CN115849448A - 三维1T/2H-MoS2中空结构吸波材料及其制备方法和应用 - Google Patents

三维1T/2H-MoS2中空结构吸波材料及其制备方法和应用 Download PDF

Info

Publication number
CN115849448A
CN115849448A CN202211471007.2A CN202211471007A CN115849448A CN 115849448 A CN115849448 A CN 115849448A CN 202211471007 A CN202211471007 A CN 202211471007A CN 115849448 A CN115849448 A CN 115849448A
Authority
CN
China
Prior art keywords
mos
dimensional
absorbing material
hollow structure
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211471007.2A
Other languages
English (en)
Inventor
王敦辉
吴梅
梁小会
汪鸿昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202211471007.2A priority Critical patent/CN115849448A/zh
Publication of CN115849448A publication Critical patent/CN115849448A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明提供了一种三维1T/2H‑MoS2中空结构吸波材料,其制备方法包括以下步骤:步骤1,将一定量的二水合钼酸钠(Na2MoO4·2H2O)和硫脲(CH4N2S)添加到去离子水和无水乙醇的混合溶液中,超声至完全溶解;步骤2,往上述溶液中加入所需量的十六烷基三甲基溴化铵,再超声至完全溶解;步骤3,在高温高压的环境下,溶剂热合成得到大量的产物,将产物离心、干燥,便可收集到1T/2H‑MoS2样品。本发明通过独特的层状MoS2堆叠而实现了高选择性三维中空结构的共存相1T/2H‑MoS2的合成。材料的独特结构及成分使其具有更加优异的微波吸收性能。

Description

三维1T/2H-MoS2中空结构吸波材料及其制备方法和应用
技术领域
本发明涉及吸波材料领域,尤其涉及一种三维1T/2H-MoS2中空结构吸波材料及其制备方法和应用。
背景技术
第五代(5G)无线通信系统的蓬勃发展和广泛应用,推动了无线通信技术和电子设备在各方面的快速跟进。但与此同时,这些设备产生严重的电磁辐射和电磁污染极大地危害了人体的身心健康。此外,电磁波传播过程中存在的信息泄露和信号干扰的风险也非常具有挑战性。因此,人们急需探索一种在GHz频段内具有厚度轻、厚度薄、有效带宽宽、强吸收特性的新型有效微波吸收材料,以解决日益严重的电磁波污染问题。众所周知,影响吸波材料微波性能的主要因素是特定的微/纳米结构、阻抗匹配、介电损耗等。纳米材料以其独特的结构和迷人的形貌吸引了大量研究者的关注,而这些关注往往伴随着优异的性能。这些结构包括核壳结构、多孔结构、中空结构、蛋黄壳结构等。其中,中空结构材料由于其低密度、空腔结构、高能量吸收和高比表面积的特殊优势,在微波吸收领域具有良好的应用前景。
发明内容
二硫化钼(MoS2)作为过渡金属二卤族化合物(TMDs)的代表,因其优良的电子特性和优异的化学与物理性质而成为具有吸引力的微波吸收材料之一。它可以以稳定半导体相(2H)和亚稳态金属(1T)的形式存在。其中,扭曲八面体1T-MoS2的电导率是2H相的107倍。与传统半导体2H-MoS2相比,金属相1T-MoS2具有更优异的介电损耗特性和更好的导电性。因此,2H和1T的结合可以使共存相1T/2H-MoS2具有半导体特性和金属性能,两相之间的协同作用可以提高MoS2在吸收器中的微波吸收性能。因此,通过设计共存相1T/2H-MoS2形成具有大比表面积、导电损耗和界面极化的中空纳米结构,是优化电磁波吸收性能的有效策略。
本发明目的在于设计出一种1T/2H-MoS2中空结构微波吸收材料。本发明采用溶剂热法通过调控溶剂比合成出高选择性的三维球壳状中空结构的共存相1T/2H-MoS2。通过系统的实验分析和总结,并结合理论分析和计算,调控花状中空结构材料的各种参数。其中当RL=-10dB时,表示有90%的入射电磁波被损耗掉;当RL=-20dB时,表示有99%的入射电磁波被损耗掉。本发明制备的1T/2H-MoS2,最大反射损耗在10.35GHz下可高达-56.32dB,其匹配厚度为2.3mm;并且该样品厚度为2.13mm,在11.96-17.84GHz频率范围内可获得低于-10dB的反射率。可以看出该三维1T/2H-MoS2中空结构吸波材料在低厚度下具有宽的有效吸收频带和优异的微波吸收性能。
本发明还要解决的技术问题是提供上述三维1T/2H-MoS2中空结构吸波材料的制备方法,该方法无需使用剧毒的有机溶剂,方法步骤简单,可控性强,成本低,可以用于大规模工业化生产。
本发明制备的样品需要通过以下手段进行结构和性能表征:采用日本Rigaku公司制造的D/Max-RA型旋转阳极X射线衍射仪(XRD)对样品进行了物相和晶体结构的表征;采用透射电子显微镜(TEM,JEM-2100F)和扫描电子显微镜(SEM,Hitachi S4800)对样品的微观形貌和显微结构进行了分析;采用Agilent PNA N5224B矢量网络分析仪同轴线法对样品的电磁参数进行了测量,将样品与石蜡按3:2的质量比混合得到标准同轴环,其外径为7.00mm,内径为3.00mm。样品的微波吸收性能利用公式:
Figure BDA0003958508480000021
和/>
Figure BDA0003958508480000022
计算得到。式中,Zin表示为吸波材料的输入阻抗,Z0表示为吸波材料的自由空间阻抗;Z和RL分别表示阻抗匹配和反射损耗;εr和ur分别表示微波吸收材料的复介电常数和复磁导率;f,d和c分别表示入射电磁波的频率、微波吸收材料的涂层厚度和真空中的光速。
本发明的实验和理论结果都表明,该种中空结构纳米材料能够表现出优异的微波吸收性能。本发明首先着重于样品合成方法和强吸收性能的改进,其创新之处在于通过巧妙设计花状中空结构的同时引入1T-MoS2,使得三维1T/2H-MoS2中空结构纳米材料可以表现出更加优越的微波吸收性能。
本发明提供一种三维1T/2H-MoS2中空结构吸波材料的制备方法,包括如下步骤:
步骤1,将二水合钼酸钠和硫脲以1:4的物质的量比,添加到去离子水和无水乙醇的混合溶液中,超声处理至完全溶解,得到溶液A;
步骤2,向所述溶液A中加入十六烷基三甲基溴化铵,再超声至完全溶解,得到溶液B;
步骤3,通过溶剂热合成法,对所述溶液B进行处理,得到产物C,对产物C进行离心、干燥处理,得到1T/2H-MoS2
作为优选,所述步骤1中,所述二水合钼酸钠和硫脲的用量分别为8mmol和32mmol;
所述去离子水和无水乙醇的混合溶剂总体积为50mL,所述混合溶剂中的去离子水和无水乙醇的体积比在以下范围:2:3到5:0;所述步骤2中,所述十六烷基三甲基溴化铵质量为0.3g;超声时间为1h;所述步骤3中,所述溶剂热合成法的反应温度为200℃,反应时间为24h。
作为优选,所述步骤1中,所述混合溶剂中的去离子水和无水乙醇的体积比为4:1。
本发明提供一种三维1T/2H-MoS2中空结构吸波材料,所述三维1T/2H-MoS2中空结构吸波材料为球壳状结构,所述球壳状结构的球壳壁是由二维层状结构的MoS2纳米片累积堆叠而形成的,所述MoS2纳米片包括1T相和2H相MoS2,所述球壳壁存在开口,所述开口与所述球壳内的中空空间连通。在扫描电子显微镜下观测,得到所述球壳状外直径的平均尺寸为3.3μm,所述中空空间的平均直径2.3μm。
本发明提供一种三维1T/2H-MoS2中空结构吸波材料,所述三维1T/2H-MoS2中空结构吸波材料为花状结构,所述花状结构是由二维层状结构的MoS2纳米片累积堆叠而形成的,所述MoS2纳米片包括1T相和2H相MoS2,所述花状结构的花心位置为一个空穴状的中空空间。在扫描电子显微镜下观测,得到所述花状结构外直径的平均尺寸为3.3μm,所述中空空间的平均直径2.3μm。
所述三维1T/2H-MoS2中空结构吸波材料在10.35GHz的电磁波条件下,反射损耗为-56.32dB。
将所述三维1T/2H-MoS2中空结构吸波材料与石蜡按3:2的质量比均匀混合,得到供矢量网络分析仪测试的外径为7.00mm,内径为3.00mm的标准同轴环,所述标准同轴环在10.35GHz的电磁波条件下,反射损耗为-56.32dB,匹配厚度为2.3mm;厚度为2.13mm的所述标准同轴环,在11.96-17.84GHz频率范围内的反射率低于-10dB。
本发明还提供一种将三维1T/2H-MoS2中空结构吸波材料应用于与石蜡混合制备同轴环的方法,包括以下步骤:将所述三维1T/2H-MoS2中空结构吸波材料与石蜡按3:2的质量比均匀混合,将所述混合物成型为供矢量网络分析仪测试的外径为7.00mm,内径为3.00mm的标准同轴环,所述标准同轴环在10.35GHz的电磁波条件下,反射损耗为-56.32dB,匹配厚度为2.3mm;厚度为2.13mm的所述标准同轴环,在11.96-17.84GHz频率范围内的反射率低于-10dB。
本发明1T/2H-MoS2吸波材料的制备原理:使用溶剂热法制备具有花状中空结构的1T/2H-MoS2纳米材料,利用二水合钼酸钠和硫脲可制备出1T/2H-MoS2,同时该纳米材料的形貌可由混合溶剂的体积比来调控.当溶剂中去离子水的体积小于无水乙醇时,纳米复合材料形成花状纳米结构,而当溶剂中去离子水和无水乙醇的体积比大于1:1时,更容易形成三维球壳状中空结构的1T/2H-MoS2纳米材料。以下文献证明了通过调控混合溶剂的比例来可以调节产物的形貌结构。[J.C.Zhang,R.R.Shi,C.Zhang,L.Y.Li,J.M.Mei and S.Q.Liu,Solvothermal synthesis of manganese sulfides and control of their phase andmorphology,Journal of Materials Research,2018,33,4224-4232]对于本产品的液体化学制备中样品生长的调控,属于奥斯瓦尔德熟化过程。[H.G.Yang and H.C.Zeng,Preparation of hollow anatase TiO2 nanospheres via qstwaldripening.J.Phys.Chem.B 108,3492(2004).]该纳米材料中引入的1T-MoS2可使其具有丰富的界面极化,有更多的入射电磁波转化为机械能或其他形式的能量,有助于提高介电损耗。并且该纳米材料的花状中空结构拥有大量的界面,可允许入射电磁波在纳米片之间反复反射和散射,使入射电磁波更加有效地耗散,进而使得该纳米材料表现出更加优异的微波吸收性能。
发明的有益效果
(1)当混合溶剂中的去离子水和无水乙醇的体积比为4:1,本发明中空结构1T/2H-MoS2纳米材料表现出非常优异的微波吸收性能和较宽的有效吸收频带,是一种比较理想的微波吸收材料;
(2)本发明三维1T/2H-MoS2中空结构纳米材料是采用溶剂热制备获得三维球壳状中空结构。1T/2H-MoS2纳米材料中,引入的1T-MoS2使其合成共存相1T/2H-MoS2,并且很好地提高其材料的介电常数。因此,1T/2H-MoS2吸波材料具有高的介电损耗能力;
(3)该纳米材料的形貌可通过混合溶剂的体积比来调控,进而得到花状中空结构的1T/2H-MoS2纳米材料。花状结构和中空结构可以产生较大的表面积,这可以增强入射波的多重反射和散射,为电磁波提供了更多的接触点。因此,本发明在可以实现较强的反射损耗和较宽的有效吸收频带;
(4)同时本发明无需使用剧毒化学试剂制备,方法步骤简单,可控性强,成本低,可以用于大规模工业化生产。这一重要结果亦为理想微波吸收材料研究和开发提供了强有力的理论依据和实验基础。
另外,本发明的制备方法简单,仅通过一步水热法可以制备纳米中空结构;通过单一成分MoS2纳米中空结构却表现出更加优异的微波吸收性能。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单介绍,后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1为本发明实施例1、2、3、4制得的1T/2H-MoS2的X射线衍射图谱;
图2为本发明实施例1制得的1T/2H-MoS2的SEM图片;
图3为本发明实施例2制得的1T/2H-MoS2的SEM图片;
图4为本发明实施例3制得的1T/2H-MoS2的SEM图片;
图5为本发明实施例4制得的1T/2H-MoS2的SEM图片;
图6为本发明实施例3制得的1T/2H-MoS2的TEM图片;
图7为本发明实施例1制得的1T/2H-MoS2的反射损耗图;
图8为本发明实施例2制得的1T/2H-MoS2的反射损耗图;
图9为本发明实施例3制得的1T/2H-MoS2的反射损耗图;
图10为本发明实施例4制得的1T/2H-MoS2的反射损耗图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅用以解释本申请,并不用于限定本申请。
以下结合附图对本发明的实施例方案做进一步说明。
本发明制备方法得到的1T/2H-MoS2吸波材料呈现出三维球壳状中空结构,其形貌结构可通过去离子水和无水乙醇的体积比例来控制。1T/2H-MoS2的制备过程:将一定量的二水合钼酸钠(Na2MoO4·2H2O)和硫脲(CH4N2S)添加到去离子水和无水乙醇的混合溶液中,超声至完全溶解;然后往上述溶液中加入所需量的十六烷基三甲基溴化铵,再超声至完全溶解;在高温高压的环境下,溶剂热合成得到大量的产物,将产物离心、干燥,便可收集到1T/2H-MoS2样品。
本发明1T/2H-MoS2吸波材料的制备方法,具体包括如下步骤:
实施例1
步骤1,称取8mmol二水合钼酸钠和32mmol硫脲一起溶解在去离子水和无水乙醇体积比为2:3的混合溶液中,超声30min至完全溶解;
步骤2,然后往上述混合溶液中加入0.3g十六烷基三甲基溴化铵,再超声1h至完全溶解;
步骤3,再将上述混合液转移到高压反应釜中,置于鼓风干燥箱中,在200℃高温高压的环境下保持24h。得到的产物用去离子水和无水乙醇多次离心,最后,将合成的样品在真空烘箱中60℃过夜干燥,便可收集到1T/2H-MoS2样品,并标记为THM-1。
实施例2
步骤1,称取8mmol二水合钼酸钠和32mmol硫脲一起溶解在去离子水和无水乙醇体积比为3:2的混合溶液中,超声30min至完全溶解;
步骤2,然后往上述混合溶液中加入0.3g十六烷基三甲基溴化铵,再超声1h至完全溶解;
步骤3,再将上述混合液转移到高压反应釜中,置于鼓风干燥箱中,在200℃高温高压的环境下保持24h。得到的产物用去离子水和无水乙醇多次离心,最后,将合成的样品在真空烘箱中60℃过夜干燥,便可收集到1T/2H-MoS2样品,并标记为THM-2。
实施例3
步骤1,称取8mmol二水合钼酸钠和32mmol硫脲一起溶解在去离子水和无水乙醇体积比为4:1的混合溶液中,超声30min至完全溶解;
步骤2,然后往上述混合溶液中加入0.3g十六烷基三甲基溴化铵,再超声1h至完全溶解;
步骤3,再将上述混合液转移到高压反应釜中,置于鼓风干燥箱中,在200℃高温高压的环境下保持24h。得到的产物用去离子水和无水乙醇多次离心,最后,将合成的样品在真空烘箱中60℃过夜干燥,便可收集到1T/2H-MoS2样品,并标记为THM-3。
实施例4
步骤1,称取8mmol二水合钼酸钠和32mmol硫脲一起溶解在50mL去离子水溶液中,超声30min至完全溶解;
步骤2,然后往上述混合溶液中加入0.3g十六烷基三甲基溴化铵,再超声1h至完全溶解;
步骤3,再将上述混合液转移到高压反应釜中,置于鼓风干燥箱中,在200℃高温高压的环境下保持24h。得到的产物用去离子水和无水乙醇多次离心,最后,将合成的样品在真空烘箱中60℃过夜干燥,便可收集到1T/2H-MoS2样品,并标记为THM-4。
图1为实施例1、2、3、4所制得的1T/2H-MoS2的X射线衍射图,从图1中可以看出,实施例1、2、3、4具有相似的衍射峰,在所测范围之内有几个明显的衍射峰,分别为1T-MoS2的(002)和(004)晶面和2H-MoS2的(100)、(101)和(110)晶面。表明获得的三维球壳状中空结构成分是1T相和2H相的共存相MoS2
图2、3,4,5分别为实施例1、2、3、4所得的1T/2H-MoS2的扫描电子显微镜(SEM)图片,由图2~5中可以看出,花状结构由大量的MoS2纳米片堆叠而成;随着混合溶液中的去离子水体积增多,得到的1T/2H-MoS2的三维中空结构越来越明显。
图6为实施例3得到的1T/2H-MoS2的透射电子显微镜(TEM)图片,由图6中可以看出,所合成的样品为三维球壳状和中空结构的纳米材料。
图7为实施例1制得的1T/2H-MoS2的反射损耗图,由图8中可以看出,THM-1表现出良好的微波吸收性能,当匹配厚度为9.65mm,频率是3.12GHz时,最大反射损耗可达到-65.99dB;并且该样品厚度为2.61mm,在12.32-15.40GHz频率范围内可获得低于-10dB的反射率(相当于90%的吸收)。
图8为实施例2制得的1T/2H-MoS2的反射损耗图,由图8中可以看出,THM-2表现出良好的微波吸收性能,当匹配厚度为5.23mm,频率是6.00GHz时,最大反射损耗可达到-58.13dB;并且该样品厚度为2.52mm,在11.92-16.28GHz频率范围内可获得低于-10dB的反射率。
图9为实施例3制得的1T/2H-MoS2的反射损耗图,由图9中可以看出,THM-3表现出优异的微波吸收性能,当匹配厚度为1.85mm,频率是17.16GHz时,最大反射损耗可高达-56.32dB;并且该样品厚度为2.13mm,在11.96-17.84GHz频率范围内可获得低于-10dB的反射率。
图10为实施例4制得的1T/2H-MoS2的反射损耗图,由图10中可以看出,THM-4表现出良好的微波吸收性能,当匹配厚度为7.94mm,频率是3.36GHz时,最大反射损耗可达到-35.02dB;并且该样品厚度为2.01mm,在13.44-17.88GHz频率范围内可获得低于-10dB的反射率。
本发明1T/2H-MoS2纳米材料具有优异的微波吸收性能主要来源于1T-MoS2的引入提高了材料的介电损耗性能,同时设计的花状中空结构为电磁波提供了更多的界面接触,进而达到本发明纳米材料对入射电磁波的强吸收。
以上所述,仅为本发明部分具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

1.三维1T/2H-MoS2中空结构吸波材料的制备方法,其特征在于:包括如下步骤:
步骤1,将二水合钼酸钠和硫脲以1:4的物质的量比,添加到去离子水和无水乙醇的混合溶液中,超声处理至完全溶解,得到溶液A;
步骤2,向所述溶液A中加入十六烷基三甲基溴化铵,再超声至完全溶解,得到溶液B;
步骤3,通过溶剂热合成法,对所述溶液B进行处理,得到产物C,对产物C进行离心、干燥处理,得到1T/2H-MoS2
2.根据权利要求1所述的三维1T/2H-MoS2中空结构吸波材料的制备方法,其特征在于:所述步骤1中,
所述二水合钼酸钠和硫脲的用量分别为8mmol和32mmol;
所述去离子水和无水乙醇的混合溶剂总体积为50mL,所述混合溶剂中的去离子水和无水乙醇的体积比在以下范围:2:3到5:0;
所述步骤2中,所述十六烷基三甲基溴化铵质量为0.3g;超声时间为1h;
所述步骤3中,所述溶剂热合成法的反应温度为200℃,反应时间为24h。
3.根据权利要求2所述的三维1T/2H-MoS2中空结构吸波材料的制备方法,其特征在于:
所述步骤1中,所述混合溶剂中的去离子水和无水乙醇的体积比为4:1。
4.使用如权利要求3所述的制备方法制得的三维1T/2H-MoS2中空结构吸波材料,其特征在于:
所述三维1T/2H-MoS2中空结构吸波材料为球壳状结构,所述球壳状结构的球壳壁是由二维层状结构的MoS2纳米片累积堆叠而形成的,所述MoS2纳米片包括1T相和2H相MoS2,所述球壳壁存在开口,所述开口与所述球壳内的中空空间连通。
5.使用如权利要求3所述的制备方法制得的三维1T/2H-MoS2中空结构吸波材料,其特征在于:
所述三维1T/2H-MoS2中空结构吸波材料为花状结构,所述花状结构是由二维层状结构的MoS2纳米片累积堆叠而形成的,所述MoS2纳米片包括1T相和2H相MoS2,所述花状结构的花心位置为一个空穴状的中空空间。
6.如权利要求4所述的三维1T/2H-MoS2中空结构吸波材料,其特征在于,在扫描电子显微镜下观测,得到所述球壳状外直径的平均尺寸为3.3μm,所述中空空间的平均直径2.3μm。
7.如权利要求5所述的三维1T/2H-MoS2中空结构吸波材料,其特征在于,在扫描电子显微镜下观测,得到所述花状结构外直径的平均尺寸为3.3μm,所述中空空间的平均直径2.3μm。
8.根据权利要求4或5所述的三维1T/2H-MoS2中空结构吸波材料,其特征在于:
所述三维1T/2H-MoS2中空结构吸波材料在10.35GHz的电磁波条件下,反射损耗为-56.32dB。
9.根据权利要求4或5所述的三维1T/2H-MoS2中空结构吸波材料,其特征在于:
将所述三维1T/2H-MoS2中空结构吸波材料与石蜡按3:2的质量比均匀混合,得到供矢量网络分析仪测试的外径为7.00mm,内径为3.00mm的标准同轴环,所述标准同轴环在10.35GHz的电磁波条件下,反射损耗为-56.32dB,匹配厚度为2.3mm;厚度为2.13mm的所述标准同轴环,在11.96-17.84GHz频率范围内的反射率低于-10dB。
10.根据权利要求4或5所述的三维1T/2H-MoS2中空结构吸波材料应用于与石蜡混合制备同轴环,其特征在于:
将所述三维1T/2H-MoS2中空结构吸波材料与石蜡按3:2的质量比均匀混合,
将所述混合物成型为供矢量网络分析仪测试的外径为7.00mm,内径为3.00mm的标准同轴环,
所述标准同轴环在10.35GHz的电磁波条件下,反射损耗为-56.32dB,匹配厚度为2.3mm;厚度为2.13mm的所述标准同轴环,在11.96-17.84GHz频率范围内的反射率低于-10dB。
CN202211471007.2A 2022-11-23 2022-11-23 三维1T/2H-MoS2中空结构吸波材料及其制备方法和应用 Pending CN115849448A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211471007.2A CN115849448A (zh) 2022-11-23 2022-11-23 三维1T/2H-MoS2中空结构吸波材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211471007.2A CN115849448A (zh) 2022-11-23 2022-11-23 三维1T/2H-MoS2中空结构吸波材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115849448A true CN115849448A (zh) 2023-03-28

Family

ID=85665210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211471007.2A Pending CN115849448A (zh) 2022-11-23 2022-11-23 三维1T/2H-MoS2中空结构吸波材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115849448A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105252017A (zh) * 2015-11-12 2016-01-20 沈阳工业大学 一种二维片状组成单元自组装成三维树枝状磁性金属钴纳米材料
CN106229155A (zh) * 2016-08-22 2016-12-14 河南师范大学 一种制备单层2h相二硫化钼/微纳米碳复合材料的方法
CN109908920A (zh) * 2019-02-28 2019-06-21 新疆大学 一种制备1T@2H-MoS2/Au纳米片的方法
CN114843109A (zh) * 2022-05-13 2022-08-02 福州大学 海胆状MoS2/泡沫镍复合电容器电极材料及其制备方法
US20220274844A1 (en) * 2019-10-09 2022-09-01 Ningbo Institute Of Materials Technology & Engineering, Chinese Academy Of Sciences Core-shell structure type wave absorbing material, preparation method therefor, and application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105252017A (zh) * 2015-11-12 2016-01-20 沈阳工业大学 一种二维片状组成单元自组装成三维树枝状磁性金属钴纳米材料
CN106229155A (zh) * 2016-08-22 2016-12-14 河南师范大学 一种制备单层2h相二硫化钼/微纳米碳复合材料的方法
CN109908920A (zh) * 2019-02-28 2019-06-21 新疆大学 一种制备1T@2H-MoS2/Au纳米片的方法
US20220274844A1 (en) * 2019-10-09 2022-09-01 Ningbo Institute Of Materials Technology & Engineering, Chinese Academy Of Sciences Core-shell structure type wave absorbing material, preparation method therefor, and application
CN114843109A (zh) * 2022-05-13 2022-08-02 福州大学 海胆状MoS2/泡沫镍复合电容器电极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEI WU: "Efficient and tunable microwave absorbers of the flower-like 1T/2H-MoS2 with hollow nanostructures", 《JOURNAL OF ALLOYS AND COMPOUNDS》, vol. 933, pages 1 - 10 *

Similar Documents

Publication Publication Date Title
CN112961650B (zh) 一种三金属有机框架衍生铁镍合金/多孔碳超薄吸波剂及其制备方法
Lv et al. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures
US20220274844A1 (en) Core-shell structure type wave absorbing material, preparation method therefor, and application
CN113025271B (zh) 一种Ti3C2Tx MXene@ZnO复合吸波材料的制备方法
CN109825252B (zh) 核壳结构Fe3O4@C@MoS2复合材料的制备及其应用
CN109054742B (zh) Fe-Co-RGO复合吸波材料及其制备方法
Liu et al. Rational design of yolk-shell NiCo2O4@ void@ NiCo2S4 nanospheres for effective enhancement in microwave absorption
CN111392771A (zh) 壳层形貌可控的核壳结构氮掺杂碳包覆二氧化钛微球复合材料及其制备和应用
CN111574958B (zh) 核-边结构的碳化物MXene/SiO2纳米板状超薄微波吸收材料
CN111154455B (zh) 一种硼掺杂介孔花状四氧化三铁/碳复合吸波材料及其制备方法
CN114068166B (zh) 一种多级孔结构碳基磁性复合材料及其制备方法和应用
CN110461137B (zh) 一种三维泡沫型复合吸波材料及其制备方法
CN109439280A (zh) 一步水热法制备超薄强吸收性的Fe3O4/CNTs复合纳米吸波材料
CN114501966A (zh) 具有零维/一维/二维复合纳米结构型吸波材料及其制备方法和应用
CN115849448A (zh) 三维1T/2H-MoS2中空结构吸波材料及其制备方法和应用
CN109943285B (zh) 一种高性能吸波材料核壳结构CoxFe3-xO4@MoS2纳米复合物及其合成方法
CN114914710B (zh) 一种电磁波吸收材料及其制备方法和应用
CN108587565B (zh) 一种硫掺杂高导电石墨烯型轻质吸波材料及其制备方法和应用
CN115318210A (zh) 一种电磁屏蔽用二硫化钴/多孔碳/碳化硅气凝胶复合材料的制备方法和应用
Chen et al. Rational construction of ZnFe2O4 decorated hollow carbon cloth towards effective electromagnetic wave absorption
CN110358500B (zh) 一种多孔碳负载四氧化三钴包覆钴合金吸波材料的制备方法及应用
CN109413978B (zh) 一种复合电磁波吸收材料及制备方法
CN114423269B (zh) 一种氮掺杂的MXene@HCF电磁复合吸波材料及其制备方法
CN113613479B (zh) 核壳纺锤体阵列组装微米管微波吸收材料及其制备和应用
CN110272718B (zh) Al@MnO2复合材料、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination