
CN108620584B (zh) 全等轴晶金属构件的激光增材制造方法及其装置
Kobryn et al. The laser additive manufacture of Ti-6Al-4V
Gu et al. Laser additive manufacturing (AM): classification, processing philosophy, and metallurgical mechanisms
CN101899592B (zh) 一种原位合成任意形状NiTi形状记忆合金的方法
Zhou et al. A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding
CN110129640A (zh) 一种增材制造用7000系铝合金线材及其制备方法
CN111455216B (zh) 一种面向激光增材制造应用的类tc4钛合金
WO2016116562A1 (en) Method for additive manufacturing comprising freeze granulation allowing for flexible alloy design
CN103045914A (zh) 一种纳米碳化硅增强铝基复合材料的制备方法
CN110791686A (zh) 一种用于增材制造的铝合金粉末材料、制备方法及应用
CN111014669A (zh) 一种原位纳米TiB晶须增强钛基复合材料的制备方法
CN111659889A (zh) 一种高强度铝锰合金的3d打印工艺方法
Mosallanejad et al. In-situ alloying of a fine grained fully equiaxed Ti-based alloy via electron beam powder bed fusion additive manufacturing process
CN112695220A (zh) 一种激光选区熔化成形纳米TiB2增强铝基复合材料制备方法
CN111872386A (zh) 一种高强度铝镁合金的3d打印工艺方法
Cui et al. Additive Manufacturing of High Entropy Alloys--A Review
Othman et al. Effect of milling parameters on mechanical alloying of aluminum powders
WO2020150056A1 (en) Aluminum alloys
CN111673085A (zh) 一种高强度铝镁硅合金的3d打印工艺方法
CN109719292A (zh) 增材制造工艺及其粉末材料
Wu et al. Interfacial characterization and reaction mechanism of Ti/Al multi-material structure during laser powder bed fusion process
CN111659882A (zh) 一种用于3d打印的铝镁合金粉末及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination