CN116041061A - 一种钽铌酸钾陶瓷及其制备方法 - Google Patents

一种钽铌酸钾陶瓷及其制备方法 Download PDF

Info

Publication number
CN116041061A
CN116041061A CN202211706834.5A CN202211706834A CN116041061A CN 116041061 A CN116041061 A CN 116041061A CN 202211706834 A CN202211706834 A CN 202211706834A CN 116041061 A CN116041061 A CN 116041061A
Authority
CN
China
Prior art keywords
ceramic
sintering
raw material
potassium tantalate
tantalate niobate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211706834.5A
Other languages
English (en)
Other versions
CN116041061B (zh
Inventor
邱程程
杨玉国
杜倩
王旭平
禹化健
刘冰
张园园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Material Institute of Shandong Academy of Sciences
Original Assignee
New Material Institute of Shandong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Material Institute of Shandong Academy of Sciences filed Critical New Material Institute of Shandong Academy of Sciences
Priority to CN202211706834.5A priority Critical patent/CN116041061B/zh
Publication of CN116041061A publication Critical patent/CN116041061A/zh
Application granted granted Critical
Publication of CN116041061B publication Critical patent/CN116041061B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于无机非金属材料领域,尤其涉及一种钽铌酸钾陶瓷及其制备方法。为钠、铁共掺钽铌酸钾晶体,其化学式为Na,Cu:K1+ZTa1‑ xNbxO3,其中,Nb的量为0.36≤X≤0.40,0.15≤Z≤0.3,居里点位于‑241~90℃之间,所述钽铌酸钾陶瓷在居里点以上晶体为立方相,m3m点群;在居里点以下变为四方相,4mm点群;通过引入钠、铜元素作为掺杂离子,通过确定掺杂量,选择优选配比,配合专用的制备方法,制备了高质量陶瓷,均匀性好,陶瓷质量得到大幅度提高;陶瓷漏电性能得到大幅度改善,进一步推动了KTN陶瓷的器件应用;本制备方法操作简单,成本低,大大降低了生产成本。

Description

一种钽铌酸钾陶瓷及其制备方法
技术领域
本发明属于无机非金属材料领域,尤其涉及一种钽铌酸钾陶瓷及其制备方法。
背景技术
近年来随着电子信息技术的迅速发展,具备优异的铁电和压电性能的材料已经成为目前研究领域的热点之一。目前来说,铅系材料仍然是应用于这些领域的主体材料,但是铅系材料在制备和使用的过程中会对环境造成严重的污染问题。因此寻找一种无铅且性能优越的材料成为大势所趋。
钽铌酸钾陶瓷(KTN)是一种优良的铁电材料和热释电材料,是一种可以与铅系材料相媲美的无铅铁电环保材料。但现有的钽铌酸钾陶瓷存在漏电流大、抗疲劳差的缺点,阻碍其在器件应用化的发展进程。为了寻求优质的KTN陶瓷,对材料的制备工艺进行深入研究也是一项有意义的工作。
发明内容
本发明针对现有技术中存在的上述技术问题,提出一种能纯度较高、结晶良好、高均匀性,而且具有更优异的铁电性能的钽铌酸钾陶瓷及其制备方法。
为了达到上述目的,本发明采用的技术方案为:
一种钽铌酸钾陶瓷,其特征在于,为钠、铁共掺钽铌酸钾晶体,其化学式为Na,Cu:K1+ZTa1-xNbxO3,其中,Nb的量为0.36≤X≤0.40,0.15≤Z≤0.3,居里点位于-241~90℃之间,所述钽铌酸钾陶瓷在居里点以上晶体为立方相,m3m点群;在居里点以下变为四方相,4mm点群。
作为优选,所述Na+的掺杂浓度为3.2-3.6at%,所述的Cu2+掺杂浓度为2.5-3at%,所述的Na+/Cu2+掺杂浓度比1.06-1.44。
作为优选,当Nb的量0.36≤x<0.38,Z为0.25<Z≤0.3,掺杂浓度比X/Z为1.2-1.52;
当Nb的量0.38≤X≤0.40,Z为0.15≤Z≤0.25,掺杂浓度比X/Z为1.52-2.67。
上述钽铌酸钾陶瓷的制备方法,以高纯K2CO3、Nb2O5、Ta2O5为原料,以高纯Na2O和CuO为掺杂离子,采用提拉法生长,生长装置为感应加热提拉式单晶炉。
优选的,所述钽铌酸钾陶瓷的制备方法,具体包括如下步骤:
S1、制备研磨料A:
根据所需Na,Cu:K1+ZTa1-xNbxO3陶瓷组分,选择原料K2CO3、Nb2O5、Ta2O5原料混合均匀,获得原料A;
将所述原料A放入陶瓷坩埚中,在800℃烧结5小时,得到多晶料A;
取出多晶料A,将其重新研磨成粉末,粒度为170nm-250nm,获得研磨料A;
S2、制备研磨料B:
将掺杂原料Na2O和CuO混合均匀,获得原料B,将原料B放入陶瓷坩埚中,在700℃烧结3小时进,得到多晶料B;
取出所述多晶料B重新研磨成粉末粒度为200nm-300nm,获得研磨料B;
S3、烧结预合成:
将步骤S1所得研磨料A和步骤S2所得研磨料B,混合均匀,进行压实,并置于高温炉中预烧,升温速度为120-150℃/h,650℃-700℃保温2h,获得烧结预合成料C;
S4、研磨与过筛:
将步骤S3获得的预合成料C压碎加入无水酒精作为分散剂置于球墨罐中球墨6h,得到粉末D粒度0.355mm-0.425mm;其中,所述的合成料C与无水酒精的质量体积比为0.2-0.6g/L;
S5、研磨造粒:
将步骤S4获得的粉末D添加PVA胶体,注胶后充分研磨,然后过45目的筛子过筛造粒,以保证粉料颗粒均匀;所述的PVA胶体的质量分数9%;
S6、压片排胶:
将步骤S5造粒完成的颗粒通过液压机压成直径为25mm,厚度为10mm的圆柱片;将该圆柱片置于高温炉中,以10℃/min升温速率,600℃保温1h,排出胶体;
S7、烧结:
将步骤S6所得排胶后的样品进行烧结,烧结温度为1230-1300℃,保温时间3h。
作为优选,在步骤S1制备研磨料A之前,对原料进行预处理:将Nb2O5、Ta2O5在800℃下煅烧30分钟,Na2O和CuO在500℃下煅烧30分钟,K2CO3在100℃下干燥1h。
作为优选,当0.36≤x≤0.38时,步骤S7中,烧结过程的升温速率为15-20℃/min,降温速率为6-8℃/min。
作为优选,当0.38≤x≤0.40时,步骤S7中,烧结过程的升温速率为7-10℃/min,降温速率为3-5℃/min。
与现有技术相比,本发明的优点和积极效果在于:通过引入钠、铜元素作为掺杂离子,通过确定掺杂量,选择优选配比,配合专用的制备方法,制备了高质量陶瓷,均匀性好,陶瓷质量得到大幅度提高;陶瓷漏电性能得到大幅度改善,进一步推动了KTN陶瓷的器件应用;本制备方法操作简单,成本低,大大降低了生产成本。
附图说明
图1为本发明实施例1制备的钽铌酸钾陶瓷的XRD图谱;
图2为本发明实施例2制备的钽铌酸钾陶瓷的XRD图谱;
图3为本发明实施例2制备的钽铌酸钾陶瓷的断面图;
图4为本发明实施例3制备的钽铌酸钾陶瓷的漏电流图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种钽铌酸钾陶瓷,化学式为Na,Cu:K1.27Ta0.64Nb0.36O3,X=0.36,Na+的掺杂浓度为3.3at%,Cu2+掺杂浓度为2.7at%;
上述的Na,Cu:K1.27Ta0.64Nb0.36O3陶瓷的制备方法,以高纯K2CO3、Nb2O5、Ta2O5为原料,以高纯Na2O和CuO为掺杂离子,采用提拉法生长,生长装置为感应加热提拉式单晶炉,陶瓷生长步骤如下:
原料预处理:按化学计量比将Nb2O5、Ta2O5在800℃下煅烧30分钟,Na2O和CuO在500℃下煅烧30分钟,K2CO3在100℃下干燥1h;
烧结预合成:根据所需陶瓷组分,选择原料K2CO3,Nb2O5、Ta2O5混合均匀,获得原料A;将原料A放入陶瓷坩埚中,在800℃烧结5小时,得到多晶料A;取出多晶料A重新研磨成粉末粒度为200nm,获得研磨料A;将掺杂原料Na2O和CuO混合均匀,获得原料B,将原料B放入陶瓷坩埚中,在700℃烧结3小时进,得到多晶料B;取出多晶料B重新研磨成粉末粒度为200nm,获得研磨料B;将研磨料A和研磨料B,混合均匀,进行压实,并置于高温炉中预烧,升温速度为130℃/h,680℃保温2h,获得烧结预合成料C;
研磨与过筛:将上述获得的预合成料C压碎加入无水酒精作为分散剂置于球墨罐中球墨6h,得到粉末D粒度0.355mm;其中所述的合成料C与无水酒精的质量体积比为0.2g/L;
研磨造粒:将上述获得的粉末D添加PVA胶体,注胶后充分研磨,然后过45目的筛子过筛造粒,以保证粉料颗粒均匀;PVA胶体的质量分数9%;
压片排胶:将造粒完成的颗粒通过液压机压成直径为25mm,厚度为10mm的圆柱片:将该圆柱片置于高温炉中,以10℃/min升温速率,600℃保温1h,排出胶体;
烧结:排胶后的样品需要烧结,样品的烧结温度设定为在升温排胶结束后,继续加热;样品的烧结温度设定为1230-1300℃,保温时间3h;其中升温速率为18℃/min,降温速率为6℃/min。
如图1所示,为实施例1制备的Na,Cu:K1.27Ta0.64Nb0.36O3陶瓷的XRD图谱,从图中可以看出陶瓷片纯相无杂质。
实施例2
一种钽铌酸钾陶瓷Na,Cu:K1.17Ta0.62Nb0.38O3,X=0.38,Z=0.17,Na+的掺杂浓度为3.2at%,Cu2+掺杂浓度为2.8at%;
本实施例所述的Na,Cu:K1.17Ta0.62Nb0.38O3陶瓷的制备方法,以高纯K2CO3、Nb2O5、Ta2O5为原料,以高纯Na2O和CuO为掺杂离子,采用提拉法生长,生长装置为感应加热提拉式单晶炉,陶瓷生长步骤如下:
原料预处理:将Nb2O5、Ta2O5在800℃下煅烧30分钟,Na2O和CuO在500℃下煅烧30分钟,K2CO3在100℃下干燥1h。
烧结预合成:根据所需Na,Cu:K1.17Ta0.62Nb0.38O3陶瓷组分,选择原料K2CO3,Nb2O5、Ta2O5原料混合均匀,获得原料A;将原料A放入陶瓷坩埚中,在800℃烧结5小时,得到多晶料A;取出多晶料A重新研磨成粉末粒度为250nm,获得研磨料A;将掺杂原料Na2O和CuO混合均匀,获得原料B,将原料B放入陶瓷坩埚中,在700℃烧结3小时进,得到多晶料B;取出多晶料B重新研磨成粉末粒度为200nm,获得研磨料B;将研磨料A和研磨料B,混合均匀,进行压实,并置于高温炉中预烧,升温速度为150℃/h,650℃保温2h,获得烧结预合成料C排;
研磨与过筛:将上述获得的预合成料C压碎加入无水酒精作为分散剂置于球墨罐中球墨6h,得到粉末D粒度0.405mm;其中所述的合成料C与无水酒精的质量体积比为0.2g/L;
研磨造粒:将上述获得的粉末D添加PVA胶体,注胶后充分研磨,然后过45目的筛子过筛造粒,以保证粉料颗粒均匀;PVA胶体的质量分数9%;
压片排胶:将造粒完成的颗粒通过液压机压成直径为25mm,厚度为10mm的圆柱片:将该圆柱片置于高温炉中,以10℃/min升温速率,600℃保温1h,排出胶体;
烧结:排胶后的样品需要烧结,样品的烧结温度设定为在升温排胶结束后,继续加热;样品的烧结温度设定为1230℃,保温时间3h;其中升温速率为10℃/min,降温速率为3℃/min。
如图2所示为上述制备的Na,Cu:K1.17Ta0.62Nb0.38O3陶瓷的XRD图谱,从图中可以看出陶瓷无杂相;图3为Na,Cu:K1.17Ta0.62Nb0.38O3陶瓷的断面图,从图中可以看出致密度高。
实施例3
一种钽铌酸钾陶瓷Na,Cu:K1.25Ta0.6Nb0.4O3,X=0.4,Z=0.25,Na+的掺杂浓度为3.3at%,Cu2+掺杂浓度为2.5at%;
上述Na,Cu:K1.25Ta0.6Nb0.4O3陶瓷的制备方法,以高纯K2CO3、Nb2O5、Ta2O5为原料,以高纯Na2O和CuO为掺杂离子,采用提拉法生长,生长装置为感应加热提拉式单晶炉,陶瓷生长步骤如下:
原料预处理:将Nb2O5、Ta2O5在800℃下煅烧30分钟,Na2O和CuO在500℃下煅烧30分钟,K2CO3在100℃下干燥1h。
烧结预合成:所需陶瓷组分,选择原料K2CO3,Nb2O5、Ta2O5原料混合均匀,获得原料A;将原料A放入陶瓷坩埚中,在800℃烧结5小时,得到多晶料A;取出多晶料A重新研磨成粉末粒度为170nm,获得研磨料A;将掺杂原料Na2O和CuO混合均匀,获得原料B,将原料B放入陶瓷坩埚中,在700℃烧结3小时进,得到多晶料B;取出多晶料B重新研磨成粉末粒度为200nm,获得研磨料B;将研磨料A和研磨料B,混合均匀,进行压实,并置于高温炉中预烧,升温速度为130℃/h,670℃保温2h,获得烧结预合成料C;
研磨与过筛:将上述获得的预合成料C压碎加入无水酒精作为分散剂置于球墨罐中球墨6h,得到粉末D粒度0.355mm;其中所述的合成料C与无水酒精的质量体积比为0.6g/L;
研磨造粒:将上述获得的粉末D添加PVA胶体,注胶后充分研磨,然后过45目的筛子过筛造粒,以保证粉料颗粒均匀;PVA胶体的质量分数9%;
压片排胶:将造粒完成的颗粒通过液压机压成直径为25mm,厚度为10mm的圆柱片:将该圆柱片置于高温炉中,以10℃/min升温速率,600℃保温1h,排出胶体;
烧结:排胶后的样品需要烧结,样品的烧结温度设定为在升温排胶结束后,继续加热。样品的烧结温度设定为1230-1300℃,保温时间3h;其中升温速率为7℃/min,降温速率为5℃/min。
图4为上述制备的Na,Cu:K1.25Ta0.6Nb0.4O3陶瓷的漏电流图,从图中可以看出漏电流较低,具有较好的电学性能。
实施例4
一种钽铌酸钾陶瓷Na,Cu:K1.3Ta0.63Nb0.37O3,X=0.37,Z=0.3,Na+的掺杂浓度为3.4at%,Cu2+掺杂浓度为3.0at%;
上述Na,Cu:K1.3Ta0.63Nb0.37O3陶瓷的制备方法,以高纯K2CO3、Nb2O5、Ta2O5为原料,以高纯Na2O和CuO为掺杂离子,采用提拉法生长,生长装置为感应加热提拉式单晶炉,陶瓷生长步骤如下:
原料预处理:将Nb2O5、Ta2O5在800℃下煅烧30分钟,Na2O和CuO在500℃下煅烧30分钟,K2CO3在100℃下干燥1h。
烧结预合成:所需陶瓷组分,选择原料K2CO3,Nb2O5、Ta2O5原料混合均匀,获得原料A;将原料A放入陶瓷坩埚中,在800℃烧结5小时,得到多晶料A;取出多晶料A重新研磨成粉末粒度为180nm,获得研磨料A;将掺杂原料Na2O和CuO混合均匀,获得原料B,将原料B放入陶瓷坩埚中,在700℃烧结3小时进,得到多晶料B;取出多晶料B重新研磨成粉末粒度为240nm,获得研磨料B;将研磨料A和研磨料B,混合均匀,进行压实,并置于高温炉中预烧,升温速度为120℃/h,700℃保温2h,获得烧结预合成料C;
研磨与过筛:将上述获得的预合成料C压碎加入无水酒精作为分散剂置于球墨罐中球墨6h,得到粉末D粒度0.385mm;其中所述的合成料C与无水酒精的质量体积比为0.4g/L;
研磨造粒:将上述获得的粉末D添加PVA胶体,注胶后充分研磨,然后过45目的筛子过筛造粒,以保证粉料颗粒均匀;PVA胶体的质量分数9%;
压片排胶:将造粒完成的颗粒通过液压机压成直径为25mm,厚度为10mm的圆柱片:将该圆柱片置于高温炉中,以10℃/min升温速率,600℃保温1h,排出胶体;
烧结:排胶后的样品需要烧结,样品的烧结温度设定为在升温排胶结束后,继续加热。样品的烧结温度设定为1230-1300℃,保温时间3h;其中升温速率为15℃/min,降温速率为8℃/min。
实施例5
一种钽铌酸钾陶瓷Na,Cu:K1.15Ta0.61Nb0.39O3,X=0.39,Z=0.15,Na+的掺杂浓度为3.6at%,Cu2+掺杂浓度为2.9at%;
上述Na,Cu:K1.15Ta0.61Nb0.39O3陶瓷的制备方法,以高纯K2CO3、Nb2O5、Ta2O5为原料,以高纯Na2O和CuO为掺杂离子,采用提拉法生长,生长装置为感应加热提拉式单晶炉,陶瓷生长步骤如下:
原料预处理:将Nb2O5、Ta2O5在800℃下煅烧30分钟,Na2O和CuO在500℃下煅烧30分钟,K2CO3在100℃下干燥1h。
烧结预合成:所需陶瓷组分,选择原料K2CO3,Nb2O5、Ta2O5原料混合均匀,获得原料A;将原料A放入陶瓷坩埚中,在800℃烧结5小时,得到多晶料A;取出多晶料A重新研磨成粉末粒度为220nm,获得研磨料A;将掺杂原料Na2O和CuO混合均匀,获得原料B,将原料B放入陶瓷坩埚中,在700℃烧结3小时进,得到多晶料B;取出多晶料B重新研磨成粉末粒度为280nm,获得研磨料B;将研磨料A和研磨料B,混合均匀,进行压实,并置于高温炉中预烧,升温速度为150℃/h,680℃保温2h,获得烧结预合成料C;
研磨与过筛:将上述获得的预合成料C压碎加入无水酒精作为分散剂置于球墨罐中球墨6h,得到粉末D粒度0.425mm;其中所述的合成料C与无水酒精的质量体积比为0.3g/L;
研磨造粒:将上述获得的粉末D添加PVA胶体,注胶后充分研磨,然后过45目的筛子过筛造粒,以保证粉料颗粒均匀;PVA胶体的质量分数9%;
压片排胶:将造粒完成的颗粒通过液压机压成直径为25mm,厚度为10mm的圆柱片:将该圆柱片置于高温炉中,以10℃/min升温速率,600℃保温1h,排出胶体;
烧结:排胶后的样品需要烧结,样品的烧结温度设定为在升温排胶结束后,继续加热。样品的烧结温度设定为1230-1300℃,保温时间3h;其中升温速率为8℃/min,降温速率为4℃/min。
实施例6
一种钽铌酸钾陶瓷Na,Cu:K1.25Ta0.62Nb0.38O3,X=0.38,Z=0.25,Na+的掺杂浓度为3.5at%,Cu2+掺杂浓度为2.7at%;
上述Na,Cu:K1.25Ta0.62Nb0.38O3陶瓷的制备方法,以高纯K2CO3、Nb2O5、Ta2O5为原料,以高纯Na2O和CuO为掺杂离子,采用提拉法生长,生长装置为感应加热提拉式单晶炉,陶瓷生长步骤如下:
原料预处理:将Nb2O5、Ta2O5在800℃下煅烧30分钟,Na2O和CuO在500℃下煅烧30分钟,K2CO3在100℃下干燥1h。
烧结预合成:所需陶瓷组分,选择原料K2CO3,Nb2O5、Ta2O5原料混合均匀,获得原料A;将原料A放入陶瓷坩埚中,在800℃烧结5小时,得到多晶料A;取出多晶料A重新研磨成粉末粒度为240nm,获得研磨料A;将掺杂原料Na2O和CuO混合均匀,获得原料B,将原料B放入陶瓷坩埚中,在700℃烧结3小时进,得到多晶料B;取出多晶料B重新研磨成粉末粒度为220nm,获得研磨料B;将研磨料A和研磨料B,混合均匀,进行压实,并置于高温炉中预烧,升温速度为130℃/h,650℃保温2h,获得烧结预合成料C;
研磨与过筛:将上述获得的预合成料C压碎加入无水酒精作为分散剂置于球墨罐中球墨6h,得到粉末D粒度0.405mm;其中所述的合成料C与无水酒精的质量体积比为0.5g/L;
研磨造粒:将上述获得的粉末D添加PVA胶体,注胶后充分研磨,然后过45目的筛子过筛造粒,以保证粉料颗粒均匀;PVA胶体的质量分数9%;
压片排胶:将造粒完成的颗粒通过液压机压成直径为25mm,厚度为10mm的圆柱片:将该圆柱片置于高温炉中,以10℃/min升温速率,600℃保温1h,排出胶体;
烧结:排胶后的样品需要烧结,样品的烧结温度设定为在升温排胶结束后,继续加热。样品的烧结温度设定为1230-1300℃,保温时间3h;其中升温速率为20℃/min,降温速率为7℃/min。

Claims (8)

1.一种钽铌酸钾陶瓷,其特征在于,为钠、铁共掺钽铌酸钾晶体,其化学式为Na,Cu:K1+ ZTa1-xNbxO3,其中,Nb的量为0.36≤X≤0.40,0.15≤Z≤0.3,居里点位于-241~90℃之间,所述钽铌酸钾陶瓷在居里点以上晶体为立方相,m3m点群;在居里点以下变为四方相,4mm点群。
2.根据权利要求1所述的钽铌酸钾陶瓷,其特征在于,所述Na+的掺杂浓度为3.2-3.6at%,所述的Cu2+掺杂浓度为2.5-3at%,所述的Na+/Cu2+掺杂浓度比1.06-1.44。
3.根据权利要求2所述的钽铌酸钾陶瓷,其特征在于,当Nb的量0.36≤x<0.38,Z为0.25<Z≤0.3,掺杂浓度比X/Z为1.2-1.52;
当Nb的量0.38≤X≤0.40,Z为0.15≤Z≤0.25,掺杂浓度比X/Z为1.52-2.67。
4.根据权利要求1-3所述的任一项钽铌酸钾陶瓷的制备方法,其特征在于:以高纯K2CO3、Nb2O5、Ta2O5为原料,以高纯Na2O和CuO为掺杂离子,采用提拉法生长,生长装置为感应加热提拉式单晶炉。
5.根据权利要求4所述的钽铌酸钾陶瓷的制备方法,其特征在于,具体包括如下步骤:
S1、制备研磨料A:
根据所需Na,Cu:K1+ZTa1-xNbxO3陶瓷组分,选择原料K2CO3、Nb2O5、Ta2O5原料混合均匀,获得原料A;
将所述原料A放入陶瓷坩埚中,在800℃烧结5小时,得到多晶料A;
取出多晶料A,将其重新研磨成粉末,粒度为170nm-250nm,获得研磨料A;
S2、制备研磨料B:
将掺杂原料Na2O和CuO混合均匀,获得原料B,将原料B放入陶瓷坩埚中,在700℃烧结3小时进,得到多晶料B;
取出所述多晶料B重新研磨成粉末粒度为200nm-300nm,获得研磨料B;
S3、烧结预合成:
将步骤S1所得研磨料A和步骤S2所得研磨料B,混合均匀,进行压实,并置于高温炉中预烧,升温速度为120-150℃/h,650℃-700℃保温2h,获得烧结预合成料C;
S4、研磨与过筛:
将步骤S3获得的预合成料C压碎加入无水酒精作为分散剂置于球墨罐中球墨6h,得到粉末D粒度0.355mm-0.425mm;其中,所述的合成料C与无水酒精的质量体积比为0.2-0.6g/L;
S5、研磨造粒:
将步骤S4获得的粉末D添加PVA胶体,注胶后充分研磨,然后过45目的筛子过筛造粒,以保证粉料颗粒均匀;所述的PVA胶体的质量分数9%;
S6、压片排胶:
将步骤S5造粒完成的颗粒通过液压机压成直径为25mm,厚度为10mm的圆柱片;将该圆柱片置于高温炉中,以10℃/min升温速率,600℃保温1h,排出胶体;
S7、烧结:
将步骤S6所得排胶后的样品进行烧结,烧结温度为1230-1300℃,保温时间3h。
6.根据权利要求5所述的钽铌酸钾陶瓷的制备方法,其特征在于,在步骤S1制备研磨料A之前,对原料进行预处理:将Nb2O5、Ta2O5在800℃下煅烧30分钟,Na2O和CuO在500℃下煅烧30分钟,K2CO3在100℃下干燥1h。
7.根据权利要求6所述的钽铌酸钾陶瓷的制备方法,其特征在于,当0.36≤x≤0.38时,步骤S7中,烧结过程的升温速率为15-20℃/min,降温速率为6-8℃/min。
8.根据权利要求6所述的钽铌酸钾陶瓷的制备方法,其特征在于,当0.38≤x≤0.40时,步骤S7中,烧结过程的升温速率为7-10℃/min,降温速率为3-5℃/min。
CN202211706834.5A 2022-12-27 2022-12-27 一种钽铌酸钾陶瓷及其制备方法 Active CN116041061B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211706834.5A CN116041061B (zh) 2022-12-27 2022-12-27 一种钽铌酸钾陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211706834.5A CN116041061B (zh) 2022-12-27 2022-12-27 一种钽铌酸钾陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN116041061A true CN116041061A (zh) 2023-05-02
CN116041061B CN116041061B (zh) 2023-12-26

Family

ID=86123152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211706834.5A Active CN116041061B (zh) 2022-12-27 2022-12-27 一种钽铌酸钾陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN116041061B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1884198A (zh) * 2006-06-27 2006-12-27 西北工业大学 铌钽酸钾钠基压电陶瓷及其制备方法
CN101372361A (zh) * 2008-09-28 2009-02-25 哈尔滨工业大学 立方相钽铌酸钾钠晶体及其制备方法
CN103882524A (zh) * 2012-12-20 2014-06-25 山东省科学院新材料研究所 一种离子掺杂型电光晶体材料的制备与应用
CN105220232A (zh) * 2015-11-02 2016-01-06 山东省科学院新材料研究所 具有梯度折射率效应的二次电光晶体及其制备与应用方法
WO2021253589A1 (zh) * 2020-06-19 2021-12-23 齐鲁工业大学 一种钽铌酸钾单晶基片元件的加工制作方法
CN113956039A (zh) * 2021-11-30 2022-01-21 山东山科智晶光电科技有限公司 一种大尺寸高品质钽铌酸钾陶瓷靶材的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1884198A (zh) * 2006-06-27 2006-12-27 西北工业大学 铌钽酸钾钠基压电陶瓷及其制备方法
CN101372361A (zh) * 2008-09-28 2009-02-25 哈尔滨工业大学 立方相钽铌酸钾钠晶体及其制备方法
CN103882524A (zh) * 2012-12-20 2014-06-25 山东省科学院新材料研究所 一种离子掺杂型电光晶体材料的制备与应用
CN105220232A (zh) * 2015-11-02 2016-01-06 山东省科学院新材料研究所 具有梯度折射率效应的二次电光晶体及其制备与应用方法
WO2021253589A1 (zh) * 2020-06-19 2021-12-23 齐鲁工业大学 一种钽铌酸钾单晶基片元件的加工制作方法
CN113956039A (zh) * 2021-11-30 2022-01-21 山东山科智晶光电科技有限公司 一种大尺寸高品质钽铌酸钾陶瓷靶材的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.H. KIM ET AL.: "Preparation of CuO-doped (K, Na, Li)(Nb, Ta)O3 ceramics with a homogeneous microstructure by Two-step sintering for multilayered piezoelectric energy harvesters", 《MATERIALS LETTERS》, vol. 241, pages 202 - 205 *

Also Published As

Publication number Publication date
CN116041061B (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
CN108546110B (zh) 一种超低温制备高电导率氧化锌陶瓷的方法
CN111320468B (zh) 一种掺杂型铁酸铋-钛酸钡无铅压电陶瓷材料的制备方法
CN114716248B (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN112831839B (zh) 一种用于弛豫铁电单晶生长的原料的制备方法
CN113956039B (zh) 一种大尺寸高品质钽铌酸钾陶瓷靶材的制备方法
CN112723875B (zh) 一种氧化镓掺杂氧化锡陶瓷靶材及制备方法
CN112062558B (zh) 氧化锆陶瓷的制备方法
CN116041061B (zh) 一种钽铌酸钾陶瓷及其制备方法
CN111170736B (zh) 一种铅基钙钛矿结构高温压电陶瓷及其制备方法
CN111204721B (zh) MnAlCxNn-1-x相粉末的制备方法
CN115925410B (zh) 镨掺杂氧化铟锌溅射靶材及其制备方法
CN105777116B (zh) 一种微波介质陶瓷及其制备方法
CN110230099B (zh) 一种高介电常数钽铌酸钾晶体制备方法
CN114276128B (zh) 一种降低铁酸铋-钛酸钡压电陶瓷漏电流以及提高其高温电阻率的方法
CN114182123B (zh) 一种快速制备Nb3Al超导体的方法
CN101994055B (zh) 一种复合磁致伸缩材料及其制备方法
CN112898020A (zh) 一种平均晶粒尺寸为160nm的铌酸钾钠基纳米细晶陶瓷的制备方法
CN108516802A (zh) 一种三氧化二铋增韧的氧化铅陶瓷及其制备方法
CN111606712A (zh) 一种低温脉冲加压制备碳化硼陶瓷的方法
CN116462506B (zh) 一种兼具优异高温绝缘性及压电性的铋层状陶瓷及其制备方法
CN111205066A (zh) 一种微波介质陶瓷的制备方法
CN113773056B (zh) 一种铋基棒状结构巨介电陶瓷材料及制备方法
CN115611641B (zh) 一种氧化镁氧化钇粉体及其制备方法与应用
CN114350997B (zh) 一种铀钼铌合金燃料芯块及其制备方法以及应用
CN115433008B (zh) 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant