CN115838732A - 一种重组卡介苗菌株及其构建方法和应用 - Google Patents

一种重组卡介苗菌株及其构建方法和应用 Download PDF

Info

Publication number
CN115838732A
CN115838732A CN202211337627.7A CN202211337627A CN115838732A CN 115838732 A CN115838732 A CN 115838732A CN 202211337627 A CN202211337627 A CN 202211337627A CN 115838732 A CN115838732 A CN 115838732A
Authority
CN
China
Prior art keywords
ccl2
recombinant
bcg
plasmid
rbcg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211337627.7A
Other languages
English (en)
Other versions
CN115838732B (zh
Inventor
郭绍华
刘杰
欧阳江山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West China Hospital of Sichuan University
Original Assignee
West China Hospital of Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West China Hospital of Sichuan University filed Critical West China Hospital of Sichuan University
Priority to CN202211337627.7A priority Critical patent/CN115838732B/zh
Publication of CN115838732A publication Critical patent/CN115838732A/zh
Application granted granted Critical
Publication of CN115838732B publication Critical patent/CN115838732B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种重组卡介苗菌株rBCG‑CCL2及其构建方法和应用。本发明基于重组ccl2基因构建的重组卡介苗菌株rBCG‑CCL2不仅具有常规BCG接种激活细胞和体液免疫的作用,还可通过分泌有生物学活性的CCL2增强其招募并活化巨噬细胞、T细胞等免疫效应细胞的能力。与常规BCG相比,rBCG‑CCL2高效地诱导免疫应答,提高宿主抗结核天然和特异性的免疫防御功能,促进入侵结核菌的清除,具备实际推广应用价值。

Description

一种重组卡介苗菌株及其构建方法和应用
技术领域
本发明属于生物制剂技术领域,具体涉及一种重组卡介苗菌株及其构建方法和应用。
背景技术
结核病(Tuberculosis)是由结核分枝杆菌(Mycobacterium tuberculosis,Mtb)引起的一种慢性传染病,被称为细菌性传染病中的“头号杀手”。全球约有四分之一人口感染Mtb。其中10%发展成活动性结核病,造成每年新增结核病患近千万,死亡人数超过百万。卡介苗(Bacille Calmette-Guérin,BCG)是目前唯一获准的人用结核疫苗,是采用卡介苗菌株制备而成的疫苗。新生儿皮内接种BCG可有效预防儿童粟粒性结核和结核性脑膜炎,降低婴幼儿结核感染的死亡率。但BCG对青少年和成人的保护力较差,导致BCG应用100年来仍不能有效控制结核病的传播。此外,随着耐药结核菌增多,改善BCG疫苗保护能力的需求也日益紧迫。
肺泡巨噬细胞是抵抗Mtb经呼吸道感染的第一道天然细胞免疫防线。肺泡巨噬细胞在Mtb感染和炎症部位的数量和功能与抗结核感染的免疫力密切相关。其数量的增加和功能的增强有助于Mtb的早期和有效的清除。巨噬细胞也是训练免疫的主要效应细胞。由BCG诱导的训练免疫主要通过单核细胞和巨噬细胞响应细胞因子的水平和活性氧和抗菌肽的释放,控制Mtb等病原微生物感染,并通过表观遗传修饰形成天然免疫记忆,发挥长效的天然免疫保护作用。
机体抵抗微生物感染依赖趋化因子介导的免疫细胞在微生物入侵部位的聚集和效应功能的活化。CCL2是单核巨噬细胞等免疫效应细胞的高效趋化因子,在生理性免疫防御中协调细胞的迁移。随着对CCL2的深入研究,发现CCL2还可以影响淋巴细胞的粘附、极化、分泌效应分子、自噬、杀伤和存活。CCL2与受体CCR2结合,上调巨噬细胞和骨髓来源单核细胞表达TNF-α、IL-1β、iNOS和IL-6,促进巨噬细胞的M1极化,有利于对入侵微生物的清除和感染的控制。
CCL2是源自于哺乳动物的蛋白,不存在于原核生物中,由于存在异源表达等障碍,未见在结核分枝杆菌中表达CCL2以提高疫苗保护能力的报道。
发明内容
本发明的目的是提供一种基因,其核苷酸序列如SEQ ID NO.1所示。
本发明还提供了一种重组质粒,它是包含前述基因的质粒。
进一步地,所述质粒为大肠杆菌-分枝杆菌穿梭质粒载体pMV261。
本发明还提供了一种重组菌,它是包括前述基因或者前述重组质粒的卡介苗菌株;卡介苗菌株:是指用于制备卡介苗的结核分枝杆菌。
进一步地,所述卡介苗菌株为牛结核分枝杆菌Mycobacterium bovis BCGstr.Pasteur 1173P2。
更进一步地,所述重组菌表达CCL2蛋白。
本发明还提供了一种前述重组菌的构建方法,它包括以下步骤:
取前述基因,导入质粒,得到重组质粒,再导入卡介苗菌株,即得;
进一步地,所述质粒为大肠杆菌-分枝杆菌穿梭质粒载体pMV261。
本发明还提供了一种前述的基因、前述的重组质粒、前述的重组菌在制备预防结核的疫苗中的用途。
本发明最后提供了一种卡介苗,它是包含前述重组菌的疫苗。
发明人在预实验发现,将表达趋化因子CCL2的未经改造的天然基因序列直接经重组质粒导入BCG中,CCL2很难高效表达,也无法从卡介苗菌株中分泌出发挥相应功能,最终无法实现增强BCG疫苗保护能力。
本发明在NCBI数据库中小鼠ccl2基因(GeneBank登录号NM_011333.3)序列的基础上,优化序列构建了能够在牛结核分枝杆菌中有效表达CCL2的重组ccl2基因(rccl2)。用该重组基因导入构建的重组卡介苗菌株rBCG-CCL2不仅具有常规BCG接种激活细胞和体液免疫的作用,还可通过分泌高水平CCL2增强其招募并活化巨噬细胞、T细胞等免疫效应细胞的能力。与常规BCG相比,rBCG-CCL2高效地诱导免疫应答,提高宿主抗结核天然和特异性的免疫防御功能,促进入侵结核菌的清除,具备实际推广应用价值。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。
附图说明
图1重组菌株rBCG-CCL2的构建与表达验证((a):rccl2基因的构建策略示意图;(b)PCR检测BCG-CCL2菌株中的rccl2基因,M:DNA marker DL2000,+:阳性质粒pMV261-ccl2对照,-:无模板对照,p:BCG空载体质粒菌株对照,c:rBCG-CCL2菌株;(c)Western Blot鉴定rCCL2的表达,M:蛋白相对分子质量marker,c:rBCG-CCL2菌体蛋白上清液,NC:BCG空载体质粒菌株蛋白上清液)。
图2rBCG-CCL2和BCG菌株体外趋化巨噬细胞作用的比较((a)Transwell小室膜的显微照片(结晶紫染色细胞);(b)穿过Transwell小室膜的巨噬细胞的数量统计,NC为未处理的细胞对照。所示数据用平均值±SEM表示,统计方法采用unpaired t-test(n=7),**p<0.01)。
图3流式细胞术分析小鼠肺组织淋巴细胞表型的设门逻辑(箭头指向为设门逻辑方向;首先以前向散射光(FSC)和侧向散射光(SSC)圈出目标淋巴细胞群,然后以前向散射光的Area(FSC-A)和Height(FSC-H)参数去除粘连体和细胞碎片,接着用细胞死活染料FVS圈出活细胞(即FSV阴性细胞群),接着在活细胞群下用F4/80和CD11B双色圈出巨噬细胞(F4/80+CD11B+),然后在巨噬细胞门下用CD86和CD206双色圈出巨噬细胞中的M1极化细胞(CD86+)和M2极化细胞(CD206+),最后在F4/80和CD11B双阴性的细胞群门下用CD3和CD19圈出T细胞(CD3+)和B细胞(CD19+))。
图4rBCG-CCL2接种小鼠不同时间点肺中主要免疫细胞表型统计结果(图中所示数据用平均值±SD表示,采用two-wayANOVA进行统计学差异分析,(n=5)。*p<0.05,**p<0.01,***p<0.001,****p<0.0001)。
图5rBCG-CCL2和BCG接种对小鼠抵抗Mtb感染的影响(CFU代表H37Ra攻毒后60天肺和脾中的细菌荷量;CFU数据用平均值±SEM表示,采用unpaired t test进行统计学差异分析(n=5),*p<0.05,**p<0.01)。
具体实施方式
实施例1重组卡介苗菌株的研究
1、材料和试剂
菌株和载体:大肠杆菌菌株E.coli Top10感受态细胞购自Thermo Fisher公司;Mycobacterium bovis BCG str.Pasteur 1173P2购自上海晶诺生物科技有限公司;结核分支杆菌H37Ra菌株是实验室保存菌株。
酶及试剂盒:PCR扩增用高保真DNA聚合酶
Figure BDA0003915765840000031
Max DNA Polymerase和限制性内切酶(BamHI和HindIII)购自Takara公司;无缝克隆试剂盒/>
Figure BDA0003915765840000032
II OneStep Cloning Kit购自南京诺唯赞生物科技股份有限公司;DNA回收试剂盒购自QIAGEN公司;质粒小量提取试剂盒购自全式金生物科技有限公司,质粒大提试剂盒购自天根生化科技有限公司。荧光素标记的流式抗体购自Beckton-Dickinson Biosicences(BD)公司和BioLegend公司。
培养基及缓冲液配制:
(1)7H9+10%OADC液体培养基配制(1L):称取Middlebrook 7H9粉末4.7g,添加0.5%甘油,0.05%Tween-80,加双蒸水补至900mL,121℃高温灭菌15min,冷却后加入100mLOADC液体,保存于4℃冰箱。Middlebrook 7H9粉末购自索莱宝公司,OADC购自Beckton-Dickinson Biosciences(BD)公司。
(2)7H11+10%OADC固体培养基配制(1L):称取Middlebrook 7H11粉末19g,添加0.5%甘油,加双蒸水补至900mL,121℃高温灭菌15min,待冷却至55-60℃后加入100mL(10%)OADC,保存于4℃冰箱。Middlebrook 7H11购自Beckton-Dickinson Biosciences(BD)公司。
(3)LB培养基配制(1L):蛋白胨10g,酵母膏5g,氯化钠10g,121℃高温灭菌20min;配制LB固体培养基时,另加入15g琼脂粉。
(4)PBS缓冲液(PH7.4)配制:称取8g NaCl、0.2g KCl、1.44g Na2HPO4和0.24gKH2PO4溶于800mL蒸馏水中,用HCl调节溶液的pH值至7.4,最后加蒸馏水定容至1L即可。121℃高温灭菌20min,保存于室温。
1.重组BCG菌株的构建
1.1重组ccl2基因的设计
在NCBI数据库中找到小鼠ccl2基因(GeneBank登录号NM_011333.3)的编码区,优化ccl2基因重组表达片段,构成重组ccl2基因,命名为rccl2,见图1(a)所示。rccl2的核苷酸序列如SEQ ID NO.1所示,大小为522bp。SEQ ID NO.1中,第1-126位编码信号肽核酸序列,第127-501位编码密码子优化后的ccl2基因序列,第502-519位编码6×His Tag标签序列,520-522位为终止密码子。重组rCCL2蛋白的氨基酸序列如SEQ ID NO.2所示,大小为18.83kDa。SEQ ID NO.2中,第1-42位氨基酸残基为分泌信号肽序列,第43-167位氨基酸残基组成CCL2,第168-173位氨基酸残基组成6×His Tag标签。重组rccl2基因送上海生工合成DNA序列。
SEQ ID NO.1
ATGACAGACGTGAGCCGAAAGATTCGAGCTTGGGGACGCCGATTGATGATCGGCACGGCAGCGGCTGTAGTCCTTCCGGGCCTGGTGGGGCTTGCCGGCGGAGCGGCAACCGCGGGCGCGTTCTCCCAGCCGGACGCCGTCAACGCCCCGCTGACCTGCTGCTACTCGTTCACCTCGAAGATGATCCCGATGTCGCGCCTGGAGTCGTACAAGCGCATCACCTCGTCGCGCTGCCCGAAGGAAGCCGTCGTGTTCGTCACCAAGCTGAAGCGCGAGGTCTGCGCCGACCCGAAGAAGGAGTGGGTCCAGACCTACATCAAGAACCTGGACCGCAACCAGATGCGCAGCGAGCCGACCACCCTGTTCAAGACCGCCTCGGCCCTGCGGTCGTCGGCCCCGCTGAACGTCAAGCTGACGCGCAAGAGCGAGGCCAACGCCTCGACCACCTTCTCGACCACCACCTCGTCGACCTCGGTCGGCGTCACCTCGGTCACCGTCAACCATCATCATCATCATCATTAG
SEQ ID NO.2
MTDVSRKIRAWGRRLMIGTAAAVVLPGLVGLAGGAATAGAFSQPDAVNAPLTCCYSFTSKMIPMSRLESYKRITSSRCPKEAVVFVTKLKREVCADPKKEWVQTYIKNLDRNQMRSEPTTLFKTASALRSSAPLNVKLTRKSEANASTTFSTTTSSTSVGVTSVTVNHHHHHH
1.2重组质粒pMV261-ccl2的构建
以合成的rccl2的DNA序列为模板,以大肠杆菌-分枝杆菌穿梭质粒pMV261为载体,按照无缝克隆技术要求,设计一对引物,引物序列如下:Pc-F5'-GCGGATCCAGCTGCAggatccATGACAGACGTGAGCCGAAAG-3'(SEQ ID NO.3),其中,GCGGATCCAGCTGCAggatcc序列为载体pMV261中限制性内切酶BamHI位点及其上游部分核酸序列;Pc-R 5'-ACATCGATAAGCTTCaagcttCTAATGATGATGATGATGATGGTTGA-3'(SEQ ID NO.4),其中ACATCGATAAGCTTCaagctt为载体pMV261中限制性内切酶HindIII的位点及其下游部分核酸序列;使用高保真DNA聚合酶
Figure BDA0003915765840000051
Max DNA Polymerase扩增得到包含rccl2基因和两端带有载体pMV261的限制性内切酶BamHⅠ序列及其上游部分序列和HindⅢ序列及下游部分序列的DNA片段。用DNA纯化试剂盒回收得到目的基因片段。
将pMV261载体用限制性内切酶BamHⅠ和HindⅢ进行双酶切,得到线性化的pMV261载体,根据无缝克隆试剂盒说明书操作,将rccl2基因片段连接到线性化载体上,得到重组质粒pMV261-ccl2。重组质粒经大肠杆菌E.coli Top10扩增克隆,经BamHⅠ/HindⅢ双酶切鉴定后,送擎科生物有限公司进行测序验证,得到构建正确的重组质粒。
1.3重组菌株rBCG-CCL2的构建
将重组质粒pMV261-ccl2和原始质粒pMV261通过电转化方式分别导入卡介苗菌株Mycobacterium bovis BCG str.Pasteur 1173P2。具体操作方式是:1)取-80℃保存的BCG感受态细胞室温放置解冻;2)将适量重组质粒pMV261-ccl2或pMV261加入到200μL感受态细胞中轻弹混匀,室温放置10min,然后转入2mm电转杯,电击参数为:电压2.5kV,电阻1000Ω,电容25μF;3)电击完毕后,立即加入1mL预热至室温的7H9+OADC培养基,37℃复苏过夜;4)室温5000rpm离心10min,去掉大部分上清,剩余100-200培养基重悬菌体,涂布含25μg/mL卡那霉素的7H11+OADC抗性平板;5)将平板放置于37℃恒温培养箱培养3-5周,然后挑取单克隆。经卡那霉素抗性平板筛选及菌落PCR扩增验证,得到重组BCG。菌落PCR的引物序列为Pt-F:ATGACAGACGTGAGCCGAAAG(SEQ ID NO.5);Pt-R:GTTGACGGTGACCGAGGTGA(SEQ ID NO.6)。导入rccl2基因的重组菌株命名为rBCG-CCL2,原始pMV261质粒导入得到的重组菌株命名为rBCG-NC。PCR验证结果如图1(b)所示。
2、检测重组BCG菌株蛋白表达及活性
2.1Western Blot和ELISA检测rCCL2蛋白表达
1)将活化后的供试菌(重组菌rBCG-CCL2或重组菌rBCG-NC)菌液以1:100的体积比接种至含25μg/mL卡那霉素的7H9+10%OADC的液体培养基,37℃恒温培养箱中静置培养14天,然后室温条件下10000g离心5min,收集菌体;经-80℃超低温冰箱反复冻融菌体两次后,进行超声破碎,超声破碎仪参数设置为300w,10s/10s,20min,然后4℃,10000g离心10min收集菌体蛋白上清液,即为总蛋白溶液。重组菌rBCG-CCL2得到的总蛋白溶液命名为rBCG-CCL2蛋白溶液。重组菌rBCG-NC得到的总蛋白溶液命名为rBCG-NC蛋白溶液;
2)取步骤1)中的总蛋白溶液进行聚丙烯酰胺凝胶电泳,然后进行Western Blot(采用的一抗为抗小鼠CCL2的单克隆抗体(购自abcam公司),结果见图1(c)。rBCG-CCL2蛋白溶液电泳显示约18.83kDa的蛋白条带,与rCCL2预测大小相符。rBCG-NC蛋白溶液不显示上述蛋白条带。应用小鼠CCL2(即MCP-1)ELISA试剂盒(购自abcam公司)检测2.5×107CFU的rBCG-CCL2可分泌的rCCL2的量,扣除2.5×107CFU的rBCG-NC可溶性总蛋白的吸光度后,测得每1个OD600的rBCG-CCL2可分泌41.05pg rCCL2,满足细胞因子可溶、高效的特点。
2.2rBCG-CCL2体外趋化巨噬细胞的活性研究
选择小鼠巨噬细胞系Raw264.7(本实验保存)进行Transwell趋化实验。具体操作方法是:复苏小鼠巨噬细胞系Raw264.7于含10%胎牛血清和0.1%的青霉素和链霉素双抗的DMEM培养基。细胞传代增殖后,将细胞用含0.2%BSA的DMEM培养基重悬,并按1×105个细胞/100μL/孔的细胞数量接种于8μm孔径的12/24孔Transwell培养板(Corning公司)上室,将含1×107CFU的活菌BCG或rBCG-CCL2重悬于DMEM培养基中,接种于培养板下室,同时设置只有DMEM的阴性对照和添加100ng活性单位的CCL2蛋白(购自abcam公司)的阳性对照孔。于4h后取出小室,用结晶紫染色,计数穿过Transwell小室聚碳酸酯膜的细胞数量,利用GraphPad Prism软件统计数据,实验结果显示:rBCG-CCL2比同样剂量的BCG表现出更强的巨噬细胞趋化效应,差异极显著(p<0.01)(如图示2所示)。说明rBCG-CCL2具有显著的体外趋化巨噬细胞效应。
2.3rBCG-CCL2小鼠体内趋化免疫细胞的效应
将6-8周龄的SPF级雌性C57BL/6小鼠分成3组,分别接种BCG或rBCG-CCL2活菌,接种剂量为2×106CFU,接种方式为鼻腔接种,同时设置PBS对照组。于接种后7天和35天,采用过量异氟烷吸入麻醉小鼠,摘眼球放血后颈椎脱臼处死,采集小鼠肺组织,分别放入添加了1mL无菌PBS的无菌gentleMACSTM C Tubes(MiltenyiBiotec公司),用gentleMACSTMDissociators(MiltenyiBiotec公司)进行匀浆处理,匀浆后采用Ficoll(Sigma Aldrich公司)分离淋巴细胞,采用荧光素标记抗体进行染色,利用流式细胞仪FACSymphonyTM(BD公司)检测各类免疫细胞表型和数量,用flowj_v10软件(BD公司)分析数据,分析圈门逻辑如图3所示。利用GraphPad Prism软件统计数据,结果显示:与接种BCG组相比,接种rBCG-CCL2组小鼠在接种早期(7天),显示肺天然免疫细胞中的巨噬细胞、M1极化巨噬细胞、适应性免疫细胞中的T细胞浸润显著增加(p<0.05),B细胞数量没有显著变化。免疫后35天时,BCG-CCL2组中过继免疫T细胞和B细胞、巨噬细胞的浸润显著增多(p<0.001)。细胞亚群的统计结果如图4所示。以上结果说明:与传统BCG相比,rBCG-CCL2具有显著的趋化、活化免疫细胞的能力,这将有利于结核分支杆菌的清除。
2.4rBCG-CCL2接种小鼠较BCG接种小鼠具有更强抵抗结核感染的能力
将BCG和rBCG-CCL2活菌分别以2×106CFU鼻腔接种6-8周龄SPF雌性C57BL/6小鼠,同时设置PBS对照组。接种后35天,通过静脉注射剂量为1×107CFU的结核分枝杆菌H37Ra菌株。在感染后第60天,在生物安全柜中无菌采集肺脏和脾脏,分别放入添加了1mL无菌PBS的无菌gentleMACSTM M Tubes(MiltenyiBiotec公司)管,用gentleMACSTM Dissociators(MiltenyiBiotec公司)进行匀浆处理,取100μL匀浆液加入到含900μL无菌PBS的EP管中进行10倍比稀释,然后取每个稀释度的组织液100μL加入7H11+10%OADC的平板中,涂布均匀后,倒置培养于37℃恒温培养箱,培养21天后,记录各样本稀释度平板的细菌数量,即菌落形成单位(CFU)。各样本菌落数取10的对数(log10)后,利用GraphPad Prism软件统计数据,结果显示:攻毒后60天,BCG组和PBS组脾中H37Ra菌载量没有显著差异,而rBCG-CCL2组脾组织中的菌载量显著低于BCG和PBS组(p<0.05),且rBCG-CCL2免疫组有3/4小鼠的脾脏中未检测到H37Ra活菌。肺组织在攻毒后的60天,BCG组和PBS组肺中菌载量没有显著差异,而rBCG-CCL2组肺中菌载量显著低于BCG和PBS组(p<0.05),与脾组织中的菌载量趋势一致。CFU统计结果见图5所示,以上结果说明:rBCG-CCL2具有显著优于传统BCG的Mtb清除能力。
综上,本发明构建的重组卡介苗菌株rBCG-CCL2能分泌高水平CCL2,相较常规BCG,能更高效地诱导免疫应答,增强宿主抗结核天然和特异性的免疫防御功能,促进入侵结核菌的清除,具备实际推广应用价值。

Claims (10)

1.一种基因,其特征在于:其核苷酸序列如SEQ ID NO.1所示。
2.一种重组质粒,其特征在于:它是包含权利要求1所述基因的质粒。
3.根据权利要求2所述的重组质粒,其特征在于:所述质粒为大肠杆菌-分枝杆菌穿梭质粒载体pMV261。
4.一种重组菌,其特征在于:它是包括权利要求1所述基因或者权利要求2-3所述重组质粒的卡介苗菌株。
5.根据权利要求4所述的重组菌,其特征在于:所述卡介苗菌株为牛结核分枝杆菌Mycobacterium bovis BCG str.Pasteur 1173P2。
6.根据权利要求4或5所述的重组菌,其特征在于:它表达CCL2。
7.一种权利要求4~6所述重组菌的构建方法,其特征在于,它包括以下步骤:
取权利要求1所述基因,导入质粒,得到重组质粒,再导入卡介苗菌株,即得。
8.根据权利要求7所述的构建方法,其特征在于:所述质粒为大肠杆菌-分枝杆菌穿梭质粒载体pMV261。
9.权利要求1所述的基因、权利要求2或3所述的重组质粒、权利要求4~6任一项所述的重组菌在制备预防结核的疫苗中的用途。
10.一种卡介苗,其特征在于:它是包含权利要求4~6任一项所述重组菌的疫苗。
CN202211337627.7A 2022-10-28 2022-10-28 一种重组卡介苗菌株及其构建方法和应用 Active CN115838732B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211337627.7A CN115838732B (zh) 2022-10-28 2022-10-28 一种重组卡介苗菌株及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211337627.7A CN115838732B (zh) 2022-10-28 2022-10-28 一种重组卡介苗菌株及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN115838732A true CN115838732A (zh) 2023-03-24
CN115838732B CN115838732B (zh) 2024-08-30

Family

ID=85576634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211337627.7A Active CN115838732B (zh) 2022-10-28 2022-10-28 一种重组卡介苗菌株及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN115838732B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012167307A1 (en) * 2011-06-06 2012-12-13 The University Of Melbourne Diagnosis of mycobacterial infection
WO2017123161A1 (en) * 2016-01-15 2017-07-20 Agency For Science, Technology And Research Inhibition of intracellular growth of mycobacterium species and its applications
KR20170124404A (ko) * 2016-05-02 2017-11-10 충남대학교산학협력단 대식세포의 극성이 조절된 마우스 모델 및 그 제작방법.
US20190077874A1 (en) * 2017-09-13 2019-03-14 National Tuberous Sclerosis Association, Inc. Methods and compositions for the treatment of tuberous sclerosis
JP2019208430A (ja) * 2018-06-04 2019-12-12 国立大学法人 新潟大学 免疫原性を有するmdp1の製造方法
WO2022170394A1 (en) * 2021-02-10 2022-08-18 James Cook University Recombinant strains of mycobacterium bovis bcg
WO2024073407A2 (en) * 2022-09-27 2024-04-04 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Therapeutic recombinant viruses

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012167307A1 (en) * 2011-06-06 2012-12-13 The University Of Melbourne Diagnosis of mycobacterial infection
WO2017123161A1 (en) * 2016-01-15 2017-07-20 Agency For Science, Technology And Research Inhibition of intracellular growth of mycobacterium species and its applications
KR20170124404A (ko) * 2016-05-02 2017-11-10 충남대학교산학협력단 대식세포의 극성이 조절된 마우스 모델 및 그 제작방법.
US20190077874A1 (en) * 2017-09-13 2019-03-14 National Tuberous Sclerosis Association, Inc. Methods and compositions for the treatment of tuberous sclerosis
JP2019208430A (ja) * 2018-06-04 2019-12-12 国立大学法人 新潟大学 免疫原性を有するmdp1の製造方法
WO2022170394A1 (en) * 2021-02-10 2022-08-18 James Cook University Recombinant strains of mycobacterium bovis bcg
WO2024073407A2 (en) * 2022-09-27 2024-04-04 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Therapeutic recombinant viruses

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
MOLINA-TORRES, C.A.等: "diacylglycerol acyltransferase/mycolyltransferase Ag85A, partial [Mycobacterium tuberculosis]", 《GENBANK DATABASE》, 7 April 2020 (2020-04-07), pages 28500 *
NCBI: "C-C motif chemokine 2 precursor [Mus musculus]", 《GENBANK DATABASE》, 4 September 2022 (2022-09-04), pages 035463 *
WEI LIU等: "Comparative genomic analyses of Mycoplasma hyopneumoniae pathogenic 168 strain and its high-passaged attenuated strain", 《BMC GENOMICS.》, 5 February 2013 (2013-02-05), pages 1 - 13 *
ZAHRA HASAN等: "CCL2 Responses to Mycobacterium tuberculosis Are Associated with Disease Severity in Tuberculosis", 《PLOS ONE 》, 29 December 2009 (2009-12-29), pages 1 - 10 *
ZAHRA HASAN等: "Elevated ex vivo monocyte chemotactic protein-1 (CCL2) in pulmonary as compared with extra-pulmonary tuberculosis", 《 BMC IMMUNOLOGY》, 7 July 2005 (2005-07-07), pages 1 - 10 *
张金风等: "单核细胞趋化蛋白-1-2518G/A基因多态性与结核病相关性的研究", 《结核病与肺部健康杂志》, 16 August 2016 (2016-08-16), pages 148 - 150 *
徐正中: "BCG诱导小鼠树突状细胞和巨噬细胞抗原提呈功能及其机制研究", 《CNKI》, 15 May 2016 (2016-05-15), pages 1 - 125 *
曹志红;曹彦;程小星;: "MCP-1在结核病诊断中的价值", 临床肺科杂志, no. 02, 8 February 2015 (2015-02-08), pages 9 - 12 *
李秀萍等: "CC类趋化因子配体2对结核分枝杆菌感染人单核巨噬细胞THP-1自噬的影响及分子机制", 《临床误诊误》, 28 September 2021 (2021-09-28), pages 101 - 106 *
林梵;肖军;: "单核细胞趋化蛋白1与肺部疾病", 医学综述, no. 22, 20 November 2012 (2012-11-20), pages 1 - 10 *
金蓉: "重组蛋白Ag85A-IL-17A构建及其抗哮喘小鼠气道炎症的实验研究生", 《万方》, 6 September 2015 (2015-09-06), pages 1 - 101 *
陈婧: "肺结核患者单核细胞趋化蛋白-1表达及作用的探讨", 《临床医药文献电子杂志》, 13 November 2017 (2017-11-13), pages 9491 *
陈婧;: "肺结核患者单核细胞趋化蛋白-1表达及作用的探讨", 临床医药文献电子杂志, no. 48, 19 June 2017 (2017-06-19), pages 193 *

Also Published As

Publication number Publication date
CN115838732B (zh) 2024-08-30

Similar Documents

Publication Publication Date Title
CN111944837B (zh) 一种表达covid-19抗原的表达载体及基因工程乳酸菌口服疫苗的构建方法
CN107217026B (zh) 一种敲除c-di-AMP分解酶的重组耻垢分枝杆菌株及其应用
CN103386128B (zh) 一种含联合佐剂的结核亚单位疫苗
KR102228308B1 (ko) 마이코플라즈마 폐렴 및 흉막폐렴 예방용 백신 조성물
CN112481184B (zh) 一株bcg_0349基因缺失重组卡介苗及其构建方法与应用
WO2012009774A2 (pt) Microrganismos recombinantes, métodos de preparação de linhagens vacinais, antígenos, composições vacinais vetorizadas, seus usos, anticorpos, kit de diagnóstico e métodos de tratamento e/ou profilaxia
Liu et al. Recombinant invasive Lactobacillus plantarum expressing the J subgroup avian leukosis virus Gp85 protein induces protection against avian leukosis in chickens
KR101066951B1 (ko) 재조합 세포내 병원체 면역원성 조성물 및 사용 방법
CN115838732A (zh) 一种重组卡介苗菌株及其构建方法和应用
JP2006501304A5 (zh)
CN112316130B (zh) 一种SARS-CoV2粘膜免疫疫苗及其应用
KR101624208B1 (ko) Rv0351 단백질을 포함하는 결핵 예방용 백신 조성물
JP5994127B2 (ja) 新規な組換えbcgワクチン
CN115969965A (zh) 一种结核分枝杆菌的重组dna疫苗及其制备方法
Vasiee et al. Oral Immunotherapy Using Probiotic Ice Cream Containing Recombinant Food-Grade Which Inhibited Allergic Responses in a BALB/c Mouse Model.
RU2825400C1 (ru) Способ получения рекомбинантного белка OMP25d-OMP19-OMP10His
CN116589538B (zh) 七组分抗原非洲猪瘟亚单位疫苗
JP6216371B2 (ja) YersiniapestisF1−V融合タンパク質を発現するSalmonellaTyphiTy21aおよびその使用
CN116589539B (zh) 九组分抗原非洲猪瘟亚单位疫苗
Arzuaga et al. The use of Streptomyces for immunization against mycobacterial infections
CN105087626A (zh) 表达和分泌人干扰素α2b的乳杆菌菌株及其用途
CN117925668A (zh) 一种重组ΔAmi1蛋白的耻垢分枝杆菌及其构建方法
CN116949027A (zh) 一种尿路致病性大肠埃希菌重组蛋白组合物ls、其构建、表达、纯化方法及其应用
CN115461077A (zh) 表达针对牛中的bRSV的人类呼吸道合胞病毒蛋白的BCG免疫原性制剂的新用途
KR20160000949A (ko) Rankl를 생산하는 재조합 유산균 및 이의 용도

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant