CN115814088A - 甲基转移酶样蛋白4的制药用途 - Google Patents

甲基转移酶样蛋白4的制药用途 Download PDF

Info

Publication number
CN115814088A
CN115814088A CN202211190756.8A CN202211190756A CN115814088A CN 115814088 A CN115814088 A CN 115814088A CN 202211190756 A CN202211190756 A CN 202211190756A CN 115814088 A CN115814088 A CN 115814088A
Authority
CN
China
Prior art keywords
mettl4
atherosclerosis
macrophage
ldl
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211190756.8A
Other languages
English (en)
Other versions
CN115814088B (zh
Inventor
陈宏山
郑龙彬
李雪松
陈祥
张韵佳
陈明红
董梦蝶
姜虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Medical University
Original Assignee
Nanjing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Medical University filed Critical Nanjing Medical University
Priority to CN202211190756.8A priority Critical patent/CN115814088B/zh
Publication of CN115814088A publication Critical patent/CN115814088A/zh
Application granted granted Critical
Publication of CN115814088B publication Critical patent/CN115814088B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了甲基转移酶样蛋白4的制药用途。抑制或敲除Mettl4表达的物质在制备治疗动脉粥样硬化药物中的应用。通过调节巨噬细胞线粒体DNA m6A修饰,抑制线粒体功能,导致能量代谢紊乱,增加炎症反应和细胞内脂质沉积,促进泡沫细胞形成,参与动脉粥样硬化发生。本发明明确了Mettl4通过表观遗传调控能量代谢,促进巨噬细胞泡沫化,促进动脉粥样硬化的发生,为动脉粥样硬化的诊断及治疗提供了新的靶点,开拓了防治药物制备的新方向。

Description

甲基转移酶样蛋白4的制药用途
技术领域
本发明属于生物医药技术领域,具体涉及一种甲基转移酶样蛋白4的制药用途。
背景技术
心血管疾病(Cardiovascular diseases,CVDs)是目前严重危害人类健康的重大疾病,即使在预防和治疗方面已经取得了巨大进展,但CVDs仍然是全球死亡率最高的疾病。动脉粥样硬化(Atherosclerosis,AS)是导致急性心血管事件的病理生理学基础。《中国心血管健康与疾病报告2020》数据表明,我国目前约有3.3亿CVDs患者,由AS导致的CVDs发病率和死亡率仍在不断攀升,给居民和社会带来的经济负担日渐加重,已成为重大公共卫生问题。
巨噬细胞可通过分泌细胞因子、释放趋化因子和促炎因子、释放基质裂解酶等作用调控AS斑块进展。因此作为机体最丰富的天然免疫细胞,巨噬细胞在AS各个阶段都发挥着重要作用,是治疗AS的重要干预靶点,通过干预巨噬细胞来调控AS斑块的进展,对于防治CVD具有重要意义。
甲基转移酶样蛋白4(Mettl4)是一种从酵母到人类都保守的甲基转移酶。最新研究发现,Mettl4与哺乳动物中mRNA-m6A甲基化酶Mettl3/Mettl14同属于MT-A70甲基转移酶家族,可介导U2 snRNA的内部m6A甲基化修饰,调节RNA剪接;参与调节胚胎发育,Mettl4缺陷小鼠表现出颅面畸形和异常;此外,Mettl4和秀丽线虫中DNA-6mA甲基转移酶DAMT-1同源,肝癌细胞中Mettl4可促进mtDNA-6mA修饰,抑制线粒体功能。但是,巨噬细胞中Mettl4是否参与AS发生目前尚未报道。
发明内容
本发明的目的是针对现有技术的上述不足,提供一种Mettl4抑制剂的制药用途。
本发明的目的可通过以下技术方案实现:
抑制或敲除Mettl4表达的物质在制备治疗动脉粥样硬化药物中的应用。
Mettl4基因序列如下:
https://www.ncbi.nlm.nih.gov/nuccore/NC_000018.10?report=fasta&from=2537530&to=2571505&strand=true Mettl4氨基酸序列如SEQ ID NO.1所示.
作为本发明的一种优选,所述的抑制或敲除Mettl4表达的物质选自Mettl4的siRNA、特异性敲除Mettl4的基因编辑系统或其他能够特异性抑制Mettl4的小分子化合物。
作为本发明的一种优选,所述的Mettl4的siRNA序列如SEQ ID NO.3所示。
检测Mettl4的试剂在制备动脉粥样硬化辅助诊断试剂盒中的应用。
Mettl4作为检测靶点在筛选动脉粥样硬化治疗药物中的应用。
一种筛选动脉粥样硬化治疗药物的方法,检测给药前、后Mettl4含量,通过Mettl4含量的降低程度评估治疗动脉粥样硬化候选药物的疗效。
单核细胞特异性敲除Mettl4的ApoeKO小鼠(ApoeKOMettl4Mac-KO)的构建,其在制备治疗动脉粥样硬化中的应用。
本发明的有益效果:
发明人通过Western Blot发现在人的动脉粥样硬化血管组织、ox-LDL刺激的人THP-1巨噬细胞中Mettl4表达增加。利用小干扰RNA敲低巨噬细胞中Mettl4后发现ox-LDL诱导巨噬细胞炎症水平、细胞内脂质蓄积和脂质摄取的增加均被显著抑制。构建ApoeKOMettl4Mac-KO小鼠高脂喂养12周发现,巨噬细胞特异性敲除Mettl4能够有效缩小斑块面积。ox-LDL能够促进巨噬细胞mtDNA-6mA修饰水平增加、ROS含量增加、抑制氧化磷酸化、增加糖酵解水平,而巨噬细胞特异性敲除Mettl4能够有效抑制以上变化。本发明提供了一个动脉粥样硬化新的作用分子,明确Mettl4通过增加mtDNA-6mA修饰,诱导线粒体代谢紊乱,导致基因组表观遗传重塑,促进巨噬细胞活化和AS发生的机制,为动脉粥样硬化的诊断及治疗提供了新的靶点,而抑制或敲除Mettl4表达的物质有望作为治疗AS的候选药物。
附图说明
图1为Mettl4在AS疾病模型中的表达情况:如图1A所示,收取动脉粥样硬化患者血管组织蛋白,Western Blot检测血管组织中Mettl4的蛋白表达。***P<0.001;如图1B所示,人主动脉平滑肌细胞给予ox-LDL(50μg/mL,24h)刺激,Western Blot检测血Mettl4的蛋白表达;如图1C所示,THP-1单核细胞给予100ng/mL的PMA刺激24h诱导成巨噬细胞,再给予ox-LDL(50μg/mL,24h)刺激,Western Blot检测血Mettl4的蛋白表达,***P<0.001;如图1D所示,人主动脉内皮细胞给予ox-LDL(100μg/mL,24h)刺激,Western Blot检测血Mettl4的蛋白表达。
图2为敲除Mettl4对巨噬细胞源性泡沫细胞炎症和脂质蓄积的影响:THP-1巨噬细胞给予siRNA敲除Mettl4,再给予ox-LDL(50μg/mL,24h)刺激。如图2A所示,收集样本RNA,RT-PCR检测炎症因子表达,***P<0.001;如图2B所示,油红O染色检测细胞内脂质蓄积,标尺为100μm;如图2C所示,Dil-ox-LDL染色检测巨噬细胞的脂质摄取能力标尺为100μm。
图3为单核细胞特异性敲除Mettl4对动脉粥样硬化形成的影响:如图3A所示,ApoeKOMettl4WT和ApoeKOMettl4Mac-KO小鼠高脂喂养12周,分离小鼠主动脉,油红O染色检测斑块形成,***P<0.001;如图3B所示,ApoeKOMettl4WT和ApoeKOMettl4Mac-KO小鼠高脂喂养12周,主动脉根部进行冰冻包埋用于连续切片,油红O染色检测主动脉根部脂质蓄积,***P<0.001;如图3C所示,ApoeKOMettl4WT和ApoeKOMettl4Mac-KO小鼠高脂喂养12周,主动脉根部进行石蜡包埋用于连续切片,HE染色检测主动脉根部斑块面积,***P<0.001。
图4为Mettl4对巨噬细胞DNA-6mA修饰水平的影响:如图4A所示,提取THP-1巨噬细胞全蛋白、线粒体蛋白及细胞核蛋白,Western Blot检测Mettl4的蛋白表达;如图4B所示,UHPLC–QQQ–MS/MS检测细胞内DNA和mtDNA的6mA修饰,***P<0.001;如图4C所示,提取THP-1巨噬细胞全基因组DNA和线粒体DNA,DNA dot blot检测6mA水平;如图4D所示,THP-1巨噬细胞给予siRNA敲除Mettl4,再给予ox-LDL(50μg/mL,24h)刺激,UHPLC–QQQ–MS/MS检测细胞内mtDNA的6mA修饰,***P<0.001;如图4E所示,THP-1巨噬细胞给予siRNA敲除Mettl4,再给予ox-LDL(50μg/mL,24h)刺激,DNA dot blot检测m6A水平。
图5为Mettl4对ox-LDL诱导的巨噬细胞线粒体功能损伤的影响:THP-1巨噬细胞给予siRNA敲除Mettl4,再给予ox-LDL(50μg/mL,24h)刺激:如图5A所示,通过DCFH-DA荧光检测细胞内ROS水平,标尺为100μm;如图5B所示,JC-1染色检测细胞内线粒体膜电位改变,***P<0.001;如图5C所示,Seahorse检测细胞氧化磷酸化水平,***P<0.001;如图5D所示,Seahorse检测细胞糖酵解水平,***P<0.001。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
1.1 THP-1单核巨噬细胞诱导:
THP-1单核细胞给予100ng/mL的PMA刺激24h诱导成巨噬细胞。
为了明确Mettl4在动脉粥样硬化中的作用,我们收集了动脉粥样硬化患者病变血管组织作为实验组和瓣膜置换术动脉组织作为对照组,通过Western Blot检测Mettl4的蛋白表达,与正常血管组织相比,动脉粥样硬化血管组织中Mettl4的表明明显升高(图1A)。接下来,为了明确斑块中Mettl4的细胞来源,分别给予THP-1单核巨噬细胞、人主动脉平滑肌细胞和人主动脉内皮细胞氧化低密度脂蛋白(oxidative low-density lipoprotein,ox-LDL)50μg/mL、50μg/mL、100μg/mL刺激,通过Western Blot检测发现只有巨噬细胞中Mettl4表达升高(图1B-D)。以上实验结果提示:斑块中高表达的Mettl4主要来自巨噬细胞。
实施例2
2.1小干扰RNA(siRNA)转染人THP-1单核巨噬细胞
1)将THP-1巨噬细胞种到小皿中,进行转染,转染体系如下:
A:RPMI 1640 125μL+siRNA 5μL;
B:RPMI 125μL+lipo3000 5μL;
2)配制上述A液、B液,室温静置5min后将两液体混合,室温15min;
3)期间弃去原六孔板培养基,提前预热的PBS洗一遍,向孔中加入750μL新鲜培养基;
4)吸取第2)步混合液体滴加到六孔板中,轻轻摇晃混匀;
5)细胞培养箱培养,4-6h后换液。
本发明中,通过根据Mettl4基因序列进行设计siRNA,所述siRNA作用于Mettl4的靶序列AAGCCCTACGAAGGTATTATA(SEQ ID NO.2)。
siRNA的序列为:5’→3’CCUGCAAAUACAGCAAAUATT(SEQ ID NO.3),3’→5’UAUUUGCUGUAUUUGCAGGTT(SEQ ID NO.4).
2.2给予THP-1单核巨噬细胞ox-LDL刺激
THP-1单核细胞给予100ng/mL的PMA刺激24h诱导成巨噬细胞,再给予ox-LDL(50μg/mL,24h)刺激诱导成巨噬细胞。
2.3 RT-qPCR
1)细胞经预冷PBS洗2次后,加入1mL Trizol,细胞采用枪头吹打,组织通过匀浆机研磨后,转入无RNA酶的EP管中,冰上静置5-10min。
2)加入200μL氯仿,涡旋混匀,冰上静置3min。
3)4℃离心机离心,12000rpm,15min(之后离心条件均相同)。转移上清液约400μL至新无RNA酶的1.5mL EP管中。
4)加入400μL预冷的异丙醇,混匀后冰上静置10min。
5)4℃离心机离心,弃上清。加入1mL DEPC水配制的冰75%无水乙醇洗涤白色羽毛状沉淀。
6)4℃离心机离心,弃上清。
7)将EP管置于通风橱中干燥。
8)加入20μL DEPC水,溶解RNA沉淀。
9)NanoDrop测RNA浓度(单位ng/μL)。
10)取无酶八联排根据表1加入反应体系,进行RNA逆转录。
Figure BDA0003869258360000051
Figure BDA0003869258360000061
11)RNA逆转录为cDNA后,加入80μL RNase free H2O稀释5倍,置于-20℃保存。
12)对目的基因的相对量进行检测,引物购自金唯智生物科技有限公司,qPCR反应体系(表2)如下
表2 qPCR反应体系
Figure BDA0003869258360000062
2.4油红O染色
4℃预冷PBS洗细胞3次,4%多聚甲醛固定30min,60%异丙醇漂洗2min,加入油红O染色工作液室温孵育30min,60%异丙醇洗去浮色,4℃预冷PBS洗细胞3次,1mL苏木素室温染色1min,酒精分化5s,流水反蓝,光镜拍照。
2.5 Dil-ox-LDL荧光检测
细胞在给予不同处理后,加入DIL-ox-LDL(50μg/mL,广州奕源生物科技有限公司,货号YB-0010),37℃,避光,孵育6h,4℃预冷PBS洗细胞3次,荧光显微镜拍照。
为了进一步明确Mettl4在动脉粥样硬化中的作用,我们将Mettl4的小干扰RNA转染THP-1巨噬细胞,再给予ox-LDL刺激,通过RT-qPCR检测炎症因子的表达,发现敲低Mettl4能够显著降低ox-LDL诱导的巨噬细胞炎症因子的表达升高(图2A)。为了检测Mettl4对泡沫细胞内脂质蓄积的影响,通过油红O染色检测细胞内脂质蓄积,发现敲低Mettl4能够显著降低ox-LDL诱导的巨噬细胞内胆固醇的积累(图2B)。为了明确Mettl4对巨噬细胞脂质摄取的影响,通过Dil-ox-LDL检测巨噬细胞的脂质摄取能力,发现敲低Mettl4能够显著降低ox-LDL诱导的巨噬细胞胆固醇摄取能力的增加(图2C)。以上实验结果提示:ox-LDL通过增加Mettl4增加巨噬细胞脂质摄取和蓄积及炎症反应。
实施例3
3.1构建单核细胞Mettl4特异性敲除的ApoeKO小鼠(ApoeKOMettl4Mac-KO)
通过胚胎干细胞技术,在体外构建一个在Mettl4基因两端分别含有一个LoxP位点的基因序列,然后将其转入胚胎干细胞内,重新植入到假孕小鼠的子宫内,使其重新发育成为一个完整的胚胎,最终培育出Mettl4fl/fl小鼠。将Mettl4fl/fl与巨噬细胞特异性Cre工具鼠LysM-Cre进行交配,通过对子代小鼠基因鉴定筛选出Mettl4Mac-KO小鼠。将Mettl4Mac-KO和Mettl4fl/fl小鼠分别与ApoeKO小鼠杂交,获得Mettl4Mac-KOApoeKO小鼠。以同窝ApoeKOMettl4WT小鼠作为对照,给予正常或高脂饮食分别喂养12周,模拟建立AS小鼠模型,模拟AS疾病进程。
3.2大体油红染色
为了进一步明确Mettl4在动脉粥样硬化中的作用,本实施例构建了单核细胞特异性敲除Mettl4的ApoeKO小鼠(ApoeKOMettl4Mac-KO),高脂喂养12周建立动脉粥样硬化动物模型,通过大体油红染色检测血管整体斑块面积。
大体油红O的染色步骤:分离小鼠主动脉血管,4%多聚甲醛固定10min,双蒸水洗涤10min;60%异丙醇洗涤血管2min,油红O染色工作液染色1h;60%异丙醇洗涤3次,每次1min;在体视显微镜下将血管组织平铺在载玻片上,进行拍照。
发现与ApoeKOMettl4WT相比,ApoeKOMettl4Mac-KO小鼠血管和心脏主动脉根部脂质沉积和斑块面积均显著降低(图3A-C)。以上实验结果提示:巨噬细胞Mettl4高表达能够促进AS。
实施例4
4.1UHPLC–QQQ–MS/MS t检测细胞内DNA-m6A的水平
提取巨噬细胞DNA,加入21.5μL无核酶H2O 95℃10min变性,冰上消化2min,加入1μL核酶P1(1U/μL)和10mM NH4OAc后置于42℃水浴过夜,加入3μL 1M NH4HCO3和1μL磷酸二酯酶I置于37℃孵育2h,加入1U FastAP和3μL10×FastAP缓冲液37℃孵育4h,取10μL样品进行UHPLC–QQQ–MS/MS分析。
4.2 Dot blot
提取巨噬细胞,超声波处理基因组DNA 1min,琼脂糖凝胶电泳检测片段大小(7~10kb),TE缓冲液将DNA稀释至0.5μg/μL,加热5μg DNA至95℃10min,随后冰浴5min;裁大小合适的硝酸纤维素膜(NC膜),浸入20×SSC使其饱和,将NC膜放在经20×SSC预饱和过的滤纸上;取5μL DNA样品在NC膜上点样,放在干燥的滤纸上晾干,以5×SSC漂洗5min,85℃高温烤干,脱脂奶粉室温震荡封闭1h,4℃过夜孵育m6A一抗(Abcam,货号ab151230),TBST洗膜,室温孵育二抗1h,TBST洗膜,显色。
4.3 ox-LDL刺激
将Mettl4的小干扰RNA转染THP-1巨噬细胞,再给予ox-LDL刺激(同实施例2),通过上述UHPLC–QQQ–MS/MS和Dot blot检测细胞内mtDNA-m6A的水平。
为了进一步明确Mettl4促进动脉粥样硬化的机制,本实施例首先通过WesternBlot检测了巨噬细胞内Mettl4的分布,发现Mettl4主要分布在巨噬细胞的线粒体中(图4A)。据报道Mettl4能够影响细胞内DNA-6mA修饰水平,我们首先通过UHPLC–QQQ–MS/MS和Dot blot检测细胞内DNA-m6A的水平及具体发生在线粒体DNA(mtDNA)上还是核DNA上,发现细胞内DNA-m6A修饰主要富集在mtDNA上(图4B-C)。为了明确泡沫细胞中mtDNA-6mA修饰水平有变化及Mettl4是否参与调控这一过程,将Mettl4的小干扰RNA转染THP-1巨噬细胞,再给予ox-LDL刺激,通过UHPLC–QQQ–MS/MS和Dot blot检测细胞内mtDNA-m6A的水平,发现ox-LDL刺激后mtDNA-6mA的水平显著增加,而敲低Mettl4可显著抑制这一过程(图4D-E)。以上实验结果提示:巨噬细胞源性泡沫细胞中甲基转移酶Mettl4促进mtDNA-m6A修饰。
实施例5
5.1 DCFH-DA染色
将Mettl4的小干扰RNA转染THP-1巨噬细胞,再给予ox-LDL刺激(同实施例2),经处理后的巨噬细胞,4℃预冷PBS洗细胞3次,将DCFH-DA染色工作液(10μM,RPMI 1640稀释,碧云天生物技术有限公司,货号S0033M)加入细胞,室温避光孵育20min,PBS洗细胞3次,荧光显微镜拍照,统计荧光强度。
5.2 JC-1染色
经处理后的巨噬细胞,PBS洗细胞1次,将细胞培养液和JC-1染色工作液(碧云天生物技术有限公司,货号C2006)的等体积混匀,加入细胞中,37℃,避光,孵育20min,JC-1染色缓冲液洗2次,加入细胞培养液,荧光显微镜拍照,统计荧光强度。
5.3 Seahorse检测糖酵解和氧化磷酸化水平
将THP-1和小鼠骨髓来源巨噬细胞种到Seahorse XF细胞培养板中,建立Mettl4缺失和过表达细胞模型,给予50μg/mL ox-LDL刺激24h诱导巨噬细胞源性泡沫细胞,使用安捷伦海马糖酵解检测试剂盒检测细胞外酸化率来反映细胞的糖酵解水平,按照说明书分别加入葡萄糖、寡霉素和2-脱氧葡萄糖(2-DG);使用安捷伦线粒体底物分析试剂盒检测细胞内耗氧率来反映细胞的氧化呼吸水平,按照说明书分别加入寡霉素、解偶联剂FCCP和电子传递抑制剂抗霉素A和鱼藤酮。
为了进一步明确Mettl4介导的mtDNA-6mA对泡沫细胞的影响,将Mettl4的小干扰RNA转染THP-1巨噬细胞,再给予ox-LDL刺激,通过DCFH-DA染色检测细胞内活性氧的水平,发现敲除Mettl4能够显著抑制ox-LDL诱导的巨噬细胞活性氧升高(图5A)。接下来,通过JC-1染色检测线粒体膜电位变化,发现敲除Mettl4能够显著抑制ox-LDL诱导的巨噬细胞线粒体膜电位下降(图5B)。为了进一步明确Mettl4对泡沫细胞中线粒体损伤的影响,通过Seahorse检测细胞的糖酵解水平和氧化磷酸化水平,发现ox-LDL刺激下,巨噬细胞的基础糖酵解水平升高,基础氧化磷酸化水平下降,表明ox-LDL诱导巨噬细胞发生能量代谢紊乱,而敲除Mettl4能够显著改善ox-LDL诱导的巨噬细胞能量代谢紊乱(图5C-D)。以上实验结果提示:ox-LDL诱导的巨噬细胞源性泡沫细胞中,Mettl4可能通过mtDNA-m6A修饰促进线粒体代谢紊乱,增加活性氧水平,促进巨噬细胞活化和AS的发生。
上述实例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (6)

1.抑制或敲除Mettl4表达的物质在制备治疗动脉粥样硬化药物中的应用。
2.根据权利要求1所述的应用,其特征在于所述的抑制或敲除Mettl4表达的物质选自Mettl4的siRNA、特异性敲除Mettl4的基因编辑系统或其他能够特异性抑制Mettl4的小分子化合物。
3.根据权利要求1所述的应用,其特征在于所述的Mettl4的siRNA序列如SEQID NO.3和所示。
4.检测Mettl4的试剂在制备动脉粥样硬化辅助诊断试剂盒中的应用。
5.Mettl4作为检测靶点在筛选动脉粥样硬化治疗药物中的应用。
6.一种筛选动脉粥样硬化治疗药物的方法,其特征在于检测给药前、后Mettl4含量,通过Mettl4含量的降低程度评估治疗动脉粥样硬化候选药物的疗效。
CN202211190756.8A 2022-09-28 2022-09-28 甲基转移酶样蛋白4的制药用途 Active CN115814088B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211190756.8A CN115814088B (zh) 2022-09-28 2022-09-28 甲基转移酶样蛋白4的制药用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211190756.8A CN115814088B (zh) 2022-09-28 2022-09-28 甲基转移酶样蛋白4的制药用途

Publications (2)

Publication Number Publication Date
CN115814088A true CN115814088A (zh) 2023-03-21
CN115814088B CN115814088B (zh) 2024-05-17

Family

ID=85524127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211190756.8A Active CN115814088B (zh) 2022-09-28 2022-09-28 甲基转移酶样蛋白4的制药用途

Country Status (1)

Country Link
CN (1) CN115814088B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107349217A (zh) * 2017-07-21 2017-11-17 深圳大学 一种基于mettl3的小干扰rna及其药物和应用
CN109457029A (zh) * 2018-12-30 2019-03-12 王增艳 Mettl3基因的应用及其检测方法
WO2020077135A1 (en) * 2018-10-10 2020-04-16 Dana-Farber Cancer Institute, Inc. Modulating resistance to bcl-2 inhibitors
CN112791094A (zh) * 2021-01-13 2021-05-14 南京医科大学 下调ythdf2蛋白表达的物质及其应用
CN113450869A (zh) * 2021-07-19 2021-09-28 辽宁省肿瘤医院 基于m6A相关的lncRNA网络结直肠癌预后模型的构建及其临床应用
CN113678788A (zh) * 2021-07-23 2021-11-23 南京医科大学附属逸夫医院 Hdgf对动脉粥样硬化的影响
CN113774147A (zh) * 2021-09-07 2021-12-10 暨南大学 m6A RNA甲基化基序在制备细胞衰老诊断试剂盒中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107349217A (zh) * 2017-07-21 2017-11-17 深圳大学 一种基于mettl3的小干扰rna及其药物和应用
WO2020077135A1 (en) * 2018-10-10 2020-04-16 Dana-Farber Cancer Institute, Inc. Modulating resistance to bcl-2 inhibitors
CN109457029A (zh) * 2018-12-30 2019-03-12 王增艳 Mettl3基因的应用及其检测方法
CN112791094A (zh) * 2021-01-13 2021-05-14 南京医科大学 下调ythdf2蛋白表达的物质及其应用
CN113450869A (zh) * 2021-07-19 2021-09-28 辽宁省肿瘤医院 基于m6A相关的lncRNA网络结直肠癌预后模型的构建及其临床应用
CN113678788A (zh) * 2021-07-23 2021-11-23 南京医科大学附属逸夫医院 Hdgf对动脉粥样硬化的影响
CN113774147A (zh) * 2021-09-07 2021-12-10 暨南大学 m6A RNA甲基化基序在制备细胞衰老诊断试剂盒中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAPHNE A. L. VAN DEN HOMBERG 等: "N-6-Methyladenosine in Vasoactive microRNAs during Hypoxia; A Novel Role for METTL4", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 23, 19 January 2022 (2022-01-19), pages 1 - 16 *
DONGDONG JIAN 等: "METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications", THERANOSTICS, vol. 10, no. 20, 11 July 2020 (2020-07-11), pages 8939 - 8956 *
JINGQUAN CHEN 等: "Silencing METTL3 Stabilizes Atherosclerotic Plaques by Regulating the Phenotypic Transformation of Vascular Smooth Muscle Cells via the miR‑375‑3p/PDK1 Axis", CARDIOVASCULAR DRUGS AND THERAPY, vol. 37, 15 June 2022 (2022-06-15), pages 471 - 486 *
徐晓芳 等: "m6A RNA 甲基化修饰在心血管疾病中的作用", 中国生物化学与分子生物学报, vol. 37, no. 5, 31 May 2021 (2021-05-31), pages 564 - 572 *

Also Published As

Publication number Publication date
CN115814088B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
JP2019521085A (ja) アルテミシニンアナログ、並びに、脂質異化作用を促進するため及び糖代謝を改善するための使用、方法、及び組成物
CN108686211A (zh) 一种治疗肝纤维化的药物和治疗方法
CN110791501A (zh) 一种长链非编码rna及其干扰rna在治疗动脉粥样硬化中的应用
WO2018028249A1 (zh) 一种miRNA及其在治疗代谢性疾病中的应用
Liu et al. MiR-29b inhibits ventricular remodeling by activating notch signaling pathway in the rat myocardial infarction model
CN110292629B (zh) 己糖激酶1在延缓衰老中的应用
CN105251020B (zh) 泛素特异性蛋白酶4(usp4)在治疗心肌肥厚中的功能及应用
CN105567690B (zh) 一种抑制ido1表达的抑制剂及其应用
CN115814088A (zh) 甲基转移酶样蛋白4的制药用途
CN105079785B (zh) 三结构域蛋白32(trim32)在治疗心肌肥厚中的功能及应用
CN109172559B (zh) 依他尼酸在制备治疗和预防肥胖及相关代谢性疾病药物中的应用
CN113599412A (zh) 党参黄芪组合物在制备预防和治疗晚期肿瘤相关症状的药物中的用途
CN105497916B (zh) 小分子非编码RNAmiR-125b在制备用于治疗肿瘤包绕型血管类型肝癌的药物中的应用
CN115120729B (zh) 跨膜蛋白41b作为药物靶标在制备治疗病理性心肌肥厚药物中的应用
CN115518160B (zh) Tks4抑制剂在制备治疗肥胖症药物中的应用
CN110694049A (zh) Metrnl抗动脉粥样硬化用途
CN118121614A (zh) 豯莶苷在制备防治遗传性肥厚型心肌病的药物中的应用
CN103432593B (zh) 一种用于预防或治疗食管癌的药物组合物
CN113855698B (zh) MT-siRNA在制备杀伤细菌和抑制细菌感染的药物中的应用
CN110904038B (zh) 一种间充质干细胞及其应用
CN117890602A (zh) 抑制tnf受体相关蛋白1的医药用途
CN106512008B (zh) 干扰素调节因子5(irf5)及其抑制剂在治疗心肌肥厚中的应用
CN116042624A (zh) 敲低或抑制环状RNA circ0030586的医药用途
CN106556706A (zh) 去整合素金属蛋白酶23在心肌肥厚中的功能及应用
CN106362167B (zh) TRAF结合的NF-κB激活因子(TANK)及其抑制剂在治疗心肌肥厚中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant