CN1160218A - 具有活动轭形件和隐藏扭铰件的数字式空间音光调制器 - Google Patents
具有活动轭形件和隐藏扭铰件的数字式空间音光调制器 Download PDFInfo
- Publication number
- CN1160218A CN1160218A CN96106137A CN96106137A CN1160218A CN 1160218 A CN1160218 A CN 1160218A CN 96106137 A CN96106137 A CN 96106137A CN 96106137 A CN96106137 A CN 96106137A CN 1160218 A CN1160218 A CN 1160218A
- Authority
- CN
- China
- Prior art keywords
- yoke piece
- spatial light
- light modulator
- pixel
- circuit group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
- G02B26/0841—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Transforming Electric Information Into Light Information (AREA)
Abstract
一种性能改进的DMD型空间光调制器(10),象素镜(30)安装在轭形件(32)上,由此在多个结构之间产生静电吸引力(70,76,80,82),第一,在举起的微镜(30)与举起的寻址电极(50,52)之间,其次,在轭形件(32)与其下的寻址电极(26,28)之间。象素(30)实现了大的寻址力矩、大的捕获力矩、大的复位力矩和比以前器件更大的寻址余量。基板寻址电极(26,28)上轭形件(32)的靠近实现了大的吸引力,由此象素不受寻址变换的影响,只需低的复位电压,且获得更快的切换速度。
Description
这里列出引为参考的共同待批专利申请:
申请号 名 称 申请日08/171,303 改进的多层数字式微镜器件 12-21-9308/239,497 用于微机械器件的PFPE涂层 05-09-9408/373,692 单片可编程格式象素阵列 01-17-9508/382,566 带有埋藏的无源电荷存储单元 02-02-95
阵列的空间光调制器08/300,356 空间光调制器的象素控制电路 09-02-94
组TI18138 超结构光屏蔽空间光调制器 03-31-95
(代理人案号)08/389,673 数字式微镜器件显示阵列的单 02-16-95
位线个别复位存储单元08/396,024 用铝的硬掩膜形成数字式微镜 02-27-95
器件的方法
本发明涉及用于对入射光进行调制以形成光图象的空间光调制器,尤其是,涉及一种带有制作在寻址电路组上的双态微镜阵列的数字微镜器件(DMD)。
空间光调制器(SLMs)广泛用于光学信息处理、投影显示、视频和图形监视器、电视和电子照相印刷术。SLMs是这样一种器件,它以一种空间模式调制的入射光,形成对应于电或光的输入的光学图象。入射光可按其相位、光强、偏振或方向来调制,光的调制可由具有各种电—光或磁—光效应的材料来实现,以及通过表面形变调制光的材料来实现。
一个SLM典型地由可寻址图象元素(象素)的面阵或线阵组成。首先用通常是在SLM外部的有关控制电路规定源象素数据,然后一次对象素阵列写入一帧,可用一组规则把象素数据写入象素阵列,即,依次从顶向底每次一行象素,隔行依次从顶至底寻址一行象素,例如奇数行象素,然后返回,寻址偶数行象素等,在阴极射线管(CTRs)领域中,这一数据写入技术称为光栅化,即高能电子枪从左至右扫描荧光屏上的象素元素,每次一行,这种象素编址数据写入方案同样可用于液晶显示(LCDs)等。
德克萨斯仪器股份有限公司最近的一项新发明是数字微镜器件,即可变形镜器件(DMD)。DMD是一种电/机械/光学SLM,适用于显示、投影和硬拷贝印刷,DMD是一种单片集成电路SLM,由高密度排列的16微米见方可动微镜组成,中心间距17微米,这些微镜制作在寻址电路组上,包括SRAM单元和寻址电极的阵列。每一微镜形成DMD阵列的一个象素,并且是双态的,也就是说,稳定在两种位置之一,这样,投射在微镜阵列上的入射光将被反射到两个方向之一。在微镜位置“通”的状态下,入射光被反射到投射透镜,并会聚在显示屏上或印刷机的光敏元件上,在另一“断”的微镜位置,投射到微镜上的光线将被偏转到一个光吸收器。这一阵列中的每一微镜被单独控制为将入射光反射到投射镜或者光吸收器。最后,投射透镜将象素镜来的调制光聚集和放大在一个显示屏上,产生显示图象。若DMD阵列中每一象素镜都在“通”位置,显示出的图象就会是明亮象素的阵列。
关于DMD器件及其用途的更详细讨论,可参见Hornbeck的美国专利5,061,049,题为“空间光调制器和方法”,DeMond等的美国专利5,079,544,题为“标准独立数字化视频系统”,以及Nelson的美国专利5,105,369,题为“照相系统曝光模板校直方法和制造装置”。所有这些专利都转让给了本发明的受让人,这里列出这些文献作为参考。形成图象的象素的灰阶用微镜的脉宽调制技术来实现,例如美国专利5,278,652,题为“用在脉宽调制显示系统中的DMD结构和定时”,转让给本发明的同一受让人,这里也结合作为参考。
DMD的出现是一种突破性的改进,因为它是真正的数字显示器件和集成电路解决方案。DMD的发展和变化可通过阅读一些有关专利来了解。“第一代”DMD空间光调制器采用可偏转的光线,其中微镜和梁是同一的,即,在微镜和下面的寻址电极间产生静电力,由此引起偏转,这些微镜的偏转是可变的,以模拟方式工作,可以是由一束弹性梁和悬臂梁组成,如下列专利中所讨论的,Hornbeck的美国专利4,662,746,题为“空间光调制器和方法”,Hornbeck的美国专利4,956,619,题为“空间光调制器”,以及Hornbeck的美国专利5,172,262,题为“空间空调制器和方法”。这些文献这里引为参考。
第一代DMD可以是一种数字的或双态的器件,杆(微镜)包括一个由扭铰件安装的微镜,在两个方向上可转动10度,直至微镜末端在一着陆点上着陆。这种例子在Hornbeck的美国专利5,061,049中作了叙述,题为“空间光调制器和方法”。为了限制微镜末端与着陆点之间的范德韦斯(Van der Waals)力,着陆点上可形成一层极化的单分子层,由此使其钝化。这层单分子层减小了范德韦斯力,并防止微镜停留在电极上,该技术在Hornbeck的美国专利5,331,454中得到叙述,题为“DMD的低复位电压工艺”,这里作为参考。
“第二代”DMD在美国专利5,083,857中实现。题为“多级可变形微镜器件”,以及共同待批专利申请08/171,303,题为“改进的多级数字式微镜器件”,1993年12月21日提交。在这种第二代器件中,微镜由一个轭形件举起,该轭形件由一对扭铰件悬在寻址电路组上,如该申请的图3C中所示,在举起的微镜和举起的电极之间产生静电力,当转动时,轭形件与着陆电极接触,这样微镜末端就不会与任何物件接触。轭形件的较短力矩臂约为微镜的50%,这样微镜末端可自由移动,使得能量可更有效地由复位脉冲加到微镜上。在美国专利5,096,279题为“空间光调制器和方法”以及美国专利5,233,456题为“共振微镜和制造方法”中揭示了对微镜加共振复位脉冲解除着陆电极的扭铰结构,然而,与第一代器件相比,牺牲了一些微镜和举起的寻址电极之间产生的寻址力矩,因为这一轭形件略略减小了寻址电极的表面面积。
因此,希望有一种改进的DMD,具有更有效的复位动作,更大的寻址转矩,抓获转矩,以及寻址保持转矩,这种改进的器件最好是采用基线制作工艺做成的。
本发明实现了DMD空间光调制器的技术优点,将轭形件沿平行扭铰件方向横向延伸,轭形件跨越了第一对寻址电极的一大部分,第二对举起的寻址电极在轭形件侧面,位于由轭形件托起的微镜之下,寻址转矩作用于第一对寻址电极与轭形件之间、以及举起的第二对寻址电极与举起的微镜之间,轭形件与其下的寻址电极空开比微镜的位置相对举起的寻址电极更近。由于相对着的元件之间的每单位面积上的作用力与距离的平方成反比,轭形件与其下的第一对寻址电极之间单位面积上的作用力比微镜与举起的第二对寻址电极之间单位面积上的力要大四倍以上。与前几代相比,本发明有着大的寻址力矩、抓获力矩寻址保持力矩和复位力而工艺流程无需改变。
本发明的空间光调制器有着一个基板,寻址电路组包括一个靠近基板的第一部分,以及从基板上举起的第二部分。轭形件由寻址电路组第一部分的上端支持,至少有一个扭铰件与轭形件连接并支撑其扭铰件使得轭形件可在寻址电路板第一部分上端偏转。轭形件托起并支撑着一个象素,该象素的位置在举起的寻址电路组第二部分之上。寻址电路组的第一、第二部分彼此电气连接,加到第一、第二部分的电势在两处产生静电力,第一,在轭形件与寻址电路组第一部分之间产生静电力,第二,在举起的象素与举起的第二部分之间产生静电力。
轭形件与第一部分之间的距离约为象素与举起的第二部分之间距离的一半,轭形件与寻址电路组第一部分相对表面积上的寻址力矩达到了举起的象素与举起的第二电极之间产生的寻址力矩的四倍以上,净寻址力矩是迭加的,比前几代DMD器件的寻址力矩要大得多。
轭形件最好是蝶形的,在轭形件轴线每一侧两边有一对末端部,转动时,一对末端在着陆片上着陆,这样,被举起和支撑着的象素镜仍然无需任何结构,而复位脉冲可加到微镜,最好是以微镜的谐振频率,以实现良好的复位动作,轭形件最好实际上是与扭铰件在同一平面上,可用单蚀刻工艺制作,以使扭铰件形成精确的准直和平衡。
空间光调制器进一步包括连接到寻址电路组的控制电路组,后者向寻址电路组的第一和第二部分提供寻址数据,使得象素偏转。最好是,带有接点的寻址电路组第一部分在象素转轴的每一边,分开的寻址电路组第二部分则在轭形件轴每边的象素下,控制电路组向这些寻址部件的组件中任一组送去寻址数据,使轭形件和微镜向被寻址的第一和第二部分偏转。最好是,象素为微镜,呈矩形,相对扭铰件取向45°,使象素边沿产生的衍射项减到最小,这些衍射项在暗场中会被觉察到。
这种轭形件悬在一对寻址电极上、并支撑和举起延伸至第二对寻址电极上的微镜的DMD器件,明显地增大了寻址电极与扭轴结构即轭形件和微镜之间的吸引面积。基板上处于下层的寻址电极,包括金属物3,经过仔细设计以使吸引面积最大,同时允许轭形件末端以与微镜和轭形件同样的电势在着陆电极上着陆。与第2代器件相比,微镜的举起的寻址电极已经作了修改,以适应本发明延伸的轭形件,同时保持微镜与举起的电极之间能够产生的大部分力矩。由于减小举起的电极面积损失的任何力矩由横跨寻址电极的轭形件延伸来弥补,这些寻址电极位于到轭形件距离的一半。微镜在举起的电极上。与第二代器件相比,可产生的净寻矩力矩约是一个大于2的因子。本发明还实现了更大的抓获力矩和寻址保持力矩。
图1是按照本发明最佳实施例的一种空间光调制器的方框图,包括用于控制含微镜的象素阵列的行地址和列数据写入电路组;
图2是图1中所示阵列的一个DMD象素的分解透视图,包括制作在可偏转的轭形件上的举起的微镜,轭形件由一对扭轴支持,阴影区域表示举起的微镜和举起的寻址电极之间的静电吸引区,以及轭形件和下面基板上包括金属3的寻址电极之间的静电吸引区;
图3表示微镜和举起的寻址电极之间的静电吸引力,以及轭形件和下面的寻址电极之间的静电吸引力,轭形件和微镜连接到一条偏置/复位总线,有着同样的电压偏置;
图4是图1中阵列一个局部的3×3象素阵列,一些轭形件,举起的寻址电极和扭铰件被移去以图示确定基板水平寻址电极和基板水平偏置/复位图的金属3层,同时一些举起的微镜被移去,以画出举起的轭形件,其横跨下面的基板水平寻址电极的一部分;
图5表示图4中象素微镜的两个稳定的偏转状态,用于使入射光偏转到两个方向之一;
图6是图1中DMD阵列的一个象素的横截面,沿扭转轴作出以表示举起的微镜寻址电极和支撑在一对基板寻址电极上的轭形件;
图7也是类似于图6的横截面,而轭形件和其上的微镜转至另一稳定状态,此时轭形件末端在一对对应的着陆点上着陆,而举起的微镜停留在接近但与举起的微镜寻址电极空开的位置;
图8~13依次表示用传统的增强半导体工艺技术进行加工以制作图2象素的各层半导体材料;
图14是本发明另一最佳实施例的分解透视图,轭形件只在扭轴每一边有一个着陆点;
图15是本发明又一个实施例的分解透视图,在扭轴每一边轭形件有一个着陆点,轭形件平行于扭轴延伸,越过下面的基板寻址电极。
现在参见图1,一种包括数字式微镜器件(DMD)的空间光调制制器如10所示,DMD10是一单片集成电路,其中可见包括一864×576微镜阵列12。阵列12整体制作在一个864×36存储器单元阵列16上,组成存储器单元阵列16的36行存储器单元(MR0~MR35)中每一存储单元与指定的一组16个象素18(如图2所示)相连并对其进行控制。每一存储单元包括一个1位主静态随机存取存储器(SRAM)单元,以及一个由主单元存入的1位副SRAM单元。864条位线BL0~BL863连接到864列存储单元的每一列,列象素数据经相连的位线BL0~BL863加到被寻址的主存储单元行MRn,通过激活有关的行写入允许线或读允许线,分别用WDn和RDn表示,来寻址主存储器,WDn连接到行MRn中每一主单元的允许输入端,通过激活总控制线MXFRB将象素数据从主单元送入对应的副单元,该MXFRB线连接到阵列16所有副单元的允许输入端。副存储单元实际上用作后台寄存器,这样数据可从主存储单元装入副存储单元,主存储单元就可重新装入新的象素数据而不影响副存储单元的内容。关于这一后台寄存技术的讨论,可参见美国共同待批专利申请08/389,673,题为“具有单位线双寄存器单元的空间光调制器”,1995年2月26日申请,这里引为参考。控制电路组的更详细讨论,包括行地址和列数据写入电路组,以及DMD10的试验控制功能,可参见共同待批专利申请08/378,692,题为“单片可编程格式象素阵列”,1995年1月17日申请,这里作为参考。
参见图2,其中表示微镜阵列12的一个象素18。副存储单元的数据提供给一对辅助寻址电极线,每一条电极线依次连接到两地址电极26和28之一,后者制作在阵列12的每一象素18下并与之相关。象素18可见包括一矩形微镜30,由一支撑柱34安装在轭形件32上并被其举起,支撑柱34从微镜中心向下伸出,如图所示,沿其扭转轴到达轭形件32中心,使微镜30的质量中心在轭形件32上保持平衡。轭形件32呈蝶形,将在后面仔细讨论。轭形件32由一对扭铰件40沿其中心轴作轴向支撑,扭铰件40另一端伸至一个支撑柱头42并安装在其上,支撑柱头42则是在相应的支撑柱44顶端形成。一对抬起的微镜寻址电极50和52由对应的寻址支撑柱54和56支撑。
寻址支撑柱54和56、支撑柱44支撑着寻址电极50和52、扭铰件40,轭形件32离开并处于偏置/复位总线60和一对基板层寻址电极片26和28之上。当微镜30和轭形件32一起绕轭形件由扭铰件40所限定的扭转轴转动时,轭形件32侧边口的一对末端部58被倾斜和落到偏置/复位总线60上,在着陆点62与之接触。
现在参见图2及图3,将详细讨论本发明最佳实施例的象素18的技术优点,微镜30和轭形件32的转动可在两个方向中之一上实现,以达双稳态和调制入射光,如图5所示,将在下面讨论。寻址电压施加在两寻址电极片26或28之一,并经相联的电极支撑柱54和56加到相应的举起的微镜寻址电极50或52之一。这一寻址电压可以是与CMOS逻辑电路兼容的5伏,但需要的话也可以是其它电平。同时,正15伏偏置电压加到偏置/复位总线60上,并经支撑柱44、支撑柱头42和扭铰件40加到轭形件32上,以及经支撑件34加到微镜30上。本发明的技术优点在于将静电力加到图2阴影区域所示两个位置的相对面之间,这些静电吸引力也表示在图3中,如70、76、80和82。
举例说,若要微镜30和轭形件32反时针转向地址线Va,此时在辅助地址线Va上加正5伏,此后,偏置线Vb上正15伏的电压加到偏置/复位总线60上,在轭形件32和微镜30上加上正15伏的电压,在寻址电极26和基板寻址电极上面的轭形件32之间产生20伏的电势差的力如70所示,轭形件32悬在被寻址的电极26上的对应部分如阴影部分74所示。相反,若要微镜顺时针方向转动,辅助寻址电极28上电势为0,产生的吸引力如76所示,轭形件32悬在寻址电极28上方的对应部分如阴影区域78所示。
当在轭形件32一半和其下的寻址电极26之产生吸引力70时,在举起的寻址电极50和微镜30之间也产生一静电吸引力,如图3中80所示,该静电吸引力由微镜30上标为82的该部分与举起的寻址电极50之间形成,微镜30悬在寻址电极52上的部分标为84。所以,通过寻址一个电极26或28,就在举起的对应寻址电极50或52上产生寻址电压,在两处产生静电吸引力,如70和80所示,或76或82所示。有选择地将0伏寻址电压加到两寻址电极26或28之一,可决定一旦正15伏电压加到偏置总线60以及轭形件32和微镜30上时微镜30和轭形件朝哪个方向转动。
参见图3,可见举起的寻址电极50和52与轭形件32处于同一平面,均在寻址电极26和28上方,空开约1微米距离,微镜30在举起的寻址电极50和52上方空开的间隔约为其两倍,即2微米。由于相对面之间吸引力的改变与相对面之间距离的平方或正比,轭形件32与寻址电极26和28之间单位面积上产生的静电吸引力是微镜30与对应举起的寻址电极50和52之间吸引力的四倍,产生在扭转轴两边的力是迭加的,一起使微镜30和轭形件32向寻址电极方向转动。
在另一实施例中,可省去举起的电极50、52和相应的支撑柱,在这一例子中,轭形件32上微镜30的高度仅约1微米,以获得与下面端部凸出的圆片电极26和28之间大的吸引力。在倾斜时,微镜30将转向对应的圆形寻址电极26和28,但不与之接触。在该例子中,包括柱44、轭形件32和微镜30的举起的结构都处于同样的电势,避免了短路的危险。由此,可不限于一组举起的电极。
寻址力距(Ta)是仅由轭形件32和微镜的寻址电压产生的力矩,就同样的寻址电压和偏置电压而言,该寻址力矩比上一代DMD器件要大得多,因此,本发明有着更大的寻址余量,该余量是寻址电压Va与加上偏置电压时确保微镜转向正确方向所需电压之差。
本发明的象素还有更大的捕获力矩(T1),T1衡量寻址电压存在时由偏置电压产生的使微镜转向相反状态或复位的捕获力矩。本发明另一引人注目的性能参数提高在于增大了寻址保持力矩(Tn),它是复位后无偏置电压时寻址电压保持微镜在其着陆状态的能力的量度。本发明又一改进点是增大了复位力(Fr),它衡量单个脉冲复位和扭铰件末端产生的恢复力的结合所产生的末端反作用力。
由于轭形件32的设计,与其下的寻址电极产生静电吸引力,同时在举起的微镜与举起的寻址电极之间也产生静电吸引力,本发明比以前的DMD器件显著地改进了所有四项性能参数,由于可转动的轭形件靠近寻址电极,并有着相当大的相对表面积,所有上面提到的性能参数都得到了明显的提高,结果增加了DMD器件的电-机效率。尤其是,无需改变扭铰件的力度,就可获得为以前器件1.8倍以上的寻址力矩,捕获力矩比以前增大到2.6倍,复位力矩增大到8.8倍。在提高所有性能参数的同时,制作本发明的工艺,如下面将要讲到的那样,几乎与以前的器件一样,这就比以前的器件多出了“无中生有”的好处。
本发明的DMD器件的意义还在于更大的寻址余量,如所讨论的那样,很少发生寻址错误,只需更小的复位电压,以及更快的开关速度,而这对空间光调制器的工作是决定性的。按本发明的方案,甚至可采用非线性的扭铰件和更硬的扭铰件,只要是希望的话,因为寻址余量和捕获余量都得到了增大。
为了减小由于范德韦斯力而滞留的可能性,可对着陆电极60进行钝化,尤其是对应于轭形件32末端58接触点的区域62,对着陆电极钝化后,轭形件32停留或滞留的倾向可被减小。滞留是一种阻碍力,造成需要更大的复位电压来使微镜复位到平坦状态或切换到相反偏置的双稳态。钝化着陆电极的方法在Hornbeck的美国专利5,331,454中已经叙述,题为“DMD的低复位电压工艺”,以及美国共同待批申请专利08/239,497,题为“微机械器件的PFPE涂层”,1994年5月9日提交,这里作为参考。为了实现微镜的复位,以及使微镜向另一双稳态偏置,可在偏置/复位线上加上频率相应于微镜谐振频率的电压脉冲,典型值为5MHz,如美国专利5,096,279中所述,题为“空间光调制器和方法”,这里作为参考。
现在来看图4,其中表示阵列12一个3×3局部阵列的立体剖面图,以说明硅基板上金属层3的制作,金属层3在硅基板上形成寻址电极和偏置/复位总线。图中还表示出举起的微镜寻址电极、支撑柱头,以及扭铰件将轭形件32安装在金属层3上,也可看见轭形件沿象素扭转轴支撑对应的微镜支撑柱。
现在来看图5,表示一个光路图,其中可见入射光被调制和偏转到两个方向之一,取决于微镜是“通”还是“断”状态。若微镜30在通状态,入射光反射到光路中,包括一个投射镜,如果是屏幕前或屏幕后投射镜的话,最终会聚在一个显示屏上,如果是电子照相印刷机的话,则会聚在一个光敏表面上。若微镜30在断位置,入射光被反射到光吸收器,从暗场光路中消失。微镜30两个稳定状态之间有20°的转动,这使被反射的入射光有40°的摆幅。由此,本发明实现了一种高对比度的空间光图象,而这对本发明的空间光调制器所针对的暗场光学系统中的使用是十分重要的。
在参见图6和图7,图中表示沿图2A-A线作出的象素18的横截面,但未画出支撑柱。如图6所示,轭形件32和微镜30处于未偏转的位置,轭形件32与举起的寻址电极50和52处于一个平面,在包括寻址电极26、28和复位/偏置总线60的金属3层上方约1微米处,微镜30被举高到在一对举起的寻址电极50和52上方约2微米处,这大约是轭形件与基板64之间分开距离的两倍。
参见图7,此时轭形件32和微镜30被寻址,朝顺时针方向转动,如图所示。轭形件被寻址的那一半的一对着陆末端58在复位/偏置总线60的部件62上着陆,但是,举起的微镜30,尽管已转动,但仍在对应的寻址电极52上方并与之空开。如图所示,轭形件32关于扭铰轴的矩臂约为微镜30矩臂的一半,着陆的轭形件32与微镜30相比较短的尺寸减小了复位微镜所需的力矩,而太短的着陆轭形件会引起扭铰件附加的应力。要更好地了解这些力可参见美国共同待批专利08/171,303,题为“多层数字式微镜器件”,1993年12月21日提交,这里引为参考。既然轭形件32着陆在一对正对着的末端58上,并且对称设计的,在轭形件32下就可形成大面积的寻址电极26和28,如图2所示。此外,还观察到轭形件与着陆电极部件62之间的滞留力得以减小,这样在改变或复位微镜状态时就只需较低的复位电压。
现在参见图8~13,将讨论用于制作一个象素18的半导体制作工业。图中的截面都是沿图2B-B线作出的,考虑到清楚和示意起见,未按比例画出。
首先参见图8,对硅基板64进行处理以形成包括存储器单元16阵列的下层寻址电路组、行寻址电路组20和列数据写入电路组30。此后基板64被覆盖一层保护性的氧化层102。随后,第三层金属化层,通常称为M3,喷射沉积到部分处理过的晶片,表示为104,对这一金属化的第三层制作图形和进行蚀刻,以形成图2和图4所示寻址电极和26和28,以及偏置/复位总线60。接着,在寻址电路组上旋转沉积一层扭铰件隔离层106,最好由一层厚度1微米的正光致抗蚀剂形成在光致抗蚀剂层106中开一对通孔110,以便形成扭铰件支撑柱,然后在高温中对光致抗蚀剂层106进行深度UV硬化,以防止在以后的处理步骤中流动和冒泡。
参见图9,一层金属化的扭铰薄层112喷射沉积到光致抗蚀剂层106并进入通道110,如图中所示。扭铰层112最好是厚度为约500埃,以及由铝、铝合金、钨钛和其他适用于本发明的导电材料组成。扭铰件支撑柱44在这一步骤中形成,并与偏置/复位总线60电学连接。尽管未画出,在这一步骤中还形成了一对电极支撑柱54和56,这里,层112先喷射沉积在光致抗蚀剂106中形成的一对对应通道中,当通道110被开通后,这些通道106是在前一步骤中形成的。这样,电极支撑柱和扭铰件支撑柱是差不多的。光致抗蚀剂隔离层106的厚度决定了扭铰件气隙厚度,也根据轭形件32接触到着陆电极的角自由度决定了微镜旋转角。
参见图10。用等离子沉积法形成第一氧化物掩膜层,并制成扭铰件40的图案。然后,沉积一铝合金的厚金属层,典型值为约300埃。用等离子沉积形成第二氧化物掩膜层,做成轭形件32举起的电极54、56和扭铰件支撑头42的图形,然后蚀刻扭铰件薄层112和金属厚层,形成寻址电极50、52和扭铰件支撑头42、以及扭铰件40,如图中所示,用一次等离子蚀刻来形成这些结构,两氧化层用作蚀刻阻挡层,保护其下的金属层。等离子蚀刻工艺完成后,从较薄的金属扭铰件、较厚的金属支撑头42、电极50、54和扭铰件40上除去氧化物蚀刻阻挡层,如图10所示。
参见图11,在扭铰件、电极和扭铰件支撑头上旋转沉积一微镜分隔厚层122,最好由厚约2微米的正光致抗蚀剂形成。在该光致抗蚀剂122中开一通道124,在轭形件32上形成一开口,如图所示,然后,使光致抗蚀剂层122深度UV硬化。
参见图12,喷射沉积一层金属微镜层,由具反射特性的铝合金形成,厚度约4000埃。这一层形成微镜支撑柱34和微镜30。然后在微镜层上等离子沉积一氧化物掩膜层,制成矩形微镜的图形,随后对金属微镜层进行等离蚀刻以形成微镜30和支撑柱34,如图所示,通常留下氧化物掩膜层,随后对晶片进行处理和剥离,以得到芯片,参见图13,芯片被置于等离子蚀刻室内,在比用等离子蚀刻法除去氧化物掩膜层和分隔层106、122,留下扭铰件40隙和轭形件32下的气隙,以及举起的微镜30下的气隙134。
现在参见图14,本发明另一实施例的分解透视图表示为200。象素200看上去与图1~13讨论的象素18非常相似。这里,类似的编号表示类似的元件。但是,象素200的轭形件202略微作了修改,在扭转轴每一侧只有单个着陆端204,如图中所示,当转动时,轭形件202的一端204会转动到在对应的着陆电极208上接触到和着陆为止。轭形件202基本上覆盖了基板上金属3层形成的一对寻址电极片210和202。相对面上产生静电吸引力的对应区域在图中用阴影区表示,如214、216、218和220。扭铰件222用扭铰件支撑柱224支撑轭形件202,举起的寻址电极228和230与轭形件202在同一平面上。
现在参见图15,本发明的另一实施例由300表示。象素300非常类似于图14中200所示的实施例,以及图1~13中象素18的例子,类似的数字表示类似的元件。如图中所示,象素300在扭转轴每一侧也只有单个着陆端,这与图64的例子相似。轭形件302基本上平行于扭转轴延伸,越过下面的寻址电极,一对寻址电极304和306在轭形件302一侧的下面,另一对寻址电极310和312在偏置/复位总线320的另一侧,而总线320呈如图所示的X型。两寻址电极304和306彼此电学连接,另一对寻址电极310和312也同样连在一起。两对寻址电极经对应的支撑柱336电连接到举起的微镜寻址电极330和332。静电吸引区由阴影区350、352、354、356、358和360表示。扭铰件362由柱364支撑轭形件302。在该例子中,偏置/复位总线320呈X型,使一对寻址电极分为两枝。由这一X形状,偏置/复位总线易于互联到该硅基板上金属3层中相邻的象素,这样可获得用共用偏置/复位总线控制多行象素所希望的布局,并便于采用分别复位技术,如美国专利申请08/300,356中所揭示的,题为“空间光调制器用象素控制电路组”,1995年2月16日提交,这里作为参考。轭形件端部的着陆点沿偏置/复位总线设置,如340所示。
简而言之,这里揭示了一种DMD型空间光调制器,在两处产生静电力,引起象素微镜偏转。第一,在轭形件与其下的基板寻址电极之间产生吸引力,第二,在举起的微镜与举起的寻址电极之间也产生静电力,这些静电力是彼此迭加的,实现了比以前的DMD更好的性能。由于轭形件在基板寻址电极上离开距离等于微镜与举起的寻址电极间距的一半,所以获得了为微镜与举起的电极之间作用力四倍以上的单位面积吸引力。本发明的设计实现了更大的寻址力矩,更大的捕获力矩,更大的复位力矩,以及更大的寻址余量。象素很少受寻址变换的影响,只需较低的复位脉冲,可免除要求谐振复位脉冲和多重复位脉冲。可获得更快的切换速度。由于性能参数的提高,还可采用非线性和更硬的扭铰件。几乎不改变基线工艺就可制作象素阵列,这样,由本发明的空间光调制器对以前的改进所获得的性能参数提高是一种在旧技术上“无中生有”的设计。
尽管是按照具体的最佳实施例叙述了本发明,但读过本发明后本领域的技术人员显然可作出许多变化和修改,所以权利要求应被尽可能宽地按目前的技术水平解释以包括所有这些变化和修改。
Claims (18)
1.一种空间光调制器,其特征在于,包括:
a)基板;
b)寻址电路组,包含靠近所述基板的第一部分和在所述基板上举起的第二部分;
c)轭形件,支撑在所述寻址电路组第一部分上;
d)至少一个扭铰件,与所述轭形件相连并支撑所述轭形件,使得所述轭形件可以偏转;以及
e)一个象素,由所述轭形件举起和支撑,所述象素位于所述举起的寻址电路第二部分上。
2.如权利要求1所限定的空间光调制器,其特征在于,包括一对所述扭铰件,沿轭形件轴向支撑所述轭形件。
3.如权利要求1所述的空间光调制器,其特征在于,所述轭形件的宽度小于所述象素和所述象素叠盖所述轭形件的宽度。
4.如权利要求2所述的空间光调制器,其特征在于,所述轭形件在所述轭形件轴线的每一侧有一对末端部。
5.如权利要求4所述的空间光调制器,其特征在于,所述轭形件呈蝶形。
6.如权利要求1所述的空间光调制器,其特征在于,在所述轭形件与所述寻址电路组第一部分之间形成第一间隔,在所述象素与所述寻址电路组第二部分之间形成第二间隔,所述第一间隔小于所述第二间隔。
7.如权利要求1所述的空间光调制器,其特征在于,所述轭形件实质上处于与所述寻址电路组第二部分同一平面。
8.如权利要求2所述的空间光调制器,其特征在于,在所述轭形件与所述寻址电路组第一部之间形成第一对相对面,在所述象素与所述寻址电路组第二部分之间形成第二对相对面,所述第二对相对面自所述轭形件轴线横向伸出的距离要大于所述第一对相应面自所述轭形件轴线横向伸出的距离。
9.如权利要求1所述的空间光调制器,其特征在于,进一步包括在所述基板上构成的偏置/复位总线,并电连接至所述象素。
10.如权利要求1所述的空间光调制器,其特征在于,所述轭形件与所述扭铰件实质上在同一平面。
11.如权利要求1所述的空间光调制器,其特征在于,进一步包括连接到所述寻址电路组的控制电路组,所述控制电路组向所述寻址电路组第一部分和第二部分提供寻址数据,使所述象素偏转。
12.如权利要求2的空间光调制器,其特征在于,进一步包括连接到所述寻址电路组的控制电路,所述控制电路组向所述寻址电路组第一部分之一提供寻址数据,使所述轭形件向所述被寻址的第一部分偏转。
13.如权利要求1所述的空间光调制器,其特征在于,进一步包括一个连接到并支撑所述扭铰件的支撑柱。
14.如权利要求1所述的空间光调制器,其特征在于,所述寻址电路组第一部分和所述第二部分彼此电连接。
15.如权利要求1所述的空间光调制器,其特征在于,所述象素是一微镜。
16.如权利要求15所述的空间光调制器,其特征在于,所述微镜呈矩形。
17.如权利要求16所述的空间光调制器,其特征在于,所述微镜相对所述轭形件取向为45°。
18.一种空间光调制器,其特征在于,包括:
a)基板;
b)寻址电路组,包括一个靠近所述基板的第一部分,以及一个位于所述第一部分所处平面之上的第二部分;
c)一个轭形件,支撑在所述寻址电路组第一部分上;
d)至少一个扭铰件,与所述轭形件相连并支撑所述轭形件,使得所述轭形件可以偏转;以及
e)一个象素,由所述轭形件举起并支撑,所述象素位予所述举起的寻址电路组第二部分上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/424,021 US5535047A (en) | 1995-04-18 | 1995-04-18 | Active yoke hidden hinge digital micromirror device |
US08/424,021 | 1995-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1160218A true CN1160218A (zh) | 1997-09-24 |
Family
ID=23681129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN96106137A Pending CN1160218A (zh) | 1995-04-18 | 1996-04-18 | 具有活动轭形件和隐藏扭铰件的数字式空间音光调制器 |
Country Status (8)
Country | Link |
---|---|
US (1) | US5535047A (zh) |
EP (1) | EP0738910B1 (zh) |
JP (1) | JP3851679B2 (zh) |
KR (1) | KR100416679B1 (zh) |
CN (1) | CN1160218A (zh) |
CA (1) | CA2173637C (zh) |
DE (1) | DE69634222T2 (zh) |
TW (1) | TW295631B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101963698A (zh) * | 2010-09-30 | 2011-02-02 | 西北工业大学 | 一种微机械空间光调制器 |
CN110678803A (zh) * | 2017-05-26 | 2020-01-10 | Lg伊诺特有限公司 | 透镜驱动装置及包括透镜驱动装置的相机模块和光学设备 |
Families Citing this family (343)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6674562B1 (en) | 1994-05-05 | 2004-01-06 | Iridigm Display Corporation | Interferometric modulation of radiation |
US6467345B1 (en) | 1993-10-18 | 2002-10-22 | Xros, Inc. | Method of operating micromachined members coupled for relative rotation |
US6426013B1 (en) | 1993-10-18 | 2002-07-30 | Xros, Inc. | Method for fabricating micromachined members coupled for relative rotation |
US6044705A (en) * | 1993-10-18 | 2000-04-04 | Xros, Inc. | Micromachined members coupled for relative rotation by torsion bars |
US8014059B2 (en) | 1994-05-05 | 2011-09-06 | Qualcomm Mems Technologies, Inc. | System and method for charge control in a MEMS device |
US5703728A (en) * | 1994-11-02 | 1997-12-30 | Texas Instruments Incorporated | Support post architecture for micromechanical devices |
US5650881A (en) * | 1994-11-02 | 1997-07-22 | Texas Instruments Incorporated | Support post architecture for micromechanical devices |
KR100213281B1 (ko) * | 1994-10-31 | 1999-08-02 | 전주범 | 광로조절장치 |
US5671083A (en) * | 1995-02-02 | 1997-09-23 | Texas Instruments Incorporated | Spatial light modulator with buried passive charge storage cell array |
US6969635B2 (en) * | 2000-12-07 | 2005-11-29 | Reflectivity, Inc. | Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates |
US5835256A (en) * | 1995-06-19 | 1998-11-10 | Reflectivity, Inc. | Reflective spatial light modulator with encapsulated micro-mechanical elements |
US6046840A (en) | 1995-06-19 | 2000-04-04 | Reflectivity, Inc. | Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements |
US5739941A (en) * | 1995-07-20 | 1998-04-14 | Texas Instruments Incorporated | Non-linear hinge for micro-mechanical device |
US6172496B1 (en) * | 1995-09-18 | 2001-01-09 | James P. Karins | Static event detection/protection device |
EP0783124B1 (en) | 1995-12-15 | 2002-04-17 | Texas Instruments Incorporated | Improvements in or relating to spatial light modulators |
US6686291B1 (en) | 1996-05-24 | 2004-02-03 | Texas Instruments Incorporated | Undercut process with isotropic plasma etching at package level |
US6055091A (en) * | 1996-06-27 | 2000-04-25 | Xerox Corporation | Twisting-cylinder display |
US5825529A (en) * | 1996-06-27 | 1998-10-20 | Xerox Corporation | Gyricon display with no elastomer substrate |
US5914805A (en) * | 1996-06-27 | 1999-06-22 | Xerox Corporation | Gyricon display with interstitially packed particles |
US5754332A (en) * | 1996-06-27 | 1998-05-19 | Xerox Corporation | Monolayer gyricon display |
US5904790A (en) * | 1997-10-30 | 1999-05-18 | Xerox Corporation | Method of manufacturing a twisting cylinder display using multiple chromatic values |
US5922268A (en) * | 1997-10-30 | 1999-07-13 | Xerox Corporation | Method of manufacturing a twisting cylinder display using multiple chromatic values |
US5894367A (en) * | 1996-09-13 | 1999-04-13 | Xerox Corporation | Twisting cylinder display using multiple chromatic values |
US5771116A (en) * | 1996-10-21 | 1998-06-23 | Texas Instruments Incorporated | Multiple bias level reset waveform for enhanced DMD control |
US7471444B2 (en) | 1996-12-19 | 2008-12-30 | Idc, Llc | Interferometric modulation of radiation |
US6028689A (en) * | 1997-01-24 | 2000-02-22 | The United States Of America As Represented By The Secretary Of The Air Force | Multi-motion micromirror |
DE19710597C1 (de) * | 1997-03-14 | 1998-07-23 | Block Augenoptische Und Ophtha | Vorrichtung zur Erzeugung eines beleuchteten Bereiches mit hoher, lokal veränderbarer Energiedichte mit Hilfe eines Lasers und einer DMD |
DE69806846T2 (de) * | 1997-05-08 | 2002-12-12 | Texas Instruments Inc., Dallas | Verbesserungen für räumliche Lichtmodulatoren |
US5817569A (en) * | 1997-05-08 | 1998-10-06 | Texas Instruments Incorporated | Method of reducing wafer particles after partial saw |
US5903383A (en) * | 1997-05-19 | 1999-05-11 | The Charles Stark Draper Laboratory Inc. | Electrostatic memory micromirror display system |
US5808780A (en) * | 1997-06-09 | 1998-09-15 | Texas Instruments Incorporated | Non-contacting micromechanical optical switch |
US5790297A (en) | 1997-06-26 | 1998-08-04 | Xerox Corporation | Optical row displacement for a fault tolerant projective display |
US5774254A (en) * | 1997-06-26 | 1998-06-30 | Xerox Corporation | Fault tolerant light modulator display system |
DE19733370C2 (de) * | 1997-08-01 | 2000-07-06 | Agfa Gevaert Ag | Vorrichtung und Verfahren zum Kopieren von Bilder auf lichtempfindliches Aufzeichnungsmaterial |
US5867302A (en) * | 1997-08-07 | 1999-02-02 | Sandia Corporation | Bistable microelectromechanical actuator |
DE19757197A1 (de) * | 1997-12-22 | 1999-06-24 | Bosch Gmbh Robert | Herstellungsverfahren für mikromechanische Vorrichtung |
US5976428A (en) * | 1998-01-09 | 1999-11-02 | Xerox Corporation | Method and apparatus for controlling formation of two-color balls for a twisting ball display |
US5900192A (en) * | 1998-01-09 | 1999-05-04 | Xerox Corporation | Method and apparatus for fabricating very small two-color balls for a twisting ball display |
EP1054726B1 (en) * | 1998-02-11 | 2003-07-30 | University of Houston, Office of Technology Transfer | Apparatus for chemical and biochemical reactions using photo-generated reagents |
US20040035690A1 (en) * | 1998-02-11 | 2004-02-26 | The Regents Of The University Of Michigan | Method and apparatus for chemical and biochemical reactions using photo-generated reagents |
WO1999042813A1 (en) | 1998-02-23 | 1999-08-26 | Wisconsin Alumni Research Foundation | Method and apparatus for synthesis of arrays of dna probes |
US6206290B1 (en) | 1998-03-06 | 2001-03-27 | Symbol Technologies, Inc. | Control system for oscillating optical element in scanners |
WO1999052006A2 (en) | 1998-04-08 | 1999-10-14 | Etalon, Inc. | Interferometric modulation of radiation |
US8928967B2 (en) | 1998-04-08 | 2015-01-06 | Qualcomm Mems Technologies, Inc. | Method and device for modulating light |
US6271957B1 (en) * | 1998-05-29 | 2001-08-07 | Affymetrix, Inc. | Methods involving direct write optical lithography |
DE19824709A1 (de) * | 1998-06-03 | 1999-12-09 | Bundesdruckerei Gmbh | Erzeugung von Leuchtdichte-Arrays mit digitalem Array-Strahlungsprozessoren |
US6962419B2 (en) | 1998-09-24 | 2005-11-08 | Reflectivity, Inc | Micromirror elements, package for the micromirror elements, and projection system therefor |
US6529310B1 (en) | 1998-09-24 | 2003-03-04 | Reflectivity, Inc. | Deflectable spatial light modulator having superimposed hinge and deflectable element |
US6031657A (en) * | 1998-10-15 | 2000-02-29 | Memsolutions, Inc. | Membrane-actuated charge controlled mirror (CCM) projection display |
US5991066A (en) * | 1998-10-15 | 1999-11-23 | Memsolutions, Inc. | Membrane-actuated charge controlled mirror |
US6123985A (en) * | 1998-10-28 | 2000-09-26 | Solus Micro Technologies, Inc. | Method of fabricating a membrane-actuated charge controlled mirror (CCM) |
US6700606B1 (en) * | 1999-06-09 | 2004-03-02 | Activcard Ireland Limited | Micromirror optical imager |
US6671005B1 (en) | 1999-06-21 | 2003-12-30 | Altman Stage Lighting Company | Digital micromirror stage lighting system |
WO2003007049A1 (en) | 1999-10-05 | 2003-01-23 | Iridigm Display Corporation | Photonic mems and structures |
US6741383B2 (en) | 2000-08-11 | 2004-05-25 | Reflectivity, Inc. | Deflectable micromirrors with stopping mechanisms |
US6396619B1 (en) | 2000-01-28 | 2002-05-28 | Reflectivity, Inc. | Deflectable spatial light modulator having stopping mechanisms |
US6529311B1 (en) * | 1999-10-28 | 2003-03-04 | The Trustees Of Boston University | MEMS-based spatial-light modulator with integrated electronics |
US6412972B1 (en) | 1999-12-10 | 2002-07-02 | Altman Stage Lighting Company | Digital light protection apparatus with digital micromirror device and rotatable housing |
US6440252B1 (en) | 1999-12-17 | 2002-08-27 | Xerox Corporation | Method for rotatable element assembly |
US6466358B2 (en) * | 1999-12-30 | 2002-10-15 | Texas Instruments Incorporated | Analog pulse width modulation cell for digital micromechanical device |
US6545671B1 (en) | 2000-03-02 | 2003-04-08 | Xerox Corporation | Rotating element sheet material with reversible highlighting |
US6498674B1 (en) | 2000-04-14 | 2002-12-24 | Xerox Corporation | Rotating element sheet material with generalized containment structure |
FR2807844B1 (fr) * | 2000-04-17 | 2003-05-16 | Commissariat Energie Atomique | Commutateur optique a pieces mobiles et son procede de realisation, et dispositif de brassage optique utilisant le commutateur optique |
KR100708077B1 (ko) * | 2000-05-01 | 2007-04-16 | 삼성전자주식회사 | 화상표시장치용 마이크로미러 디바이스 |
US6504525B1 (en) | 2000-05-03 | 2003-01-07 | Xerox Corporation | Rotating element sheet material with microstructured substrate and method of use |
US6813053B1 (en) * | 2000-05-19 | 2004-11-02 | The Regents Of The University Of California | Apparatus and method for controlled cantilever motion through torsional beams and a counterweight |
US6781742B2 (en) * | 2000-07-11 | 2004-08-24 | Semiconductor Energy Laboratory Co., Ltd. | Digital micromirror device and method of driving digital micromirror device |
US7099065B2 (en) * | 2000-08-03 | 2006-08-29 | Reflectivity, Inc. | Micromirrors with OFF-angle electrodes and stops |
US6545758B1 (en) * | 2000-08-17 | 2003-04-08 | Perry Sandstrom | Microarray detector and synthesizer |
US6567163B1 (en) | 2000-08-17 | 2003-05-20 | Able Signal Company Llc | Microarray detector and synthesizer |
US7196740B2 (en) * | 2000-08-30 | 2007-03-27 | Texas Instruments Incorporated | Projection TV with improved micromirror array |
US6522454B2 (en) | 2000-09-29 | 2003-02-18 | Texas Instruments Incorporated | Hidden hinge digital micromirror device with improved manufacturing yield and improved contrast ratio |
US6962771B1 (en) * | 2000-10-13 | 2005-11-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Dual damascene process |
EP1348144A2 (en) * | 2000-11-22 | 2003-10-01 | Flixel Ltd. | Display devices manufactured utilizing mems technology |
US6614576B2 (en) * | 2000-12-15 | 2003-09-02 | Texas Instruments Incorporated | Surface micro-planarization for enhanced optical efficiency and pixel performance in SLM devices |
US6524500B2 (en) | 2000-12-28 | 2003-02-25 | Xerox Corporation | Method for making microencapsulated gyricon beads |
US6690350B2 (en) | 2001-01-11 | 2004-02-10 | Xerox Corporation | Rotating element sheet material with dual vector field addressing |
US6480320B2 (en) * | 2001-02-07 | 2002-11-12 | Transparent Optical, Inc. | Microelectromechanical mirror and mirror array |
US6585378B2 (en) | 2001-03-20 | 2003-07-01 | Eastman Kodak Company | Digital cinema projector |
US7023606B2 (en) * | 2001-08-03 | 2006-04-04 | Reflectivity, Inc | Micromirror array for projection TV |
JP3750574B2 (ja) * | 2001-08-16 | 2006-03-01 | 株式会社デンソー | 薄膜電磁石およびこれを用いたスイッチング素子 |
KR100398310B1 (ko) | 2001-09-13 | 2003-09-19 | 한국과학기술원 | 엇물린 외팔보들을 이용한 마이크로미러 디바이스 및 그응용소자 |
US6844952B2 (en) * | 2001-09-18 | 2005-01-18 | Vitesse Semiconductor Corporation | Actuator-controlled mirror with Z-stop mechanism |
US6809851B1 (en) * | 2001-10-24 | 2004-10-26 | Decicon, Inc. | MEMS driver |
US6699570B2 (en) | 2001-11-06 | 2004-03-02 | Xerox Corporation | Colored cyber toner using multicolored gyricon spheres |
US6885492B2 (en) | 2001-11-08 | 2005-04-26 | Imaginative Optics, Inc. | Spatial light modulator apparatus |
EP1315016B1 (en) * | 2001-11-21 | 2006-08-23 | Texas Instruments Incorporated | Yokeless hidden hinge digital micromirror device |
EP1454178A2 (en) * | 2001-12-03 | 2004-09-08 | Flixel Ltd. | Display devices |
US7116459B2 (en) * | 2001-12-27 | 2006-10-03 | Texas Instruments Incorporated | Field diode detection of excess light conditions for spatial light modulator |
US7061561B2 (en) * | 2002-01-07 | 2006-06-13 | Moxtek, Inc. | System for creating a patterned polarization compensator |
US6909473B2 (en) * | 2002-01-07 | 2005-06-21 | Eastman Kodak Company | Display apparatus and method |
US6808269B2 (en) * | 2002-01-16 | 2004-10-26 | Eastman Kodak Company | Projection apparatus using spatial light modulator |
US6574033B1 (en) | 2002-02-27 | 2003-06-03 | Iridigm Display Corporation | Microelectromechanical systems device and method for fabricating same |
US20030187330A1 (en) * | 2002-03-28 | 2003-10-02 | Fuji Photo Optical Co., Ltd. | Electronic endoscope apparatus using micromirror device |
US7018268B2 (en) * | 2002-04-09 | 2006-03-28 | Strasbaugh | Protection of work piece during surface processing |
WO2003086955A1 (en) * | 2002-04-12 | 2003-10-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method and device for operating a micromechanical element |
US6996292B1 (en) | 2002-04-18 | 2006-02-07 | Sandia Corporation | Staring 2-D hadamard transform spectral imager |
US6676260B2 (en) | 2002-04-25 | 2004-01-13 | Eastman Kodak Company | Projection apparatus using spatial light modulator with relay lens and dichroic combiner |
US6648475B1 (en) | 2002-05-20 | 2003-11-18 | Eastman Kodak Company | Method and apparatus for increasing color gamut of a display |
US20040069742A1 (en) * | 2002-06-19 | 2004-04-15 | Pan Shaoher X. | Fabrication of a reflective spatial light modulator |
US7034984B2 (en) | 2002-06-19 | 2006-04-25 | Miradia Inc. | Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge |
US20040004753A1 (en) * | 2002-06-19 | 2004-01-08 | Pan Shaoher X. | Architecture of a reflective spatial light modulator |
US7206110B2 (en) * | 2002-06-19 | 2007-04-17 | Miradia Inc. | Memory cell dual protection |
US20030234994A1 (en) * | 2002-06-19 | 2003-12-25 | Pan Shaoher X. | Reflective spatial light modulator |
US6992810B2 (en) * | 2002-06-19 | 2006-01-31 | Miradia Inc. | High fill ratio reflective spatial light modulator with hidden hinge |
US6736514B2 (en) | 2002-06-21 | 2004-05-18 | Eastman Kodak Company | Imaging apparatus for increased color gamut using dual spatial light modulators |
US6843574B2 (en) * | 2002-08-20 | 2005-01-18 | Intel Corporation | Gimbaled micromechanical rotation system |
JP2004101826A (ja) * | 2002-09-09 | 2004-04-02 | Fuji Photo Optical Co Ltd | プロジェクタ用光学系およびこれを用いたプロジェクタ装置 |
US6809873B2 (en) * | 2002-09-09 | 2004-10-26 | Eastman Kodak Company | Color illumination system for spatial light modulators using multiple double telecentric relays |
US7781850B2 (en) | 2002-09-20 | 2010-08-24 | Qualcomm Mems Technologies, Inc. | Controlling electromechanical behavior of structures within a microelectromechanical systems device |
US6733144B2 (en) | 2002-09-27 | 2004-05-11 | Intel Corporation | Shock protectors for micro-mechanical systems |
US6825968B2 (en) * | 2002-10-11 | 2004-11-30 | Exajoule, Llc | Micromirror systems with electrodes configured for sequential mirror attraction |
US6798560B2 (en) * | 2002-10-11 | 2004-09-28 | Exajoula, Llc | Micromirror systems with open support structures |
US6870659B2 (en) * | 2002-10-11 | 2005-03-22 | Exajoule, Llc | Micromirror systems with side-supported mirrors and concealed flexure members |
US6769772B2 (en) * | 2002-10-11 | 2004-08-03 | Eastman Kodak Company | Six color display apparatus having increased color gamut |
US6802613B2 (en) * | 2002-10-16 | 2004-10-12 | Eastman Kodak Company | Broad gamut color display apparatus using an electromechanical grating device |
US6807010B2 (en) * | 2002-11-13 | 2004-10-19 | Eastman Kodak Company | Projection display apparatus having both incoherent and laser light sources |
US6947459B2 (en) * | 2002-11-25 | 2005-09-20 | Eastman Kodak Company | Organic vertical cavity laser and imaging system |
US7405860B2 (en) * | 2002-11-26 | 2008-07-29 | Texas Instruments Incorporated | Spatial light modulators with light blocking/absorbing areas |
US20040150794A1 (en) * | 2003-01-30 | 2004-08-05 | Eastman Kodak Company | Projector with camcorder defeat |
FR2850762A1 (fr) * | 2003-01-31 | 2004-08-06 | Commissariat Energie Atomique | Dispositif d'orientation d'un objet |
US6885494B2 (en) * | 2003-02-12 | 2005-04-26 | Reflectivity, Inc. | High angle micro-mirrors and processes |
US7042622B2 (en) * | 2003-10-30 | 2006-05-09 | Reflectivity, Inc | Micromirror and post arrangements on substrates |
US7436573B2 (en) * | 2003-02-12 | 2008-10-14 | Texas Instruments Incorporated | Electrical connections in microelectromechanical devices |
WO2004074167A2 (en) * | 2003-02-20 | 2004-09-02 | Technion Research & Development Foundation Ltd. | A device and method for stacked multi-level uncoupled electrostatic actuators |
US6906848B2 (en) * | 2003-02-24 | 2005-06-14 | Exajoule, Llc | Micromirror systems with concealed multi-piece hinge structures |
US6900922B2 (en) * | 2003-02-24 | 2005-05-31 | Exajoule, Llc | Multi-tilt micromirror systems with concealed hinge structures |
US6758565B1 (en) * | 2003-03-20 | 2004-07-06 | Eastman Kodak Company | Projection apparatus using telecentric optics |
US7015885B2 (en) * | 2003-03-22 | 2006-03-21 | Active Optical Networks, Inc. | MEMS devices monolithically integrated with drive and control circuitry |
US6914711B2 (en) * | 2003-03-22 | 2005-07-05 | Active Optical Networks, Inc. | Spatial light modulator with hidden comb actuator |
US7375874B1 (en) | 2003-03-22 | 2008-05-20 | Active Optical Mems Inc. | Light modulator with integrated drive and control circuitry |
US7221759B2 (en) * | 2003-03-27 | 2007-05-22 | Eastman Kodak Company | Projector with enhanced security camcorder defeat |
US7095546B2 (en) * | 2003-04-24 | 2006-08-22 | Metconnex Canada Inc. | Micro-electro-mechanical-system two dimensional mirror with articulated suspension structures for high fill factor arrays |
TW570896B (en) | 2003-05-26 | 2004-01-11 | Prime View Int Co Ltd | A method for fabricating an interference display cell |
JP2006526805A (ja) * | 2003-06-02 | 2006-11-24 | ミラディア インク | 隠れヒンジを備えた高充填率反射型空間光変調器の作製 |
US6839181B1 (en) * | 2003-06-25 | 2005-01-04 | Eastman Kodak Company | Display apparatus |
US7131762B2 (en) * | 2003-07-25 | 2006-11-07 | Texas Instruments Incorporated | Color rendering of illumination light in display systems |
US7212359B2 (en) * | 2003-07-25 | 2007-05-01 | Texas Instruments Incorporated | Color rendering of illumination light in display systems |
US20050094241A1 (en) * | 2003-11-01 | 2005-05-05 | Fusao Ishii | Electromechanical micromirror devices and methods of manufacturing the same |
JP4406549B2 (ja) | 2003-09-22 | 2010-01-27 | 富士フイルム株式会社 | 光変調素子及び光変調アレイ素子並びにそれを用いた露光装置 |
JP2005121906A (ja) | 2003-10-16 | 2005-05-12 | Fuji Photo Film Co Ltd | 反射型光変調アレイ素子及び露光装置 |
US8238019B2 (en) * | 2003-11-01 | 2012-08-07 | Silicon Quest Kabushiki-Kaisha | Projection apparatus with coherent light source |
US7026695B2 (en) * | 2003-11-19 | 2006-04-11 | Miradia Inc. | Method and apparatus to reduce parasitic forces in electro-mechanical systems |
US7295726B1 (en) | 2003-12-02 | 2007-11-13 | Adriatic Research Institute | Gimbal-less micro-electro-mechanical-system tip-tilt and tip-tilt-piston actuators and a method for forming the same |
US7428353B1 (en) | 2003-12-02 | 2008-09-23 | Adriatic Research Institute | MEMS device control with filtered voltage signal shaping |
US7142346B2 (en) | 2003-12-09 | 2006-11-28 | Idc, Llc | System and method for addressing a MEMS display |
US7161728B2 (en) | 2003-12-09 | 2007-01-09 | Idc, Llc | Area array modulation and lead reduction in interferometric modulators |
US6902277B1 (en) | 2004-01-06 | 2005-06-07 | Eastman Kodak Company | Housing for a spatial light modulator |
JP4162606B2 (ja) | 2004-01-26 | 2008-10-08 | 富士フイルム株式会社 | 光変調素子、光変調素子アレイ、及び画像形成装置 |
US7333260B2 (en) * | 2004-08-09 | 2008-02-19 | Stereo Display, Inc. | Two-dimensional image projection system |
US7706050B2 (en) | 2004-03-05 | 2010-04-27 | Qualcomm Mems Technologies, Inc. | Integrated modulator illumination |
CN1930892B (zh) * | 2004-03-19 | 2012-04-18 | 汤姆森特许公司 | 视频处理器对准箝位弹簧 |
US7304782B2 (en) | 2004-03-24 | 2007-12-04 | Fujifilm Corporation | Driving method of spatial light modulator array, spatial light modulator array, and image forming apparatus |
US7720148B2 (en) * | 2004-03-26 | 2010-05-18 | The Hong Kong University Of Science And Technology | Efficient multi-frame motion estimation for video compression |
US7068409B2 (en) * | 2004-03-31 | 2006-06-27 | Lucent Technologies Inc. | Tip-tilt-piston actuator |
US7449284B2 (en) | 2004-05-11 | 2008-11-11 | Miradia Inc. | Method and structure for fabricating mechanical mirror structures using backside alignment techniques |
US20050255666A1 (en) * | 2004-05-11 | 2005-11-17 | Miradia Inc. | Method and structure for aligning mechanical based device to integrated circuits |
US7164520B2 (en) | 2004-05-12 | 2007-01-16 | Idc, Llc | Packaging for an interferometric modulator |
US7787170B2 (en) * | 2004-06-15 | 2010-08-31 | Texas Instruments Incorporated | Micromirror array assembly with in-array pillars |
US7042619B1 (en) * | 2004-06-18 | 2006-05-09 | Miradia Inc. | Mirror structure with single crystal silicon cross-member |
US7483126B2 (en) * | 2004-06-23 | 2009-01-27 | Texas Instruments Incorporated | Performance analyses of micromirror devices |
US7113322B2 (en) * | 2004-06-23 | 2006-09-26 | Reflectivity, Inc | Micromirror having offset addressing electrode |
US7068417B2 (en) * | 2004-07-28 | 2006-06-27 | Miradia Inc. | Method and apparatus for a reflective spatial light modulator with a flexible pedestal |
US7499208B2 (en) | 2004-08-27 | 2009-03-03 | Udc, Llc | Current mode display driver circuit realization feature |
US7560299B2 (en) | 2004-08-27 | 2009-07-14 | Idc, Llc | Systems and methods of actuating MEMS display elements |
US7515147B2 (en) | 2004-08-27 | 2009-04-07 | Idc, Llc | Staggered column drive circuit systems and methods |
US7889163B2 (en) | 2004-08-27 | 2011-02-15 | Qualcomm Mems Technologies, Inc. | Drive method for MEMS devices |
US7551159B2 (en) | 2004-08-27 | 2009-06-23 | Idc, Llc | System and method of sensing actuation and release voltages of an interferometric modulator |
US7602375B2 (en) | 2004-09-27 | 2009-10-13 | Idc, Llc | Method and system for writing data to MEMS display elements |
US7692839B2 (en) | 2004-09-27 | 2010-04-06 | Qualcomm Mems Technologies, Inc. | System and method of providing MEMS device with anti-stiction coating |
US7355780B2 (en) | 2004-09-27 | 2008-04-08 | Idc, Llc | System and method of illuminating interferometric modulators using backlighting |
US7813026B2 (en) | 2004-09-27 | 2010-10-12 | Qualcomm Mems Technologies, Inc. | System and method of reducing color shift in a display |
US7420725B2 (en) | 2004-09-27 | 2008-09-02 | Idc, Llc | Device having a conductive light absorbing mask and method for fabricating same |
US7893919B2 (en) | 2004-09-27 | 2011-02-22 | Qualcomm Mems Technologies, Inc. | Display region architectures |
US7808703B2 (en) | 2004-09-27 | 2010-10-05 | Qualcomm Mems Technologies, Inc. | System and method for implementation of interferometric modulator displays |
US7944599B2 (en) | 2004-09-27 | 2011-05-17 | Qualcomm Mems Technologies, Inc. | Electromechanical device with optical function separated from mechanical and electrical function |
US7417783B2 (en) | 2004-09-27 | 2008-08-26 | Idc, Llc | Mirror and mirror layer for optical modulator and method |
US7668415B2 (en) | 2004-09-27 | 2010-02-23 | Qualcomm Mems Technologies, Inc. | Method and device for providing electronic circuitry on a backplate |
US7679627B2 (en) | 2004-09-27 | 2010-03-16 | Qualcomm Mems Technologies, Inc. | Controller and driver features for bi-stable display |
US7345805B2 (en) | 2004-09-27 | 2008-03-18 | Idc, Llc | Interferometric modulator array with integrated MEMS electrical switches |
US7424198B2 (en) | 2004-09-27 | 2008-09-09 | Idc, Llc | Method and device for packaging a substrate |
US7724993B2 (en) | 2004-09-27 | 2010-05-25 | Qualcomm Mems Technologies, Inc. | MEMS switches with deforming membranes |
US7843410B2 (en) | 2004-09-27 | 2010-11-30 | Qualcomm Mems Technologies, Inc. | Method and device for electrically programmable display |
US7446927B2 (en) | 2004-09-27 | 2008-11-04 | Idc, Llc | MEMS switch with set and latch electrodes |
US7369296B2 (en) | 2004-09-27 | 2008-05-06 | Idc, Llc | Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator |
US7710629B2 (en) | 2004-09-27 | 2010-05-04 | Qualcomm Mems Technologies, Inc. | System and method for display device with reinforcing substance |
US7701631B2 (en) | 2004-09-27 | 2010-04-20 | Qualcomm Mems Technologies, Inc. | Device having patterned spacers for backplates and method of making the same |
US7310179B2 (en) | 2004-09-27 | 2007-12-18 | Idc, Llc | Method and device for selective adjustment of hysteresis window |
US7653371B2 (en) | 2004-09-27 | 2010-01-26 | Qualcomm Mems Technologies, Inc. | Selectable capacitance circuit |
US7684104B2 (en) | 2004-09-27 | 2010-03-23 | Idc, Llc | MEMS using filler material and method |
TW200628833A (en) | 2004-09-27 | 2006-08-16 | Idc Llc | Method and device for multistate interferometric light modulation |
US7675669B2 (en) | 2004-09-27 | 2010-03-09 | Qualcomm Mems Technologies, Inc. | Method and system for driving interferometric modulators |
US7136213B2 (en) | 2004-09-27 | 2006-11-14 | Idc, Llc | Interferometric modulators having charge persistence |
US8310441B2 (en) | 2004-09-27 | 2012-11-13 | Qualcomm Mems Technologies, Inc. | Method and system for writing data to MEMS display elements |
US8878825B2 (en) | 2004-09-27 | 2014-11-04 | Qualcomm Mems Technologies, Inc. | System and method for providing a variable refresh rate of an interferometric modulator display |
US7916103B2 (en) * | 2004-09-27 | 2011-03-29 | Qualcomm Mems Technologies, Inc. | System and method for display device with end-of-life phenomena |
US7372613B2 (en) | 2004-09-27 | 2008-05-13 | Idc, Llc | Method and device for multistate interferometric light modulation |
US7289259B2 (en) | 2004-09-27 | 2007-10-30 | Idc, Llc | Conductive bus structure for interferometric modulator array |
US7920135B2 (en) | 2004-09-27 | 2011-04-05 | Qualcomm Mems Technologies, Inc. | Method and system for driving a bi-stable display |
US20060076634A1 (en) | 2004-09-27 | 2006-04-13 | Lauren Palmateer | Method and system for packaging MEMS devices with incorporated getter |
US8124434B2 (en) | 2004-09-27 | 2012-02-28 | Qualcomm Mems Technologies, Inc. | Method and system for packaging a display |
US7532195B2 (en) | 2004-09-27 | 2009-05-12 | Idc, Llc | Method and system for reducing power consumption in a display |
US7719500B2 (en) | 2004-09-27 | 2010-05-18 | Qualcomm Mems Technologies, Inc. | Reflective display pixels arranged in non-rectangular arrays |
US8008736B2 (en) | 2004-09-27 | 2011-08-30 | Qualcomm Mems Technologies, Inc. | Analog interferometric modulator device |
US7583429B2 (en) | 2004-09-27 | 2009-09-01 | Idc, Llc | Ornamental display device |
US7936497B2 (en) | 2004-09-27 | 2011-05-03 | Qualcomm Mems Technologies, Inc. | MEMS device having deformable membrane characterized by mechanical persistence |
US7626581B2 (en) | 2004-09-27 | 2009-12-01 | Idc, Llc | Device and method for display memory using manipulation of mechanical response |
US7545550B2 (en) | 2004-09-27 | 2009-06-09 | Idc, Llc | Systems and methods of actuating MEMS display elements |
CN1769945A (zh) | 2004-09-30 | 2006-05-10 | 富士胶片株式会社 | 微型机电式调制元件和微型机电式调制元件阵列 |
US7092143B2 (en) * | 2004-10-19 | 2006-08-15 | Reflectivity, Inc | Micromirror array device and a method for making the same |
US7158279B2 (en) * | 2004-10-19 | 2007-01-02 | Texas Instruments Incorporated | Spatial light modulators with non-uniform pixels |
US7800823B2 (en) | 2004-12-06 | 2010-09-21 | Moxtek, Inc. | Polarization device to polarize and further control light |
US7961393B2 (en) | 2004-12-06 | 2011-06-14 | Moxtek, Inc. | Selectively absorptive wire-grid polarizer |
US7570424B2 (en) | 2004-12-06 | 2009-08-04 | Moxtek, Inc. | Multilayer wire-grid polarizer |
US7106492B2 (en) * | 2004-12-21 | 2006-09-12 | Texas Instruments Incorporated | Bias voltage routing scheme for a digital micro-mirror device |
US7172921B2 (en) * | 2005-01-03 | 2007-02-06 | Miradia Inc. | Method and structure for forming an integrated spatial light modulator |
US8207004B2 (en) * | 2005-01-03 | 2012-06-26 | Miradia Inc. | Method and structure for forming a gyroscope and accelerometer |
US7142349B2 (en) * | 2005-01-07 | 2006-11-28 | Miradia Inc. | Method and structure for reducing parasitic influences of deflection devices on spatial light modulators |
US7199918B2 (en) * | 2005-01-07 | 2007-04-03 | Miradia Inc. | Electrical contact method and structure for deflection devices formed in an array configuration |
US7432629B2 (en) * | 2005-02-16 | 2008-10-07 | Jds Uniphase Corporation | Articulated MEMs structures |
US7295363B2 (en) | 2005-04-08 | 2007-11-13 | Texas Instruments Incorporated | Optical coating on light transmissive substrates of micromirror devices |
US7742219B2 (en) * | 2005-04-11 | 2010-06-22 | Panasonic Corporation | Micromachine structure |
US20060238530A1 (en) * | 2005-04-20 | 2006-10-26 | Texas Instruments Incorporated | Micro-mirror element and method |
US7920136B2 (en) | 2005-05-05 | 2011-04-05 | Qualcomm Mems Technologies, Inc. | System and method of driving a MEMS display device |
US7948457B2 (en) | 2005-05-05 | 2011-05-24 | Qualcomm Mems Technologies, Inc. | Systems and methods of actuating MEMS display elements |
KR20080027236A (ko) | 2005-05-05 | 2008-03-26 | 콸콤 인코포레이티드 | 다이나믹 드라이버 ic 및 디스플레이 패널 구성 |
US7262900B2 (en) * | 2005-05-10 | 2007-08-28 | Texas Instruments Incorporated | Utilizing a protective plug to maintain the integrity of the FTP shrink hinge |
US7927423B1 (en) | 2005-05-25 | 2011-04-19 | Abbott Kenneth A | Vapor deposition of anti-stiction layer for micromechanical devices |
US7202989B2 (en) | 2005-06-01 | 2007-04-10 | Miradia Inc. | Method and device for fabricating a release structure to facilitate bonding of mirror devices onto a substrate |
US7298539B2 (en) * | 2005-06-01 | 2007-11-20 | Miradia Inc. | Co-planar surface and torsion device mirror structure and method of manufacture for optical displays |
US20060279708A1 (en) * | 2005-06-13 | 2006-12-14 | Eastman Kodak Company | Electronic display apparatus having adaptable color gamut |
US7190508B2 (en) * | 2005-06-15 | 2007-03-13 | Miradia Inc. | Method and structure of patterning landing pad structures for spatial light modulators |
US7184195B2 (en) | 2005-06-15 | 2007-02-27 | Miradia Inc. | Method and structure reducing parasitic influences of deflection devices in an integrated spatial light modulator |
JP4484778B2 (ja) | 2005-07-08 | 2010-06-16 | 富士フイルム株式会社 | 微小薄膜可動素子および微小薄膜可動素子アレイ並びに微小薄膜可動素子の駆動方法 |
JP2007015067A (ja) | 2005-07-08 | 2007-01-25 | Fujifilm Holdings Corp | 微小薄膜可動素子及び微小薄膜可動素子アレイ並びに画像形成装置 |
EP2495212A3 (en) | 2005-07-22 | 2012-10-31 | QUALCOMM MEMS Technologies, Inc. | Mems devices having support structures and methods of fabricating the same |
RU2468988C2 (ru) | 2005-07-22 | 2012-12-10 | Квалкомм Инкорпорэйтэд | Устройства мэмс, имеющие поддерживающие структуры, и способы их изготовления |
JP2007033787A (ja) | 2005-07-26 | 2007-02-08 | Fujifilm Corp | 微小薄膜可動素子および微小薄膜可動素子アレイ並びに微小薄膜可動素子アレイの駆動方法 |
US7139113B1 (en) * | 2005-07-29 | 2006-11-21 | Texas Instruments Incorporated | Digital micro-mirror device with free standing spring tips and distributed address electrodes |
US20070041077A1 (en) * | 2005-08-19 | 2007-02-22 | Stereo Display, Inc. | Pocket-sized two-dimensional image projection system |
WO2007023940A1 (ja) * | 2005-08-26 | 2007-03-01 | Matsushita Electric Industrial Co., Ltd. | アクチュエータ、光ヘッド装置および光情報装置 |
US7355779B2 (en) | 2005-09-02 | 2008-04-08 | Idc, Llc | Method and system for driving MEMS display elements |
US7374962B2 (en) * | 2005-09-29 | 2008-05-20 | Miradia Inc. | Method of fabricating reflective spatial light modulator having high contrast ratio |
US7502158B2 (en) | 2005-10-13 | 2009-03-10 | Miradia Inc. | Method and structure for high fill factor spatial light modulator with integrated spacer layer |
US7522330B2 (en) * | 2005-10-28 | 2009-04-21 | Miradia Inc. | High fill ratio silicon spatial light modulator |
US7630114B2 (en) * | 2005-10-28 | 2009-12-08 | Idc, Llc | Diffusion barrier layer for MEMS devices |
US7675670B2 (en) | 2005-10-28 | 2010-03-09 | Miradia Inc. | Fabrication of a high fill ratio silicon spatial light modulator |
US8391630B2 (en) | 2005-12-22 | 2013-03-05 | Qualcomm Mems Technologies, Inc. | System and method for power reduction when decompressing video streams for interferometric modulator displays |
US7795061B2 (en) | 2005-12-29 | 2010-09-14 | Qualcomm Mems Technologies, Inc. | Method of creating MEMS device cavities by a non-etching process |
US7916980B2 (en) | 2006-01-13 | 2011-03-29 | Qualcomm Mems Technologies, Inc. | Interconnect structure for MEMS device |
US7382515B2 (en) | 2006-01-18 | 2008-06-03 | Qualcomm Mems Technologies, Inc. | Silicon-rich silicon nitrides as etch stops in MEMS manufacture |
JP2007199101A (ja) | 2006-01-23 | 2007-08-09 | Fujifilm Corp | 微小電気機械素子アレイ装置及び画像形成装置 |
US8194056B2 (en) | 2006-02-09 | 2012-06-05 | Qualcomm Mems Technologies Inc. | Method and system for writing data to MEMS display elements |
DE102006013140A1 (de) * | 2006-03-20 | 2007-09-27 | Siemens Ag | Head-Up-Display, insbesondere für ein Kraftfahrzeug |
US7430072B2 (en) * | 2006-04-12 | 2008-09-30 | Texas Instruments Incorporated | System and method for increasing image quality in a display system |
US7324196B2 (en) * | 2006-04-13 | 2008-01-29 | Neil Goldstein | Spectral encoder |
US7903047B2 (en) | 2006-04-17 | 2011-03-08 | Qualcomm Mems Technologies, Inc. | Mode indicator for interferometric modulator displays |
US7711239B2 (en) | 2006-04-19 | 2010-05-04 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device and method utilizing nanoparticles |
US8049713B2 (en) | 2006-04-24 | 2011-11-01 | Qualcomm Mems Technologies, Inc. | Power consumption optimized display update |
US7477219B2 (en) * | 2006-05-08 | 2009-01-13 | Texas Instruments Incorporated | Micro-mirror and method |
US7649671B2 (en) | 2006-06-01 | 2010-01-19 | Qualcomm Mems Technologies, Inc. | Analog interferometric modulator device with electrostatic actuation and release |
WO2007143623A2 (en) | 2006-06-02 | 2007-12-13 | Stalford Harold L | Methods and systems for micro machines |
US7702192B2 (en) | 2006-06-21 | 2010-04-20 | Qualcomm Mems Technologies, Inc. | Systems and methods for driving MEMS display |
US7835061B2 (en) | 2006-06-28 | 2010-11-16 | Qualcomm Mems Technologies, Inc. | Support structures for free-standing electromechanical devices |
US7777715B2 (en) | 2006-06-29 | 2010-08-17 | Qualcomm Mems Technologies, Inc. | Passive circuits for de-multiplexing display inputs |
US7527998B2 (en) | 2006-06-30 | 2009-05-05 | Qualcomm Mems Technologies, Inc. | Method of manufacturing MEMS devices providing air gap control |
EP2045645A1 (en) * | 2006-07-06 | 2009-04-08 | Nikon Corporation | Micro actuator, optical unit, exposure device, and device manufacturing method |
US7763546B2 (en) | 2006-08-02 | 2010-07-27 | Qualcomm Mems Technologies, Inc. | Methods for reducing surface charges during the manufacture of microelectromechanical systems devices |
US8755113B2 (en) | 2006-08-31 | 2014-06-17 | Moxtek, Inc. | Durable, inorganic, absorptive, ultra-violet, grid polarizer |
US7545552B2 (en) | 2006-10-19 | 2009-06-09 | Qualcomm Mems Technologies, Inc. | Sacrificial spacer process and resultant structure for MEMS support structure |
US7706042B2 (en) | 2006-12-20 | 2010-04-27 | Qualcomm Mems Technologies, Inc. | MEMS device and interconnects for same |
US8171804B2 (en) | 2006-12-22 | 2012-05-08 | Texas Instruments Incorporated | Motion conversion system |
US7535621B2 (en) | 2006-12-27 | 2009-05-19 | Qualcomm Mems Technologies, Inc. | Aluminum fluoride films for microelectromechanical system applications |
US7884021B2 (en) * | 2007-02-27 | 2011-02-08 | Spartial Photonics, Inc. | Planarization of a layer over a cavity |
US20080273234A1 (en) * | 2007-05-01 | 2008-11-06 | Texas Instruments Incorporated | System and method for integrated, analog mode mirror devices |
US7719752B2 (en) | 2007-05-11 | 2010-05-18 | Qualcomm Mems Technologies, Inc. | MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same |
US7789515B2 (en) | 2007-05-17 | 2010-09-07 | Moxtek, Inc. | Projection device with a folded optical path and wire-grid polarizer |
US7625825B2 (en) | 2007-06-14 | 2009-12-01 | Qualcomm Mems Technologies, Inc. | Method of patterning mechanical layer for MEMS structures |
US8068268B2 (en) | 2007-07-03 | 2011-11-29 | Qualcomm Mems Technologies, Inc. | MEMS devices having improved uniformity and methods for making them |
US20090112482A1 (en) * | 2007-10-26 | 2009-04-30 | Sandstrom Perry L | Microarray detector and synthesizer |
US20090122272A1 (en) * | 2007-11-09 | 2009-05-14 | Silverstein Barry D | Projection apparatus using solid-state light source array |
US20090153752A1 (en) * | 2007-12-14 | 2009-06-18 | Silverstein Barry D | Projector using independent multiple wavelength light sources |
DE102008004379A1 (de) | 2008-01-15 | 2009-07-16 | Robert Bosch Gmbh | Vorrichtung und Verfahren zum Prüfen eines optischen Regensensors |
US7863079B2 (en) | 2008-02-05 | 2011-01-04 | Qualcomm Mems Technologies, Inc. | Methods of reducing CD loss in a microelectromechanical device |
US7891816B2 (en) * | 2008-02-25 | 2011-02-22 | Eastman Kodak Company | Stereo projection using polarized solid state light sources |
US7926951B2 (en) * | 2008-07-11 | 2011-04-19 | Eastman Kodak Company | Laser illuminated micro-mirror projector |
US7924441B1 (en) | 2008-08-08 | 2011-04-12 | Mirrorcle Technologies, Inc. | Fast and high-precision 3D tracking and position measurement with MEMS micromirrors |
US8098265B2 (en) * | 2008-10-10 | 2012-01-17 | Ostendo Technologies, Inc. | Hierarchical multicolor primaries temporal multiplexing system |
US8016422B2 (en) * | 2008-10-28 | 2011-09-13 | Eastman Kodak Company | Etendue maintaining polarization switching system and related methods |
US8541850B2 (en) * | 2008-12-12 | 2013-09-24 | Texas Instruments Incorporated | Method and system for forming resonators over CMOS |
US8736590B2 (en) | 2009-03-27 | 2014-05-27 | Qualcomm Mems Technologies, Inc. | Low voltage driver scheme for interferometric modulators |
US8610986B2 (en) * | 2009-04-06 | 2013-12-17 | The Board Of Trustees Of The University Of Illinois | Mirror arrays for maskless photolithography and image display |
US8810796B2 (en) | 2009-04-21 | 2014-08-19 | Michigan Aerospace Corporation | Light processing system and method |
US8797550B2 (en) | 2009-04-21 | 2014-08-05 | Michigan Aerospace Corporation | Atmospheric measurement system |
US8066389B2 (en) * | 2009-04-30 | 2011-11-29 | Eastman Kodak Company | Beam alignment chamber providing divergence correction |
US8132919B2 (en) * | 2009-04-30 | 2012-03-13 | Eastman Kodak Company | Digital projector using arrayed light sources |
EP2430392B1 (en) * | 2009-05-15 | 2015-07-22 | Michigan Aerospace Corporation | Range imaging lidar |
US8033666B2 (en) * | 2009-05-28 | 2011-10-11 | Eastman Kodak Company | Beam alignment system using arrayed light sources |
US8235531B2 (en) | 2009-06-22 | 2012-08-07 | Eastman Kodak Company | Optical interference reducing element for laser projection |
US8248696B2 (en) | 2009-06-25 | 2012-08-21 | Moxtek, Inc. | Nano fractal diffuser |
US20100328611A1 (en) | 2009-06-25 | 2010-12-30 | Silverstein Barry D | Leakage light intensity sensing in light projector |
US8162483B2 (en) | 2009-06-25 | 2012-04-24 | Eastman Kodak Company | Hierarchical light intensity control in light projector |
US8237777B2 (en) * | 2009-06-25 | 2012-08-07 | Eastman Kodak Company | Stereoscopic image intensity balancing in light projector |
US8142021B2 (en) | 2009-06-25 | 2012-03-27 | Eastman Kodak Company | Dump path light intensity sensing in light projector |
US8220938B2 (en) | 2009-06-25 | 2012-07-17 | Eastman Kodak Company | Image path light intensity sensing during a blanking period between a left-eye light beam and a right-eye light beam in a stereoscopic light projector |
US8220931B2 (en) | 2009-07-07 | 2012-07-17 | Eastman Kodak Company | Etendue reduced stereo projection using segmented disk |
US8066382B2 (en) | 2009-07-14 | 2011-11-29 | Eastman Kodak Company | Stereoscopic projector with rotating segmented disk |
WO2011126953A1 (en) | 2010-04-09 | 2011-10-13 | Qualcomm Mems Technologies, Inc. | Mechanical layer of an electromechanical device and methods of forming the same |
US8342690B2 (en) | 2010-04-29 | 2013-01-01 | Eastman Kodak Company | Off-state light baffle for digital projection |
WO2011144458A1 (en) * | 2010-05-17 | 2011-11-24 | Iee International Electronics & Engineering S.A. | Imaging device for imaging a scene using time - of - flight and thermographic measurements |
US8649094B2 (en) | 2010-05-21 | 2014-02-11 | Eastman Kodak Company | Low thermal stress birefringence imaging lens |
US8287129B2 (en) | 2010-05-21 | 2012-10-16 | Eastman Kodak Company | Low thermal stress birefringence imaging system |
US8504328B2 (en) | 2010-05-21 | 2013-08-06 | Eastman Kodak Company | Designing lenses using stress birefringence performance criterion |
US8913321B2 (en) | 2010-09-21 | 2014-12-16 | Moxtek, Inc. | Fine pitch grid polarizer |
US8611007B2 (en) | 2010-09-21 | 2013-12-17 | Moxtek, Inc. | Fine pitch wire grid polarizer |
JP4951724B2 (ja) * | 2010-09-24 | 2012-06-13 | 貴央 山口 | 反射型表示装置 |
US8558956B2 (en) * | 2011-01-11 | 2013-10-15 | Panasonic Corporation | Image display system |
US8963159B2 (en) | 2011-04-04 | 2015-02-24 | Qualcomm Mems Technologies, Inc. | Pixel via and methods of forming the same |
US9134527B2 (en) | 2011-04-04 | 2015-09-15 | Qualcomm Mems Technologies, Inc. | Pixel via and methods of forming the same |
US8659816B2 (en) | 2011-04-25 | 2014-02-25 | Qualcomm Mems Technologies, Inc. | Mechanical layer and methods of making the same |
US8913320B2 (en) | 2011-05-17 | 2014-12-16 | Moxtek, Inc. | Wire grid polarizer with bordered sections |
US8873144B2 (en) | 2011-05-17 | 2014-10-28 | Moxtek, Inc. | Wire grid polarizer with multiple functionality sections |
DE102011102132A1 (de) | 2011-05-19 | 2012-11-22 | blnsight3D GmbH | Mehrkanalanzeige mit MOEMS und Verfahren der Superposition nicht-normal abgestrahlter Bildstrahlen in Mehrkanalanzeigen mit MOEMS |
US8830580B2 (en) | 2011-10-27 | 2014-09-09 | Eastman Kodak Company | Low thermal stress catadioptric imaging optics |
US8786943B2 (en) | 2011-10-27 | 2014-07-22 | Eastman Kodak Company | Low thermal stress catadioptric imaging system |
US8854281B2 (en) * | 2011-12-02 | 2014-10-07 | Automotive Research & Test Center | Head up display (HUD) |
ITMI20112296A1 (it) * | 2011-12-16 | 2013-06-17 | St Microelectronics Srl | Dispositivo elettronico flessibile incapsulato e relativo metodo di fabbricazione |
US8922890B2 (en) | 2012-03-21 | 2014-12-30 | Moxtek, Inc. | Polarizer edge rib modification |
US10371920B2 (en) | 2012-03-22 | 2019-08-06 | Nikon Research Corporation Of America | Mirror assembly with heat transfer mechanism |
EP2834697B1 (en) | 2012-04-03 | 2021-05-19 | Imax Theatres International Limited | Color dependent aperture stop |
US8754829B2 (en) * | 2012-08-04 | 2014-06-17 | Paul Lapstun | Scanning light field camera and display |
EP2926164A4 (en) | 2012-11-30 | 2015-12-16 | Tchoryk Peter | ATMOSPHERIC MEASUREMENT SYSTEM |
CN103439858A (zh) * | 2013-02-22 | 2013-12-11 | 杭州能基科技有限公司 | 一种激光数码投影机 |
WO2014145003A1 (en) | 2013-03-15 | 2014-09-18 | Ostendo Technologies, Inc. | Dynamic gamut display systems, methods, and applications thereof |
US9915820B2 (en) | 2013-03-15 | 2018-03-13 | Imax Theatres International Limited | Projector optimized for modulator diffraction effects |
US9696540B2 (en) | 2013-03-22 | 2017-07-04 | Lumentum Operations Llc | Hidden hinge MEMS with temporary gimbal anchor |
US9632223B2 (en) | 2013-10-24 | 2017-04-25 | Moxtek, Inc. | Wire grid polarizer with side region |
US20150259743A1 (en) | 2013-12-31 | 2015-09-17 | Roche Nimblegen, Inc. | Methods of assessing epigenetic regulation of genome function via dna methylation status and systems and kits therefor |
US9927786B2 (en) | 2014-10-02 | 2018-03-27 | Anne Dewitte | Expandable and collapsible shape element for a programmable shape surface |
CN104317050A (zh) * | 2014-11-12 | 2015-01-28 | 成都艾塔科技有限公司 | 新型数字微镜器件 |
WO2018033478A1 (en) | 2016-08-15 | 2018-02-22 | F. Hoffmann-La Roche Ag | Method and composition for detection of peptide cyclization using protein tags |
CN106526785B (zh) * | 2016-12-27 | 2017-09-12 | 西安交通大学 | 偏转轴相交于反射镜表面的低高度双轴偏转装置及方法 |
US10928624B2 (en) * | 2017-12-29 | 2021-02-23 | Texas Instruments Incorporated | Microelectromechanical system (MEMS) structure and method of formation |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4441791A (en) * | 1980-09-02 | 1984-04-10 | Texas Instruments Incorporated | Deformable mirror light modulator |
US4710732A (en) * | 1984-07-31 | 1987-12-01 | Texas Instruments Incorporated | Spatial light modulator and method |
US5096279A (en) * | 1984-08-31 | 1992-03-17 | Texas Instruments Incorporated | Spatial light modulator and method |
US5061049A (en) * | 1984-08-31 | 1991-10-29 | Texas Instruments Incorporated | Spatial light modulator and method |
US4662746A (en) * | 1985-10-30 | 1987-05-05 | Texas Instruments Incorporated | Spatial light modulator and method |
US5172262A (en) * | 1985-10-30 | 1992-12-15 | Texas Instruments Incorporated | Spatial light modulator and method |
US4956619A (en) * | 1988-02-19 | 1990-09-11 | Texas Instruments Incorporated | Spatial light modulator |
US5079544A (en) * | 1989-02-27 | 1992-01-07 | Texas Instruments Incorporated | Standard independent digitized video system |
US5105369A (en) * | 1989-12-21 | 1992-04-14 | Texas Instruments Incorporated | Printing system exposure module alignment method and apparatus of manufacture |
US5083857A (en) * | 1990-06-29 | 1992-01-28 | Texas Instruments Incorporated | Multi-level deformable mirror device |
US5142405A (en) * | 1990-06-29 | 1992-08-25 | Texas Instruments Incorporated | Bistable dmd addressing circuit and method |
US5331454A (en) * | 1990-11-13 | 1994-07-19 | Texas Instruments Incorporated | Low reset voltage process for DMD |
CA2063744C (en) * | 1991-04-01 | 2002-10-08 | Paul M. Urbanus | Digital micromirror device architecture and timing for use in a pulse-width modulated display system |
US5202785A (en) * | 1991-12-20 | 1993-04-13 | Texas Instruments Incorporated | Method and device for steering light |
US5233456A (en) * | 1991-12-20 | 1993-08-03 | Texas Instruments Incorporated | Resonant mirror and method of manufacture |
US5212582A (en) * | 1992-03-04 | 1993-05-18 | Texas Instruments Incorporated | Electrostatically controlled beam steering device and method |
KR970003007B1 (ko) * | 1993-05-21 | 1997-03-13 | 대우전자 주식회사 | 투사형 화상표시장치용 광로조절장치 및 그 구동방법 |
US5583688A (en) * | 1993-12-21 | 1996-12-10 | Texas Instruments Incorporated | Multi-level digital micromirror device |
-
1995
- 1995-04-18 US US08/424,021 patent/US5535047A/en not_active Expired - Lifetime
-
1996
- 1996-04-09 TW TW085104099A patent/TW295631B/zh not_active IP Right Cessation
- 1996-04-09 CA CA002173637A patent/CA2173637C/en not_active Expired - Fee Related
- 1996-04-18 EP EP96106099A patent/EP0738910B1/en not_active Expired - Lifetime
- 1996-04-18 CN CN96106137A patent/CN1160218A/zh active Pending
- 1996-04-18 DE DE69634222T patent/DE69634222T2/de not_active Expired - Lifetime
- 1996-04-18 JP JP09704196A patent/JP3851679B2/ja not_active Expired - Fee Related
- 1996-04-18 KR KR1019960011751A patent/KR100416679B1/ko not_active IP Right Cessation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101963698A (zh) * | 2010-09-30 | 2011-02-02 | 西北工业大学 | 一种微机械空间光调制器 |
CN101963698B (zh) * | 2010-09-30 | 2012-01-18 | 西北工业大学 | 一种微机械空间光调制器 |
CN110678803A (zh) * | 2017-05-26 | 2020-01-10 | Lg伊诺特有限公司 | 透镜驱动装置及包括透镜驱动装置的相机模块和光学设备 |
CN110678803B (zh) * | 2017-05-26 | 2022-04-12 | Lg伊诺特有限公司 | 透镜移动装置及包括透镜移动装置的相机模块和光学设备 |
US11561362B2 (en) | 2017-05-26 | 2023-01-24 | Lg Innotek Co., Ltd. | Lens driving device, and camera module and optical device including same |
Also Published As
Publication number | Publication date |
---|---|
US5535047A (en) | 1996-07-09 |
EP0738910A3 (en) | 2002-11-13 |
KR960038437A (ko) | 1996-11-21 |
DE69634222D1 (de) | 2005-03-03 |
CA2173637A1 (en) | 1996-10-19 |
EP0738910B1 (en) | 2005-01-26 |
JP3851679B2 (ja) | 2006-11-29 |
CA2173637C (en) | 2007-07-17 |
KR100416679B1 (ko) | 2004-04-30 |
EP0738910A2 (en) | 1996-10-23 |
JPH08334709A (ja) | 1996-12-17 |
TW295631B (zh) | 1997-01-11 |
DE69634222T2 (de) | 2006-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1160218A (zh) | 具有活动轭形件和隐藏扭铰件的数字式空间音光调制器 | |
JP2571878B2 (ja) | 像作成装置 | |
US5172262A (en) | Spatial light modulator and method | |
US4662746A (en) | Spatial light modulator and method | |
JP2546553B2 (ja) | 空間光変調器の画素をリセットする方法 | |
US6282010B1 (en) | Anti-reflective coatings for spatial light modulators | |
US5583688A (en) | Multi-level digital micromirror device | |
US7538932B2 (en) | High contrast spatial light modulator | |
US6992810B2 (en) | High fill ratio reflective spatial light modulator with hidden hinge | |
CA2472349C (en) | Reflective spatial light modulator | |
CA2107756C (en) | Improved bistable dmd addressing method | |
US6614576B2 (en) | Surface micro-planarization for enhanced optical efficiency and pixel performance in SLM devices | |
US6323982B1 (en) | Yield superstructure for digital micromirror device | |
US5659374A (en) | Method of repairing defective pixels | |
CN1329284C (zh) | 反射式空间光调节器的制造 | |
US7298542B2 (en) | Microelectromechanical device with reset electrode | |
US6469821B2 (en) | Micromirror structures for orthogonal illumination | |
JPH09101467A (ja) | 空間光変調器 | |
JPH09127439A (ja) | 光操縦用アナログビームをもつ光スイッチ | |
US6897991B2 (en) | DMD pixel with small-rotated-moved via2 to reduce beam-electrode shorts | |
KR100257237B1 (ko) | 개선된 박막형 광로 조절 장치 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |