CN115872445A - 一种石榴石型发光材料及其制备方法和应用 - Google Patents

一种石榴石型发光材料及其制备方法和应用 Download PDF

Info

Publication number
CN115872445A
CN115872445A CN202211211568.9A CN202211211568A CN115872445A CN 115872445 A CN115872445 A CN 115872445A CN 202211211568 A CN202211211568 A CN 202211211568A CN 115872445 A CN115872445 A CN 115872445A
Authority
CN
China
Prior art keywords
compound
garnet
luminescent material
oxide
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211211568.9A
Other languages
English (en)
Other versions
CN115872445B (zh
Inventor
钟继有
李超杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202211211568.9A priority Critical patent/CN115872445B/zh
Publication of CN115872445A publication Critical patent/CN115872445A/zh
Application granted granted Critical
Publication of CN115872445B publication Critical patent/CN115872445B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Luminescent Compositions (AREA)

Abstract

本发明属于发光材料技术领域,公开了一种石榴石型发光材料及其制备方法和应用。所述发光材料的化学式为Ca3Mg1‑a/2M1‑a/2CraGe3O12;其中M选自Zr、Hf或Sn中的一种以上,0.001≤a≤0.1。本发明的石榴石结构近红外荧光材料可被400~550nm、600~750nm范围内的蓝光和红光有效激发,激发峰值波长位于455~465nm,能够适用商业蓝光LED芯片,产生的近红外光峰值波长位于795‑805nm,可应用在近红外LED光转换器件中。

Description

一种石榴石型发光材料及其制备方法和应用
技术领域
本发明属于发光材料技术领域,更具体地,涉及一种石榴石型发光材料及其制备方法和应用。
背景技术
近年来,近红外光谱技术凭借无损、便捷和快速的特点,在食品安全检测、安防系统、环境保护、现代农业以及生物成像等领域发挥着重要作用。其中, 700-1200nm波段的近红外光对有机物中的O-H、C-H、N-H键振动模式的独特吸收响应可以用做分析检测手段,已广泛应用在智能化检测设备当中。而人们对于近红外光源的制取和能源利用效率等方面也提出了更高的要求,传统的近红外光源,如白炽灯、卤钨灯等因自身体积大、效率低、成本高和发射波长窄(<50nm) 等缺点难以满足大多数光谱应用。基于荧光转换的近红外发光二极管(NIR pc-LED)具有效率高、稳定性好、体积小、成本低、和光谱可调等优点,已成为近红外光谱技术在智能化检测设备应用的首选光源。作为pc-LED的重要组成部分,近红外荧光粉是获得高效宽带近红外光源的关键环节,探索和开发这类材料对于满足近红外技术的市场需求和提升光谱技术的科研价值有着重要意义。
在众多荧光粉材料中,Cr3+激活的近红外材料,因其拥有与蓝光LED相匹配的吸收带,和发光效率高、光谱可调控以及成本低等优点而被广泛研究。在现有材料中,石榴石类型荧光粉因具有较高的结构刚性和宽带隙等特点而表现出优异的量子效率和热稳定性,已备受关注。如中科院刘永福团队对Ca3Sc2Si3O12:Cr3+材料(Light Sci.Appl.2020,9(1),86.)优化后使得该材料的内量子效率达到了 92.3%,且在150℃时的发光强度仍保持在室温下的97.4%。但是,由于石榴石自身的结构对称性较高,晶体场普遍较强,使得Cr3+掺杂后的近红外发射波长较短(<780nm),且随着发射波长的逐渐增大,其效率和稳定性都急剧下降,这严重制约了此类材料在长波段的光谱应用。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明的目的在于提供一种石榴石型发光材料。该石榴石结构近红外荧光材料在460nm蓝光激发下发出峰值波长在800nm的近红外光,量子效率均高于80%,能够作为荧光转换的近红外pc-LED用荧光粉。
本发明的另一目的在于提供上述石榴石型发光材料的制备方法。
本发明的再一目的在于提供上述石榴石型发光材料的应用。
本发明的目的通过下述技术方案来实现:
一种石榴石型发光材料,所述发光材料的化学式为Ca3Mg1-a/2M1-a/2CraGe3O12;其中M选自Zr、Hf或Sn中的一种以上;0.001≤a≤0.1。
所述的石榴石型发光材料的制备方法,包括以下具体步骤:
S1.将Ca化合物、Mg化合物、M化合物、Ge化合物和Cr化合物研细,加入助溶剂硼酸混合均匀,得混合物;
S2.将混合物置于空气中在1200~1500℃下烧结4~48h,并将产物进行破碎、研细处理,制得石榴石结构发光材料。
优选地,步骤S1中所述M化合物为氧化锆、硝酸锆、氧化铪、硝酸铪、氧化锡或硝酸锡中一种以上(上述M化合物中Zr、Hf或Sn离子为+4价)。
优选地,步骤S1中所述Ca化合物为碳酸钙、草酸钙、氧化钙、氢氧化钙或硝酸钙;所述Mg化合物为碳酸镁、碱式碳酸镁、氧化镁、氢氧化镁或硝酸镁。
优选地,步骤S1中所述Ge化合物为氧化锗(GeO2);Cr化合物为氧化铬或硝酸铬(上述Cr化合物中Cr离子为+3价)。
所述的石榴石型发光材料在光转换器件中的应用。
进一步地,所述光转换器件为近红外LED器件。
本发明石榴石结构近红外荧光材料属于新结构、新组分化合物,是将光学活性元素Cr3+溶解在Ca3MgMGe3O12(M=Zr、Hf或Sn)结晶相中,可得到一种激发峰值波长位于455~465nm,发射峰值波长位于795~805nm的发光效率均高于80%的全新的石榴石材料体系,且表现出极佳的热抵抗性能,具有潜在的应用价值。
本发明涉及Cr3+单独掺杂Ca3MgMGe3O12(M=Zr、Hf或Sn),或者在此基础上,通过Zr、Hf或Sn中的一种以上混合固溶体组分改变所形成的新组分荧光材料,以及包含上述组分为主要成分的混合物。基于晶体场工程的策略,采用离子半径较大的[Mg2+-M4+](M=Zr、Hf或Sn)的组合占据一个晶体格位,不仅有效削弱了石榴石的晶体场强度,还降低了结构对称性,形成了全新的材料体系,实现了更大的发射峰值波长(>780nm)和更宽的光谱覆盖范围(半高宽可达130nm),且仍保持高效率和热强健的近红外发光。
因此,与现有技术相比,本发明具有以下有益效果:
1.本发明提供的石榴石结构近红外荧光材料可被400~550nm、600~750nm 范围内的蓝光和红光有效激发,激发峰值波长位于455~465nm,能够适用商业蓝光LED芯片,实用性强;
2.本发明提供的石榴石结构近红外荧光材料在460nm蓝光激发下发出峰值波长在800nm的近红外光,量子效率均高于80%,能够作为荧光转换的近红外 pc-LED用荧光粉;
3.本发明提供的石榴石结构近红外荧光材料的原料便宜易得,且合成温度低,制备工艺简单,不需要特殊的反应设备,工业化生产方便。
附图说明
图1为实施例1中Ca3Mg0.99Zr0.99Cr0.02Ge3O12的X-粉末衍射图。
图2为实施例1中Ca3Mg0.99Zr0.99Cr0.02Ge3O12的激发光谱。
图3为实施例1中Ca3Mg0.99Zr0.99Cr0.02Ge3O12的发射光谱。
图4为实施例2中Ca3Mg0.99Hf0.99Cr0.02Ge3O12的激发光谱。
图5为实施例2中Ca3Mg0.99Hf0.99Cr0.02Ge3O12的发射光谱。
图6为实施例2中Ca3Mg0.99Hf0.99Cr0.02Ge3O12的近红外器件输出功率和光电转换效率图。
图7为实施例3中Ca3Mg0.99Sn0.99Cr0.02Ge3O12的激发光谱。
图8为实施例3中Ca3Mg0.99Sn0.99Cr0.02Ge3O12的发射光谱。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
按荧光粉的化学式Ca3Mg0.99Zr0.99Cr0.02Ge3O12称取0.15mol CaCO3、0.0495mol MgO、0.0495mol ZrO2、0.15mol GeO2、0.001mol Cr2O3,以上原料均为分析纯,将上述原料与10wt%的H3BO3在玛瑙研钵中混合并充分研磨,混合均匀后,装入氧化铝坩埚中在1400℃焙烧20h。待冷却至室温后将产物破碎、研磨、洗涤、干燥处理,制得化学组成为Ca3Mg0.99Zr0.99Cr0.02Ge3O12的荧光粉。
图1为实施例1中Ca3Mg0.99Zr0.99Cr0.02Ge3O12的X-粉末衍射图。其X-粉末衍射图(Cu靶,λ=0.15406nm)与Ca3MgZrGe3O12标准卡片对比如图1所示,由图1可知,本实施例成功制得Ca3Mg0.99Zr0.99Cr0.02Ge3O12。图2为本实施例中 Ca3Mg0.99Zr0.99Cr0.02Ge3O12的激发光谱,由图2可知,该荧光粉可被400~550nm、 600~750nm范围内的蓝光和红光有效激发,主激发峰位于455nm。图3为本实施例中Ca3Mg0.99Zr0.99Cr0.02Ge3O12的发射光谱,由图3可知,发射光谱覆盖650~1200nm,其发射主峰位于796nm。在460nm蓝光的激发下,量子效率为89%(见表1),且在150℃时的发光强度保持在室温下的88%。
实施例2
按荧光粉的化学式Ca3Mg0.99Hf0.99Cr0.02Ge3O12称取0.15mol CaCO3、0.0495mol MgO、0.0495mol HfO2、0.15mol GeO2、0.001mol Cr2O3,以上原料均为分析纯,将上述原料与10wt%的H3BO3在玛瑙研钵中混合并充分研磨,混合均匀后,装入氧化铝坩埚中在1350℃焙烧12h。待冷却至室温后将产物破碎、研磨、洗涤、干燥处理,制得化学组成为Ca3Mg0.99Hf0.99Cr0.02Ge3O12的荧光粉。
图4为本实施例中Ca3Mg0.99Hf0.99Cr0.02Ge3O12的激发光谱,由图4可知,该荧光粉可被400~550nm、600~750nm范围内的蓝光和红光有效激发,主激发峰位于 455nm;图5为本实施例中400~550nm、600~750nm的发射光谱,由图5可知,发射光谱覆盖650~1200nm,其发射主峰位于800nm。在460nm蓝光的激发下,量子效率为91%(见表1),且在150℃时的发光强度保持在室温下的85%。
图6为实施例2中Ca3Mg0.99Hf0.99Cr0.02Ge3O12的近红外器件输出功率和光电转换效率图。将该Ca3Mg0.99Hf0.99Cr0.02Ge3O12的荧光粉与455nm LED芯片封装制得 pc-LED器件,在50~500mA得驱动电流激励下,测得了该器件的近红外输出功率和光电转换效率。其中150mA电流激励下得到了37.72mW@8.75%的近红外输出。
实施例3
按荧光粉的化学式Ca3Mg0.99Sn0.99Cr0.02Ge3O12称取0.15mol CaCO3、0.0495mol MgO、0.0495mol SnO2、0.15mol GeO2、0.001mol Cr2O3,以上原料均为分析纯,将上述原料与10wt%的H3BO3在玛瑙研钵中混合并充分研磨,混合均匀后,装入氧化铝坩埚中在1500℃保焙烧48h。待冷却至室温后将产物破碎、研磨、洗涤、干燥处理,即得化学组成为Ca3Mg0.99Sn0.99Cr0.02Ge3O12的荧光粉。
图7为本实施例中Ca3Mg0.99Sn0.99Cr0.02Ge3O12的激发光谱,由图7可知,该荧光粉可被400~550nm、600~750nm范围内的蓝光和红光有效激发,主激发峰位于 465nm;图7为本实施例中Ca3Mg0.99Sn0.99Cr0.02Ge3O12的发射光谱,由图8可知,发射光谱覆盖650~1200nm,其发射主峰位于805nm。在460nm蓝光的激发下,量子效率为85%(见表1),且在150℃时的发光强度保持在室温下的90%。
实施例4
按荧光粉的化学式Ca3Mg0.9995Zr0.9995Cr0.001Ge3O12称取0.15mol CaCO3、0.049975mol MgO、0.049975mol ZrO2、0.15mol GeO2、0.00005mol Cr2O3,以上原料均为分析纯,将上述原料与10wt%的H3BO3在玛瑙研钵中混合并充分研磨,混合均匀后,装入氧化铝坩埚中在1300℃焙烧4h。待冷却至室温后将产物破碎、研磨、洗涤、干燥处理,制得化学组成为Ca3Mg0.9995Zr0.9995Cr0.001Ge3O12的荧光粉。
该荧光粉可被400~550nm、600~750nm范围内的蓝光和红光有效激发,主激发峰位于456nm;在460nm蓝光的激发下,发射光谱覆盖650~1200nm,其发射主峰位于802nm,量子效率为84%(见表1),且在150℃时的发光强度保持在室温下的86%。
实施例5
按荧光粉的化学式Ca3Mg0.95Hf0.95Cr0.1Ge3O12称取0.15mol CaCO3、0.0475mol MgO、0.0475mol HfO2、0.15mol GeO2、0.005mol Cr2O3,以上原料均为分析纯,将上述原料与10wt%的H3BO3在玛瑙研钵中混合并充分研磨,混合均匀后,装入氧化铝坩埚中在1500℃焙烧16h。待冷却至室温后将产物破碎、研磨、洗涤、干燥处理,制得化学组成为Ca3Mg0.95Hf0.95Cr0.1Ge3O12的荧光粉。
该荧光粉可被400~550nm、600~750nm范围内的蓝光和红光有效激发,主激发峰位于458nm;在460nm蓝光的激发下,发射光谱覆盖650~1200nm,其发射主峰位于801nm,量子效率为83%(见表1),且在150℃时的发光强度保持在室温下的82%。
实施例6
按荧光粉的化学式Ca3Mg0.995Sn0.995Cr0.01Ge3O12称取0.15mol CaCO3、 0.04975molMgO、0.04975mol SnO2、0.15mol GeO2、0.0005mol Cr2O3,以上原料均为分析纯,将上述原料与10wt%的H3BO3在玛瑙研钵中混合并充分研磨,混合均匀后,装入氧化铝坩埚中在1250℃焙烧30h。待冷却至室温后将产物破碎、研磨、洗涤、干燥处理,即得化学组成为Ca3Mg0.995Sn0.995Cr0.01Ge3O12的荧光粉。
该荧光粉可被400~550nm、600~750nm范围内的蓝光和红光有效激发,主激发峰位于457nm;在460nm蓝光的激发下,发射光谱覆盖650~1200nm,其发射主峰位于799nm,量子效率为81%(见表1),且在150℃时的发光强度保持在室温下的84%。
实施例7
按实施例6的方法制备荧光粉的化学式表示为: Ca3Mg0.98Zr0.73Hf0.25Cr0.04Ge3O12,得到的荧光粉发射峰值波长及量子效率见表1。
实施例8
按实施例6的方法制备荧光粉的化学式表示为: Ca3Mg0.98Zr0.48Sn0.5Cr0.04Ge3O12,得到的荧光粉发射峰值波长及量子效率见表1。
实施例9
按实施例6的方法制备荧光粉的化学式表示为: Ca3Mg0.98Hf0.23Sn0.75Cr0.04Ge3O12,得到的荧光粉发射峰值波长及量子效率见表1。
实施例10
按实施例6的方法制备荧光粉的化学式表示为: Ca3Mg0.975Zr0.325Hf0.325Sn0.325Cr0.05Ge3O12,得到的荧光粉发射峰值波长及量子效率见表1。
表1实施例1-10的荧光粉在460nm蓝光激发下的发射峰位以及量子效率
Figure BDA0003875418020000061
Figure BDA0003875418020000071
表1为实施例1-10的荧光粉在460nm蓝光激发下的发射峰位以及量子效率。从表1可知,该石榴石结构近红外荧光材料在460nm蓝光激发下发出峰值波长在800nm的近红外光,量子效率均在80%以上,能够作为荧光转换的近红外 pc-LED用荧光粉。石榴石类型材料的发射峰值波长大多都在760nm以内,严格意义上不在近红外波段(<780nm)。同时,Cr3+掺杂近红外材料存在随着发射波长红移,会发生显著的发光效率下降的现象。因此,本发明的石榴石结构荧光粉实现了发射峰值波长位于800nm,且仍保持显著的量子效率,这对于进一步开发长波长近红外材料具有重要的指导意义。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种石榴石型发光材料,其特征在于,所述发光材料的化学式为Ca3Mg1-a/2M1-a/ 2CraGe3O12;其中M选自Zr、Hf或Sn中的一种以上;0.001≤a≤0.1。
2.根据权利要求1所述的石榴石型发光材料的制备方法,其特征在于,包括以下具体步骤:
S1.将Ca化合物、Mg化合物、M化合物、Ge化合物和Cr化合物研细,加入助溶剂硼酸混合均匀,得混合物;
S2.将混合物置于空气中在1200~1500℃下烧结4~48h,并将产物进行破碎、研细处理,制得石榴石结构发光材料。
3.根据权利要求2所述的石榴石型发光材料的制备方法,其特征在于,步骤S1中所述M化合物为氧化锆、硝酸锆、氧化铪、硝酸铪、氧化锡或硝酸锡中一种以上。
4.根据权利要求2所述的石榴石型发光材料的制备方法,其特征在于,步骤S1中所述Ca化合物为碳酸钙、草酸钙、氧化钙、氢氧化钙或硝酸钙;所述Mg化合物为碳酸镁、碱式碳酸镁、氧化镁、氢氧化镁或硝酸镁。
5.根据权利要求2所述的石榴石型发光材料的制备方法,其特征在于,步骤S1中所述Ge化合物为氧化锗;Cr化合物为氧化铬或硝酸铬。
6.根据权利要求1所述的石榴石型发光材料在光转换器件中的应用。
7.根据权利要求6所述的应用,其特征在于,所述光转换器件为近红外LED器件。
CN202211211568.9A 2022-12-16 2022-12-16 一种石榴石型发光材料及其制备方法和应用 Active CN115872445B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211211568.9A CN115872445B (zh) 2022-12-16 2022-12-16 一种石榴石型发光材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211211568.9A CN115872445B (zh) 2022-12-16 2022-12-16 一种石榴石型发光材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115872445A true CN115872445A (zh) 2023-03-31
CN115872445B CN115872445B (zh) 2024-04-19

Family

ID=85770188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211211568.9A Active CN115872445B (zh) 2022-12-16 2022-12-16 一种石榴石型发光材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115872445B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116536044A (zh) * 2023-03-31 2023-08-04 湘潭大学 一种宽带深红-近红外pc-LED荧光材料的制备方法及近红外光源
CN116814260A (zh) * 2023-06-19 2023-09-29 昆明学院 一种锗锆酸镁钙荧光粉及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418215A (en) * 1993-06-22 1995-05-23 The United States Of America As Represented By The Secretary Of The Army C-axis oriented high temperature superconductors deposited onto single crystals of gadolinium gallium garnet and method of making the same
JPH0837328A (ja) * 1994-07-25 1996-02-06 Nippon Telegr & Teleph Corp <Ntt> 波長可変レーザ用ガーネット結晶導波路
WO2017114281A1 (zh) * 2015-12-31 2017-07-06 有研稀土新材料股份有限公司 石榴石型结构的荧光粉及其制成的发光装置
US20170218267A1 (en) * 2014-10-15 2017-08-03 Grirem Advanced Materials Co., Ltd. Garnet-type fluorescent powder, preparation method and devices comprising the fluorescent powder
CN111378445A (zh) * 2020-03-19 2020-07-07 北京科技大学 一种Cr3+掺杂的近红外宽谱发光材料的制备和应用方法
CN111517789A (zh) * 2020-04-29 2020-08-11 桂林理工大学 一种低介电微波介质陶瓷材料及其制备方法
US20200335670A1 (en) * 2017-12-18 2020-10-22 Merck Patent Gmbh Light-converting material
CN113651600A (zh) * 2021-08-19 2021-11-16 桂林理工大学 低介电常数高品质因子锗酸盐微波介质陶瓷及其制备方法
CN114015445A (zh) * 2021-12-20 2022-02-08 广东工业大学 一种石榴石结构近红外荧光材料及其制备方法和应用
JP2022087026A (ja) * 2020-11-30 2022-06-09 日亜化学工業株式会社 酸化物蛍光体、発光装置及び酸化物蛍光体の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418215A (en) * 1993-06-22 1995-05-23 The United States Of America As Represented By The Secretary Of The Army C-axis oriented high temperature superconductors deposited onto single crystals of gadolinium gallium garnet and method of making the same
JPH0837328A (ja) * 1994-07-25 1996-02-06 Nippon Telegr & Teleph Corp <Ntt> 波長可変レーザ用ガーネット結晶導波路
US20170218267A1 (en) * 2014-10-15 2017-08-03 Grirem Advanced Materials Co., Ltd. Garnet-type fluorescent powder, preparation method and devices comprising the fluorescent powder
WO2017114281A1 (zh) * 2015-12-31 2017-07-06 有研稀土新材料股份有限公司 石榴石型结构的荧光粉及其制成的发光装置
US20200335670A1 (en) * 2017-12-18 2020-10-22 Merck Patent Gmbh Light-converting material
CN111378445A (zh) * 2020-03-19 2020-07-07 北京科技大学 一种Cr3+掺杂的近红外宽谱发光材料的制备和应用方法
CN111517789A (zh) * 2020-04-29 2020-08-11 桂林理工大学 一种低介电微波介质陶瓷材料及其制备方法
JP2022087026A (ja) * 2020-11-30 2022-06-09 日亜化学工業株式会社 酸化物蛍光体、発光装置及び酸化物蛍光体の製造方法
CN113651600A (zh) * 2021-08-19 2021-11-16 桂林理工大学 低介电常数高品质因子锗酸盐微波介质陶瓷及其制备方法
CN114015445A (zh) * 2021-12-20 2022-02-08 广东工业大学 一种石榴石结构近红外荧光材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONGRONG MEI等: "Compositional design, structure stability, and microwave dielectric properties in Ca3MgBGe3O12 (B = Zr, Sn) garnet ceramics with tetravalent cations on B-site", CERAMICS INTERNATIONAL, no. 48, pages 4658 - 4664 *
YANG YANG等: "Rattling effects on microwave dielectric properties of Ca3TiBGe3O12(B=Mg,Zn) garnets", JOURNAL OF THE EUROPEAN SOCIETY, vol. 42, 30 April 2022 (2022-04-30) *
刘微;崔瑞瑞;邓朝勇;: "新型近红外超长余辉材料Zn_3Ga_4Ge_xO_(9+2x):1%Cr~(3+)的制备与发光性能研究", 光电子・激光, no. 02, 15 February 2016 (2016-02-15) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116536044A (zh) * 2023-03-31 2023-08-04 湘潭大学 一种宽带深红-近红外pc-LED荧光材料的制备方法及近红外光源
CN116814260A (zh) * 2023-06-19 2023-09-29 昆明学院 一种锗锆酸镁钙荧光粉及其制备方法

Also Published As

Publication number Publication date
CN115872445B (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
Wang et al. Mn 4+-activated Li 3 Mg 2 SbO 6 as an ultrabright fluoride-free red-emitting phosphor for warm white light-emitting diodes
Chen et al. A bright and moisture-resistant red-emitting Lu 3 Al 5 O 12: Mn 4+, Mg 2+ garnet phosphor for high-quality phosphor-converted white LEDs
Li et al. Research progress of Mn doped phosphors
Zhang et al. Dopant preferential site occupation and high efficiency white emission in K 2 BaCa (PO 4) 2: Eu 2+, Mn 2+ phosphors for high quality white LED applications
Zhou et al. Improved luminescence and energy-transfer properties of Ca 14 Al 10 Zn 6 O 35: Ti 4+, Mn 4+ deep-red-emitting phosphors with high brightness for light-emitting diode (LED) plant-growth lighting
Zhou et al. Luminescence study of a self-activated and rare earth activated Sr 3 La (VO 4) 3 phosphor potentially applicable in W-LEDs
Jia et al. Synthesis and photoluminescence properties of Ce 3+ and Eu 2+-activated Ca 7 Mg (SiO 4) 4 phosphors for solid state lighting
Liu et al. High efficiency and high color purity blue-emitting NaSrBO 3: Ce 3+ phosphor for near-UV light-emitting diodes
Xia et al. Ca 2 Al 3 O 6 F: Eu 2+: a green-emitting oxyfluoride phosphor for white light-emitting diodes
Guo et al. White-light emission from a single-emitting-component Ca 9 Gd (PO 4) 7: Eu 2+, Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes
Rajendran et al. High performance red/deep-red emitting phosphors for white LEDs
KR101475497B1 (ko) 혼합된 2가 및 3가 양이온을 갖는 알루미늄-규산염계 오렌지색-적색 인광물질
Zheng et al. Ultra-wideband phosphor Mg2Gd8 (SiO4) 6O2: Ce3+, Mn2+: Energy transfer and pressure-driven color tuning for potential applications in LEDs and pressure sensors
CN115872445B (zh) 一种石榴石型发光材料及其制备方法和应用
Liu et al. Crystal structure and photoluminescence properties of red‐emitting Ca9La1− x (VO4) 7: xEu3+ phosphors for white light‐emitting diodes
Lian et al. Crystal structure refinement and luminescence properties of Ce 3+ singly doped and Ce 3+/Mn 2+ co-doped KBaY (BO 3) 2 for n-UV pumped white-light-emitting diodes
Liu et al. Garnet-based red emitting phosphors Li6MLa2Nb2O12: Eu3+ (M= Ca, Sr, Ba): photoluminescence improvement by changing crystal lattice
Wang et al. Synthesis, crystal structure, and photoluminescence of a novel blue-green emitting phosphor: BaHfSi 3 O 9: Eu 2+
Yuan et al. Flux-assisted low-temperature synthesis of Mn4+-doped unusual broadband deep-red phosphors toward warm w-LEDs
Li et al. Sol–gel synthesis, structure and luminescence properties of Ba2ZnMoO6: Eu3+ phosphors
Zhi-Peng et al. A novel yellow emitting phosphor Dy3+, Bi3+ co-doped YVO4 potentially for white light emitting diodes
Xu et al. The photoluminescence, thermal properties and tunable color of Na 1− x Al 1+ 2x Si 1− 2x O 4: x Ce 3+/Tb 3+/Dy 3+ via energy transfer: a single-component multicolor-emitting phosphor
Lü et al. An orange-emitting phosphor via the efficient Ce 3+–Mn 2+ and Eu 2+–Mn 2+ energy transfers in La 9.33 (SiO 4) 6 O 2 for UV or near-UV LEDs
Wu et al. Novel Mn 4+ doped red phosphors composed of MgAl 2 O 4 and CaAl 12 O 19 phases for light-emitting diodes
CN103627392A (zh) 一种锑酸盐基红色荧光粉及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant