CN116037093A - 氧化锌/氧化钛复合光催化剂及其制备方法和在光照降解硫化氢中的应用 - Google Patents

氧化锌/氧化钛复合光催化剂及其制备方法和在光照降解硫化氢中的应用 Download PDF

Info

Publication number
CN116037093A
CN116037093A CN202310062170.1A CN202310062170A CN116037093A CN 116037093 A CN116037093 A CN 116037093A CN 202310062170 A CN202310062170 A CN 202310062170A CN 116037093 A CN116037093 A CN 116037093A
Authority
CN
China
Prior art keywords
composite photocatalyst
zinc oxide
titanium oxide
hydrogen sulfide
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310062170.1A
Other languages
English (en)
Inventor
员汝胜
周鸿运
马雄风
蒋朋
王德顺
张绍辉
李铭铭
曹淑媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202310062170.1A priority Critical patent/CN116037093A/zh
Publication of CN116037093A publication Critical patent/CN116037093A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种氧化锌/氧化钛(ZnO/TiO2)复合光催化剂及其制备方法和在光照条件下降解恶臭味有毒气体硫化氢的方法。催化剂固化的载体为柔性多孔纤维棉,光反应催化剂为高温煅烧处理后的复合ZnO/TiO2材料。在光催化实验中,将复合ZnO/TiO2材料固化在柔性多孔纤维棉上,在紫外光光照的条件下内可短时间内完全降解硫化氢且循环处理长时间不失效稳,并将硫化氢以矿化固定为硫酸根离子的方式清除。此光催化剂在各种需要降解硫化氢的空间中有着广阔的应用前景,该降解恶臭味有毒气体硫化氢的方法可带来巨大的潜在经济和社会效应。

Description

氧化锌/氧化钛复合光催化剂及其制备方法和在光照降解硫化氢中的应用
技术领域
本发明属于光催化降解污染物技术领域,具体涉及一种氧化锌/氧化钛(ZnO/TiO2)复合光催化剂及其制备方法和在光照条件下降解恶臭味有毒气体硫化氢中的应用。
背景技术
硫化氢是典型的含硫无机恶臭气体污染物,是许多生产过程中释放的副产品,如酸性气体燃烧、石油炼制、造纸或废水处理等。低浓度的硫化氢可使人流泪、恶心、头痛、胸闷等,高浓度则会使人昏迷、呼吸衰竭甚至导致死亡。同时硫化氢会严重腐蚀制造设施的金属部件,对工业生产造成较大影响。此外H2S在大气中还可以转化为SOx等污染物质,H2S和SOx会导致酸雨等极端天气的出现,造成生态环境的恶化。硫化氢不仅会腐蚀设备和管路、造成环境污染而且会严重威胁人身安全。H2S具有很强的毒性,几乎与氰化氢同样剧毒,是一氧化碳毒性的数倍。并且H2S分布广泛,常见的工作和生活场景中都有它的身影存在,长期工作生活在H2S存在的环境中会对人体造成不可逆的身体损伤,因此如何有效清除硫化氢是一个急需解决的问题。
传统的处理恶臭气体硫化氢的方法都有一定的限性,近年来很多新的除臭方式应运而生,其中光催化降解硫化氢具有处理效率高、反应条件温和、无二次污染等优点,因此受到越来越多的关注。TiO2由于具有高化学稳定性、低毒性和低成本等优点,已在诸多领域得到广泛应用,特别是在光催化环境应用领域中的应用。然而,如何提高TiO2的量子效率仍然是一个主要的挑战,因为大多数光形成的电子和空穴在没有参与氧化还原反应的情况下就进行了复合,这抑制了量子产率。在TiO2中加入少量ZnO可以使TiO2的粒径减小,ZnO的加入也抑制了TiO2从锐钛矿向金红石的相变,从而提高了催化剂的热稳定性。
发明内容
本发明的目的是将复合光催化剂ZnO/TiO2固化在片状柔性多孔纤维棉上,运用紫外光光照的方法实现对恶臭味有毒气体硫化氢高效绿色的降解处理。本发明条件温和、催化材料片制备简单、处理性能优异,具有广泛的实用价值和应用研究前景。
为实现上述发明目的,本发明是通过如下技术方案实施的:
一种复合光催化剂ZnO/TiO2的合成,以及此材料在光照下的条件下降解恶臭味有毒气体硫化氢的方法:将复合光催化剂ZnO/TiO2固化在多孔纤维载体上并放置于内含紫外灯管的净化器装置中,再将净化器装置放置于3m3的密闭环境评价舱内。待环境评价舱恒温恒湿后将硫化氢通入舱内,然后开启净化器装置对硫化氢进行降解。
更为具体的:
一种复合光催化剂ZnO/TiO2的合成,以及此材料在光照下的条件下降解恶臭味有毒气体硫化氢的方法,具体步骤为:
(1)复合光催化剂ZnO/TiO2的制备
利用钛酸四丁酯和乙酸锌为前驱体,通过溶液-凝胶法制备ZnO/TiO2光催化剂。首先量取一定量的乙醇,再加入适量的钛酸四丁酯和乙酸锌(ZnO与TiO2的质量比为5~20%),记为溶液A;将去离子水、无水乙醇和冰醋酸按体积比为3:20:1搅拌混合得到溶液B。将溶液B在冰水浴中不断搅拌,待烧杯中溶液温度降至0℃,缓慢滴入溶液A,搅拌至溶胶形成,继续搅拌2h,然后将所得凝胶80-100℃烘箱干燥8-12 h,然后将干燥的样品研磨成粉末,在洁净的空气氛围中放在马弗炉中300-500℃煅烧6-8h,升温速率2-5℃/min。
(2)催化材料片的制备
将研磨至足够细的光催化剂ZnO/TiO2与钛胶溶液以一定比例进行搅拌,取搅拌均匀的悬浊液于高压喷枪中汽化后,均匀喷涂在片状柔性多孔纤维棉表面。将喷涂后的柔性多孔纤维棉置于马弗炉中,然后以2-5℃/min的升温速率升温至300-500 ℃,保温8-12h。关闭马弗炉,待温度降低到室温时,取出催化材料片,放入干燥密封袋中备用。
(3)污染物的降解
将固化好的催化材料片放置于净化器装置中,然后将净化器装置放入3 m3的密闭环境评价舱内,待环境评价舱恒温恒湿后,将一定量的硫化氢通入舱内,打开评价舱内搅拌器将硫化氢均匀混合,通过硫化氢检测器观察室内硫化氢的浓度,当评价舱内的污染气体浓度稳定时,开启净化器装置对硫化氢进行降解。
本发明的优点在于:
1)本发明使用复合光催化剂ZnO/TiO2,催化剂具有良好的光催化活性,绿色无污染;
2)本发明可在短时间内将恶臭味有毒气体硫化氢完全降解;
3)本发明采用紫外光光照,反应成本低,反应条件简单温和;
4)本发明催化材料片制作的工艺简单,操作方法简单易行,具有广阔的应用前景。
附图说明
图1为不同质量比的ZnO/TiO2光催化材料降解硫化氢性能图;
图2为ZnO/TiO2光催化材料降解硫化氢性能的持久性与稳定性图;
图3为复合光催化剂ZnO/TiO2的扫描电镜(SEM)图;
图4为复合光催化剂ZnO/TiO2的XRD图谱;
图5为复合光催化剂ZnO/TiO2的UV-Vis 吸收图谱;
图6为复合光催化剂ZnO/TiO2的氮气等温吸/脱附曲线。
具体实施方式
下面列举实施例进一步说明本发明。实施结果如图1所示。
实施例1
一种复合光催化剂ZnO/TiO2的合成,以及此材料在光照下的条件下降解恶臭味有毒气体硫化氢的方法,具体步骤为:
(1)利用钛酸四丁酯和乙酸锌为前驱体,通过溶液-凝胶法制备ZnO/TiO2光催化剂。首先量取一定量的乙醇,再加入适量的钛酸四丁酯和乙酸锌(ZnO与TiO2的质量比为15%),记为溶液A;将去离子水、无水乙醇和冰醋酸按体积比为3:20:1搅拌混合得到溶液B。将溶液B在冰水浴中不断搅拌,待烧杯中溶液温度降至0℃,缓慢滴入溶液A,搅拌至溶胶形成,继续搅拌2h,然后将所得凝胶100℃烘箱干燥12 h,然后将干燥的样品研磨成粉末,在洁净的空气氛围中放在马弗炉中500℃煅烧8h,升温速率5℃/min。
(2)称取一定质量的ZnO/TiO2光催化剂置于烧杯中,加入800 mL的钛胶溶液中搅拌12 h形成悬浊液。然后采用喷涂法,高压喷枪以每次200 mL的量分别均匀喷涂于基底材料表面然后放置于100 ℃烘箱内烘干后取出,重复喷涂4次。最后将催化材料片放置于马弗炉中程序升温至500 ℃下煅烧8 h,自然降温后取出得到催化材料片。
(3)将固化的片状柔性多孔纤维棉以平行堆叠方式置于光催化反应器中灯管之间,反应器中有3根波长为254nm,功率为8 W紫外灯管,壳体和反应室材质为镁铝合金。然后将装置放置于密闭环境评价舱内的高度为1 m的操作平台架上,开启密闭环境评价舱的恒温恒湿功能。温度湿度稳定后,打开密闭环境评价舱进气口阀门,开启标准污染物钢瓶减压阀。待污染物浓度达到设定值5-5.5ppm时,开启光催化反应器,开始清除污染物测试。
(4)检测器示数降为零时,记录下测试数据,关闭光催化反应器,本次污染物清除过程结束。开启密闭评价舱排风系统,充分置换密闭评价舱内的气氛,测试结束。
实施例2
具体实验方法与本部分实例1基本相同,不同之处在于ZnO与TiO2的质量比为10%。
实施例3
具体实验方法与本部分实例1基本相同,不同之处在于ZnO与TiO2的质量比为20%。
实施例4
具体实验方法与本部分实例1基本相同,不同之处在于光催化剂为TiO2,未掺杂ZnO。
如图1所示,开灯后,对于起始浓度为5.5 ppm的H2S,单纯TiO2光催化剂需要370min才能完成对硫化氢的降解,降解速率为0.0447 mL/min。而同等条件下改性的ZnO/TiO2光催化剂对硫化氢的光催化降解速率随着ZnO的含量增加,先增加后降低,其中15%ZnO/TiO2光催化剂性能最优,仅需220 min就可实现对H2S完全降解(转化率达到99.9%),降解速率为0.073 mL/min,其催化速率相比于TiO2提高了63.7%。15%ZnO/TiO2光催化剂对硫化氢具有最好的降解效果,可能是由于适量的ZnO的掺杂增大了催化剂的比表面积,降低了晶粒尺寸,暴露出更多的催化中心,同时改变了光催化剂表面的酸碱特性,因此提高了硫化氢的光催化降解速率。
如图2所示,在首次循环实验时可在210 min完成对硫化氢的降解,降解速率为0.075 mL/min,第十次循环实验需要280 min才能完成硫化氢的降解,降解速率为0.057mL/min,降解速率下降了24.0%。完成10次实验共耗时2320 min,在该段时间内清除了160.75 mL硫化氢,平均降解速率为0.069 mL/min,对硫化氢的降解率仍能达到99.9%。由此可得知制备的ZnO/TiO2光催材料对于硫化氢具有优异的光催化稳定性以及持久性。
如图3所示,未掺杂的TiO2(图3-a)光催化剂呈现不规则的球形,颗粒尺寸较大,当ZnO掺杂后(图3-b-f),随着ZnO共掺杂量的增加,ZnO/TiO2球形纳米颗粒的尺寸逐渐变小。上述结果表明与本征TiO2相比,ZnO/TiO2光催化剂的尺寸更小。
如图4所示,本征TiO2的衍射峰具有明显的尖峰和较高的强度,说明本征的TiO2的结晶度比较高,颗粒尺寸较大。随着ZnO掺杂比例的增加,样品的特征衍射峰半高宽逐渐增加,峰值强度逐渐降低,说明ZnO掺杂到TiO2晶格中会导致ZnO /TiO2异质结光催化剂的结晶度和晶粒尺寸降低。
如图5所示,本征TiO2的吸收带边为370 nm,负载ZnO后出现轻微红移。不同比例的ZnO/TiO2光催化剂样品在200 nm-370 nm区间都有较强的光吸收,在可见光范围几乎无吸收峰,可知该类催化剂在紫外光范围内具有良好的光响应。
如图6所示,可见所有的ZnO/TiO2光催化剂都比TiO2具有更高的比表面积,其中15%ZnO/TiO2的比表面积最大,分别是TiO2和ZnO的2.38倍和3.45倍,与纯TiO2相比,ZnO/TiO2复合材料的比表面积大大提高。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属于本发明的涵盖范围。

Claims (9)

1.一种氧化锌/氧化钛复合光催化剂的制备方法,其特征在于:利用钛酸四丁酯和乙酸锌为前驱体,通过溶液-凝胶法制备ZnO/TiO2复合光催化剂。
2.根据权利要求1所述的氧化锌/氧化钛复合光催化剂的制备方法,其特征在于:具体包括以下步骤:取乙醇、钛酸四丁酯和乙酸锌混合得到溶液A,再将去离子水、无水乙醇和冰醋酸按体积比为3:20:1搅拌混合得到溶液B,在冰水浴下将溶液A滴加在溶液B中并搅拌至溶胶形成,然后将所得凝胶在80-100℃下干燥8-12 h,并研磨成粉末,最后在空气氛围中300-500℃煅烧6-8h,升温速率2-5℃/min,得到氧化锌/氧化钛复合光催化剂,即为ZnO/TiO2复合光催化剂。
3.根据权利要求2所述的氧化锌/氧化钛复合光催化剂的制备方法,其特征在于:所述复合光催化剂中氧化锌与氧化钛的质量比为5~20%。
4.一种如权利要求1-3任一项所述的制备方法制得的氧化锌/氧化钛复合光催化剂。
5.一种如权利要求4所述的氧化锌/氧化钛复合光催化剂在光照降解硫化氢中的应用。
6.根据权利要求5所述的应用,其特征在于:将氧化锌/氧化钛复合光催化剂固化在多孔纤维载体上,然后在光照射下,对硫化氢进行降解。
7.根据权利要求6所述的应用,其特征在于:所述氧化锌/氧化钛复合光催化剂固化在多孔纤维载体上的具体步骤如下:
(1)固化氧化锌/氧化钛复合光催化剂的柔性多孔纤维棉的预制备:取氧化锌/氧化钛复合光催化剂与钛胶溶液进行混合搅拌,将搅拌均匀的悬浊液于高压喷枪中汽化后,均匀喷涂在片状柔性多孔纤维棉表面;
(2)催化材料的高温煅烧:将喷涂后的柔性多孔纤维棉置于马弗炉中,然后以2-5℃/min的升温速率升温至300-500 ℃,保温8-12h,得到固化有氧化锌/氧化钛复合光催化剂的柔性多孔纤维棉。
8.根据权利要求7所述的应用,其特征在于:使用钛胶溶液作为粘合剂,钛胶溶液和氧化锌/氧化钛复合光催化剂的质量比为160:1。
9.根据权利要求6所述的应用,其特征在于:光照的光源为紫外光。
CN202310062170.1A 2023-01-16 2023-01-16 氧化锌/氧化钛复合光催化剂及其制备方法和在光照降解硫化氢中的应用 Pending CN116037093A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310062170.1A CN116037093A (zh) 2023-01-16 2023-01-16 氧化锌/氧化钛复合光催化剂及其制备方法和在光照降解硫化氢中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310062170.1A CN116037093A (zh) 2023-01-16 2023-01-16 氧化锌/氧化钛复合光催化剂及其制备方法和在光照降解硫化氢中的应用

Publications (1)

Publication Number Publication Date
CN116037093A true CN116037093A (zh) 2023-05-02

Family

ID=86113138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310062170.1A Pending CN116037093A (zh) 2023-01-16 2023-01-16 氧化锌/氧化钛复合光催化剂及其制备方法和在光照降解硫化氢中的应用

Country Status (1)

Country Link
CN (1) CN116037093A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115957749A (zh) * 2023-01-16 2023-04-14 福州大学 铂负载的二氧化钛复合光催化剂及其制备方法和在致害污染物降解中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144403A (ja) * 2005-10-27 2007-06-14 Atomix Co Ltd 複合型粒子状光触媒およびその製造方法、並びにそれを用いたコーティング剤、光触媒活性部材
CN102658112A (zh) * 2012-04-14 2012-09-12 黑龙江省金昇新能源与环境材料研究院 ZnO-TiO2复合光催化剂的制备方法
CN108970613A (zh) * 2018-07-17 2018-12-11 福州大学 一种羟基氧化铁改性的二氧化钛复合光催化剂及其制备方法与应用
CN110026173A (zh) * 2019-04-28 2019-07-19 苏州科技大学 纳米ZnO/TiO2复合光催化剂及其制备方法和应用
CN111167306A (zh) * 2020-01-13 2020-05-19 福州大学 一种紫外光光照降解无机类恶臭污染物氨气的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144403A (ja) * 2005-10-27 2007-06-14 Atomix Co Ltd 複合型粒子状光触媒およびその製造方法、並びにそれを用いたコーティング剤、光触媒活性部材
CN102658112A (zh) * 2012-04-14 2012-09-12 黑龙江省金昇新能源与环境材料研究院 ZnO-TiO2复合光催化剂的制备方法
CN108970613A (zh) * 2018-07-17 2018-12-11 福州大学 一种羟基氧化铁改性的二氧化钛复合光催化剂及其制备方法与应用
CN110026173A (zh) * 2019-04-28 2019-07-19 苏州科技大学 纳米ZnO/TiO2复合光催化剂及其制备方法和应用
CN111167306A (zh) * 2020-01-13 2020-05-19 福州大学 一种紫外光光照降解无机类恶臭污染物氨气的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李惠娟;王家兵;杨绍斌;梁坤;: "ZnO/TiO_2光催化剂的制备及太阳光催化降解苯酚的研究", 环境污染与防治, vol. 40, no. 07, 31 December 2018 (2018-12-31), pages 774 - 779 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115957749A (zh) * 2023-01-16 2023-04-14 福州大学 铂负载的二氧化钛复合光催化剂及其制备方法和在致害污染物降解中的应用
CN115957749B (zh) * 2023-01-16 2024-08-02 福州大学 铂负载的二氧化钛复合光催化剂及其制备方法和在致害污染物降解中的应用

Similar Documents

Publication Publication Date Title
CN108970613B (zh) 一种羟基氧化铁改性的二氧化钛复合光催化剂及其制备方法与应用
Tseng et al. Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity
Qin et al. One-step fabrication of TiO2/Ti foil annular photoreactor for photocatalytic degradation of formaldehyde
Saqlain et al. Visible light-responsive Fe-loaded TiO2 photocatalysts for total oxidation of acetaldehyde: Fundamental studies towards large-scale production and applications
CN102764667A (zh) 钐/氮共掺杂二氧化钛可见光响应催化剂及制备方法
CN111604053B (zh) 三元水滑石光催化剂及其制备方法与应用
WO2022047813A1 (zh) 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法
CN116037093A (zh) 氧化锌/氧化钛复合光催化剂及其制备方法和在光照降解硫化氢中的应用
CN111530490A (zh) 一种Co3O4-TiO2异质结负载碳纳米管光催化降解材料及其制法
CN112191263A (zh) 一种TiO2光催化复合材料和制备方法及其应用
CN115445595A (zh) 一种二氧化钛纳米片光催化材料的制备方法及其产品和应用
CN1269568C (zh) 用于净化空气的纳米复合光催化剂
CN112961551B (zh) 一种二氧化钛催化空气净化涂料及其制备方法与应用
CN113842953A (zh) NH2-MIL-88B(Fe)@TpCp-COFs核壳复合光芬顿催化剂及制备方法
CN108816267A (zh) 一种黄土负载氮掺杂氧化锌光催化剂及其制备方法
CN112547050A (zh) 一种二氧化锰二氧化钛复合催化剂及其制备方法与应用
CN1887416A (zh) 一种微波制备泡沫镍负载改性纳米TiO2的方法与应用
CN109985615B (zh) 一种高活性有机染料降级光催化剂锌镁复合氧化物的制备方法
CN109482171B (zh) 一种Bi/β-Bi2O3纳米花球状光催化剂及其制备方法
JPH10180118A (ja) 固定化光触媒とその製造方法および有害物質の分解・除去方法
CN110252375A (zh) 一种铁、氮、钴共掺杂的二氧化钛/活性炭复合物、制备方法及作为光催化剂应用
CN113769735B (zh) CeO2/MnO2复合光催化剂及其制备方法和应用
CN115957749B (zh) 铂负载的二氧化钛复合光催化剂及其制备方法和在致害污染物降解中的应用
CN112844368B (zh) 一种氧空位浓度可调的ZnMoO4光催化剂及其制备方法与应用
CN113198461A (zh) 一种纳米MnO2/PTFE复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination