CN116041070A - 一种高韧性硼铝复合材料 - Google Patents
一种高韧性硼铝复合材料 Download PDFInfo
- Publication number
- CN116041070A CN116041070A CN202211682823.8A CN202211682823A CN116041070A CN 116041070 A CN116041070 A CN 116041070A CN 202211682823 A CN202211682823 A CN 202211682823A CN 116041070 A CN116041070 A CN 116041070A
- Authority
- CN
- China
- Prior art keywords
- phase
- composite material
- sintering
- toughening
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/421—Boron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及一种高韧性硼铝复合材料,属于材料领域。断裂韧性的提高赋予了材料优异的抵抗裂纹扩展的能力,提升了材料的力学性能。本发明中,掺杂少量的增韧相是提高硼铝复合材料断裂韧性的关键,掺杂的第二相为掺杂氧化锆。这种具有低密度、高韧性、优异力学性能的硼铝复合材料可以作为一种潜在的装甲材料使用。
Description
技术领域
本发明涉及一种高韧性硼铝复合材料,属于材料领域。
背景技术
为适应现代高科技战争,提高装甲车辆生存能力的一项重要的被动防护技术—装甲防护日益受到重视。而传统的钢装甲已经不能满足现代战争的要求,必须研制出低密度、高防护能力的新型轻质防弹装甲。自20世纪70年代以来,随着材料技术的发展,由单一依靠均质钢装甲逐步向设计复合装甲结构发展方向已成为舰船装甲防护技术的主流。
目前轻型防护装甲的设计是提高其防护能力和尽量减轻自重,以提高装甲车辆的机动能力。由于陶瓷材料具有密度小,且具有比钢更高的硬度、抗压强度、耐热性、动态应力性能,而被广泛应用于轻型复合装甲的设计中。轻型复合装甲通常为多层结构,以陶瓷板为主体,配合其他复合材料。突破传统重型复合装甲结构设计,以高硬度陶瓷面板取代装甲钢面板,充分发挥陶瓷的高硬度和高抗压强度,可提高陶瓷复合装甲的抗弹性能。陶瓷作为装甲防护材料的主要优势是强度和硬度高、耐磨、密度小等,而易破碎、抗多发打击性能弱的劣势则在一定程度上限制了其应用。目前,防弹陶瓷主要朝着提高抗多发打击性能、减轻质量及降低成本这3个方面进行。其中,由于陶瓷材料面对的共性问题就是断裂韧性低,脆性大。因此防弹陶瓷强韧化一直是研究的热点方向。在目前主流的防弹陶瓷材料中,氧化铝基本上不存在塑性变形,低韧性会导致其很容易受到热和机械冲击载荷而发生破坏。碳化硼则由于其粉体颗粒表面具有的氧化层而表现出较高的烧结温度,难以实现材料的致密化。
特殊的晶体结构、电子结构、成键特征和B原子特性,使AlB12材料具有低密度、高熔点、高硬度、耐腐蚀、化学性质稳定、低逸出功、高中子捕获截面等优良性能,在导电级铝合金生产、固体燃料、高温热电材料、微电子化学传感器、辐射防护、复合材料、研磨材料、涡轮机、转子叶片、齿轮、半导体材料、电极材料和热点材料等领域具有一定的应用价值。但由于AlB12的断裂韧性较低,在外力破坏的过程中,材料往往难以抵抗裂纹的扩展而产生破坏,这在一定程度上限制了这类材料的应用。
发明内容
本发明的目的是为了解决AlB12固有的断裂韧性较低的问题,提供一种高韧性硼铝复合材料。该材料相比于传统的AlB12而言,在增韧相(氧化锆)带来的裂纹偏转增韧机制和氧化锆本身具有的相变增韧机制的共同作用下,材料的断裂韧性得到了显著地提高。
本发明的目的是通过下述技术方案实现的。
一种高韧性硼铝复合材料,基体材料为具有高硬度、高弹性模量、化学性质稳定的AlB12陶瓷相,增韧相为掺杂氧化锆。其中,增韧相含量为1-3wt%。
有益效果
本发明采用具有化学性质稳定的AlB12作为基体材料,有效地避免了颗粒表面氧化层的产生,保证了硼铝复合材料的在烧结过程中达到高致密度。
本发明采用具有高硬度、高弹性模量的AlB12陶瓷相作为基体材料,可以保证材料具有优异的防弹性能。
本发明采用掺杂氧化锆作为增韧相,通过掺杂氧化锆自身具备的马氏体相变增韧机制有效提高了复合材料的断裂韧性。
本发明采用掺杂氧化锆作为增韧相,利用第二相颗粒产生的裂纹偏转机制提高了复合材料的断裂韧性。
高断裂韧性令材料表现出良好的抵抗裂纹扩展的能力,同时由于基体相AlB12表现出的低密度、高硬度、高弹性模量,这种材料可以作为一种潜在的装甲材料。
附图说明
图1为高致密硼铝复合材料表面微观形貌;
图2为添加掺杂氧化锆前后,硼铝复合材料的硬度及断裂韧性。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:
将金属铝粉与硼粉按照摩尔比1:12称量,利用卧式球磨机混合,转速150r/min,混合20h。将混合后的粉体利用干压法成型,压力为15MPa,后经过冷等静压进一步提高素坯密度。将获得的素坯在1500℃下保温2h进行常压烧结,烧结期间采用氩气气氛进行保护。通过烧结成功制备出含有AlB12相的材料,将其破碎后过80目筛。将破碎后的粉体与掺杂氧化锆按照质量比99:1混合。其中掺杂氧化锆的制备方式如下:(1)将Lu2O3,Yb2O3,Dy2O3,Gd2O3,Y2O3作为多主组元掺杂剂(nRe)进行等摩尔比混合(n(Lu2O3):n(Yb2O3):n(Dy2O3):n(Gd2O3):n(Y2O3)=1:1:1:1:1),其中nRe=5.8mol%;(2)按照上述比例称量相应氧化物粉体,乙醇作为研磨介质,通过行星球磨机(转速250r/min)对混合粉体进行研磨、混合12h;(3)获得的料浆置于60℃烘箱保温10h,将烘干后的粉体过200目筛后置于1550℃下保温4h进行常压烧结,得到掺杂剂(nRe)添加量为5.8mol%的多主组元掺杂氧化锆(nReSZ)粉体。利用放电等离子烧结制备出高致密硼铝复合材料,烧结温度1600℃,保温时间5min,压力30MPa,烧后试样抛光表面形貌如图1所示。可以看出,经过上述工艺,材料中不存在明显的气孔,具有较高的致密度。
实施例2:
将金属铝粉与硼粉按照摩尔比1:12称量,利用卧式球磨机混合,转速150r/min,混合20h。将混合后的粉体利用干压法成型,压力为15MPa,后经过冷等静压进一步提高素坯密度。将获得的素坯在1500℃下保温2h进行常压烧结,烧结期间采用氩气气氛进行保护。通过烧结成功制备出含有AlB12相的材料,将其破碎后过80目筛。将破碎后的粉体直接利用放电等离子烧结制备高致密硼铝复合材料,烧结温度1600℃,保温时间5min,压力30MPa。将烧后试样表面抛光,采用显微硬度仪表征其硬度,并通过公式(1)计算其断裂韧性,如图2试样1所示。
其中,Hv表示断裂韧性,E表示材料的弹性模量,C表示裂纹扩展距离,P表示施加载荷,单位为N。
实施例3:
将金属铝粉与硼粉按照摩尔比1:12称量,利用卧式球磨机混合,转速150r/min,混合20h。将混合后的粉体利用干压法成型,压力为15MPa,后经过冷等静压进一步提高素坯密度。将获得的素坯在1500℃下保温2h进行常压烧结,烧结期间采用氩气气氛进行保护。通过烧结成功制备出含有AlB12相的材料,将其破碎后过80目筛。将破碎后的粉体与掺杂氧化锆按照质量比97:3混合,其中掺杂氧化锆制备方式如实施例1所述。利用放电等离子烧结制备出高致密硼铝复合材料,烧结温度1600℃,保温时间5min,压力30MPa。将烧后试样表面抛光,采用显微硬度仪表征其硬度,并计算其断裂韧性,如图2试样2所示所示。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (2)
1.一种高韧性硼铝复合材料,其特征在于:基体材料为AlB12陶瓷相,增韧相为掺杂氧化锆;其中,增韧相含量为1-3wt%;在增韧相(氧化锆)带来的裂纹偏转增韧机制和氧化锆本身具有的相变增韧机制的共同作用下,材料的断裂韧性得到了显著地提高。
2.制备如权利要求1所述复合材料的方法,其特征在于:将金属铝粉与硼粉按照混合、干压成型后冷等静压,得到素坯;将所述素坯在1500℃下保温2h进行常压烧结,烧结期间采用氩气气氛进行保护;通过烧结成功制备出含有AlB12相的材料,破碎、将破碎后的粉体与掺杂氧化锆混合,利用放电等离子烧结制备出高致密硼铝复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211682823.8A CN116041070A (zh) | 2022-12-27 | 2022-12-27 | 一种高韧性硼铝复合材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211682823.8A CN116041070A (zh) | 2022-12-27 | 2022-12-27 | 一种高韧性硼铝复合材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116041070A true CN116041070A (zh) | 2023-05-02 |
Family
ID=86119161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211682823.8A Pending CN116041070A (zh) | 2022-12-27 | 2022-12-27 | 一种高韧性硼铝复合材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116041070A (zh) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1037323A (zh) * | 1988-01-13 | 1989-11-22 | 唐化学原料公司 | 陶瓷金属复合材料的致密 |
US5077246A (en) * | 1990-06-04 | 1991-12-31 | Apollo Concepts, Inc. | Method for producing composites containing aluminum oxide, aluminum boride and aluminum, and composites resulting therefrom |
JPH0437653A (ja) * | 1990-05-30 | 1992-02-07 | Kyocera Corp | セラミックス焼結体の製造方法 |
JPH07237964A (ja) * | 1994-02-28 | 1995-09-12 | Kyocera Corp | 記録再生ヘッド用非磁性セラミックスおよびその製造方法 |
CN1929991A (zh) * | 2004-01-29 | 2007-03-14 | 纳米钢公司 | 耐磨材料 |
CN101812672A (zh) * | 2010-03-16 | 2010-08-25 | 信阳师范学院 | 一种AlB12纳米/亚微米球形材料及其制备方法 |
CN102965685A (zh) * | 2012-12-19 | 2013-03-13 | 东北大学 | 一种制备十二硼化铝的方法 |
US20150226527A1 (en) * | 2013-05-30 | 2015-08-13 | Saint-Gobain Ceramics & Plastics, Inc. | Armor components and method of forming same |
CN105543609A (zh) * | 2015-12-21 | 2016-05-04 | 中南大学 | 一种含锆的碳化硼基复合材料及其制备方法 |
CN111892414A (zh) * | 2019-05-05 | 2020-11-06 | 中南大学 | 一种短碳纤维增强碳化硼复合材料及其制备方法 |
CN115233066A (zh) * | 2022-08-09 | 2022-10-25 | 湖南省冶金材料研究院有限公司 | 一种陶瓷材料及其制备方法和应用 |
-
2022
- 2022-12-27 CN CN202211682823.8A patent/CN116041070A/zh active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1037323A (zh) * | 1988-01-13 | 1989-11-22 | 唐化学原料公司 | 陶瓷金属复合材料的致密 |
JPH0437653A (ja) * | 1990-05-30 | 1992-02-07 | Kyocera Corp | セラミックス焼結体の製造方法 |
US5077246A (en) * | 1990-06-04 | 1991-12-31 | Apollo Concepts, Inc. | Method for producing composites containing aluminum oxide, aluminum boride and aluminum, and composites resulting therefrom |
JPH07237964A (ja) * | 1994-02-28 | 1995-09-12 | Kyocera Corp | 記録再生ヘッド用非磁性セラミックスおよびその製造方法 |
CN1929991A (zh) * | 2004-01-29 | 2007-03-14 | 纳米钢公司 | 耐磨材料 |
CN101812672A (zh) * | 2010-03-16 | 2010-08-25 | 信阳师范学院 | 一种AlB12纳米/亚微米球形材料及其制备方法 |
CN102965685A (zh) * | 2012-12-19 | 2013-03-13 | 东北大学 | 一种制备十二硼化铝的方法 |
US20150226527A1 (en) * | 2013-05-30 | 2015-08-13 | Saint-Gobain Ceramics & Plastics, Inc. | Armor components and method of forming same |
CN105543609A (zh) * | 2015-12-21 | 2016-05-04 | 中南大学 | 一种含锆的碳化硼基复合材料及其制备方法 |
CN111892414A (zh) * | 2019-05-05 | 2020-11-06 | 中南大学 | 一种短碳纤维增强碳化硼复合材料及其制备方法 |
CN115233066A (zh) * | 2022-08-09 | 2022-10-25 | 湖南省冶金材料研究院有限公司 | 一种陶瓷材料及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
王超等: "铝硼化合物(Al-B)及其复合材料的研究进展", 硅酸盐通报, vol. 32, no. 10, pages 2037 - 2045 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107117981B (zh) | 一种层状Ti/B4C复合材料及其制备方法 | |
CN103145422B (zh) | 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法 | |
WO2017035916A1 (zh) | 一种增强型金属陶瓷耐磨复合材料及其制备方法 | |
Xue et al. | Improvement in mechanical/physical properties of TiC-based ceramics sintered at 1500 C for inert matrix fuels | |
CN104446483A (zh) | 一种无压烧结碳化硼陶瓷防弹片的批量生产方法 | |
CN106756164A (zh) | 一种高温结构功能一体化B4C/Al中子吸收材料的制备方法 | |
CN111471998A (zh) | 一种Yb改性防CMAS复合结构热障涂层及其制备方法 | |
CN103009706A (zh) | 一种抗高能冲击的金属/陶瓷多层复合材料的制备方法 | |
CN1924510A (zh) | 纤维增强的金属/陶瓷层状复合材料防护板 | |
CN104525954B (zh) | 一种层状增韧钨的制备方法 | |
CN107827461A (zh) | 一种耐烧蚀纤维增韧硅硼碳氮锆陶瓷基复合材料、其制备方法及应用 | |
CN115180960B (zh) | 一种氮化硅陶瓷烧结体及其制备方法 | |
CN112592184B (zh) | 一种超轻质碳化硼防弹陶瓷及其制备方法和应用 | |
CN108585875B (zh) | 一种大尺寸、高强度石墨烯纳米片/碳化硅复合材料及其制备方法 | |
CN103979970B (zh) | 一种高韧性无压烧结碳化硼防弹材料及其制备方法 | |
Liu et al. | Enhancement mechanical properties of in-situ preparated B4C-based composites with small amount of (Ti3SiC2+ Si) | |
CN114716258A (zh) | 一种碳纤维增强碳化硼复合材料的制备方法 | |
CN116041070A (zh) | 一种高韧性硼铝复合材料 | |
CN111995418B (zh) | 一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法 | |
CN115233066B (zh) | 一种陶瓷材料及其制备方法和应用 | |
CN100404465C (zh) | 一种TiN/Al2O3复合材料的制备方法 | |
CN114195515B (zh) | 一种氧化物颗粒优化钽酸镍陶瓷材料及其应用 | |
LEE et al. | Influence of fiber volume fraction on the mechanical and thermal properties of unidirectionally aligned short-fiber-reinforced SiC composites | |
CN113957294A (zh) | 一种CrCoNi中熵合金增强Al基复合材料及其制备方法 | |
CN115353395A (zh) | 一种制备Ti2AlC/B4C复相陶瓷的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |