CN115785174A - 一种高纯度阿拉伯糖晶体的制备方法 - Google Patents

一种高纯度阿拉伯糖晶体的制备方法 Download PDF

Info

Publication number
CN115785174A
CN115785174A CN202211628377.2A CN202211628377A CN115785174A CN 115785174 A CN115785174 A CN 115785174A CN 202211628377 A CN202211628377 A CN 202211628377A CN 115785174 A CN115785174 A CN 115785174A
Authority
CN
China
Prior art keywords
arabinose
temperature
sugar solution
content
blending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211628377.2A
Other languages
English (en)
Inventor
韩新峰
李东旭
杨铭乾
廖承军
秦淑芳
罗家星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Huakang Pharmaceutical Co Ltd
Original Assignee
Zhejiang Huakang Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Huakang Pharmaceutical Co Ltd filed Critical Zhejiang Huakang Pharmaceutical Co Ltd
Priority to CN202211628377.2A priority Critical patent/CN115785174A/zh
Publication of CN115785174A publication Critical patent/CN115785174A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明涉及一种高纯度阿拉伯糖晶体的制备方法,包括将低含量阿拉伯糖晶体依次进行溶解、勾兑、离子交换、脱色过滤、精滤、蒸发浓缩、结晶、离心分离、干燥等处理工序,在阿拉伯糖晶体的制备过程中控制物料的pH4.3~7.5和温度不超过70℃,避免阿拉伯糖高温加速转化为杂糖而降低纯度,提高所制备的阿拉伯糖晶体的纯度。

Description

一种高纯度阿拉伯糖晶体的制备方法
技术领域
本发明属于糖醇制备技术领域,特别涉及一种高纯度阿拉伯糖晶体的制备方法。
背景技术
阿拉伯糖在医药和保健食品等领域有着广泛应用,低纯度的阿拉伯糖晶体产品因不能满足客户的需求而价格便宜,高纯度阿拉伯糖晶体产品由于工艺复杂、生产难度大,售价较高,但能满足一些特殊客户工艺配方需求,存在较大市场空间。
在现有技术在生产工艺中,L-阿拉伯糖因其特性往往会受高温和低pH条件的影响进而发生反应转化为其他物质,如发生异构反应,转化成木糖;发生分解反应,分解成五碳以下的小分子;发生聚合反应,生成麦芽三糖,从而导致阿拉伯糖在生产过程中,尤其是脱色、蒸发、色谱分离过程中含量不断下降,生产所得结晶阿拉伯糖纯度都较难达到99.5%以上。
公开号CN112079886A的专利公开了一种经色谱分离提高木糖和阿拉伯糖纯度的方法,同样也没有考虑生产过程如脱色、色谱分离等工序中较高的温度和较低的pH值会导致阿拉伯糖转化低的问题。
发明内容
本发明所要解决的技术问题在于,提供一种高纯度阿拉伯糖晶体的制备方法,通过控制制备过程中的pH值和温度,防止发生异构反应、分解反应和聚合反应,提高阿拉伯糖晶体的纯度。
本发明是这样实现的,提供一种高纯度阿拉伯糖晶体的制备方法,包括如下步骤:
步骤一、溶解:将低含量阿拉伯糖晶体进行溶解处理得到溶解糖液,溶解罐系统设置温度传感器、自动调节阀,通过西门子DCS自动温控系统实现物料溶解过程的温度监控,确保溶解过程溶解液温度55~60℃,所述低纯度阿拉伯糖晶体中阿拉伯糖含量为96~97%。
步骤二、勾兑:通过电磁流量计、自动调节阀和西门子智能化控制系统将溶解糖液经管道进入勾兑罐,向勾兑罐内加入步骤八的阿拉伯糖离心母液进行勾兑处理得到勾兑糖液,勾兑后的pH值在4.3~5.0的范围内,干基浓度为50~60%,勾兑后阿拉伯糖含量94±0.5%。确保料液的稳定性。
步骤三:离子交换:将勾兑糖液进行离子交换处理得到离交糖液,通过离交进料换热器把物料温度控制在45~50℃,离交糖液的pH稳定在5.5~6.5。
步骤四、脱色过滤:离交糖液经管道进入脱色罐进行脱色过滤处理得到脱色糖液,脱色温度控制在60~65℃,pH5.5~7.5。
步骤五、精滤:将脱色糖液使用孔径为0.45μm的精滤膜进行精滤处理得到精滤糖液,精滤过程中温度控制50~65℃,pH值5.0~7.5。
步骤六、蒸发浓缩:将精滤糖液进入MVR蒸发器进行蒸发浓缩处理得到浓缩糖液,控制温度为65~70℃,pH值5.0~7.5。
步骤七、结晶:将浓缩糖液进入真空煮糖系统进行结晶处理,温度控制在63~65℃,真空度在70~90mbar。
步骤八、离心:将步骤七处理后的物料经离心机进行离心分离处理,分离出固体阿拉伯糖和阿拉伯糖离心母液,阿拉伯糖离心母液通过管道通入勾兑罐进行步骤二的操作,阿拉伯糖离心母液中阿拉伯糖含量为89~91%。
步骤九、干燥:用80℃热风对固体阿拉伯糖进行干燥处理,得到高纯度阿拉伯糖晶体,其中阿拉伯糖含量为99.8%以上。
严格控制液体物料处理阶段温度不超过70℃,避免阿拉伯糖高温加速转化为杂糖而降低纯度。
与现有技术相比,本发明的高纯度阿拉伯糖晶体的制备方法具有以下特点:
(1)精制前设置勾兑工序,确保料液的稳定性;
(2)通过调节离子交换树脂的阳、阴离子比例为7:10,进而稳定调控离交出料pH5.5~6.5,避免了加碱方式调节料液pH操作中料液局部过碱化,造成料液的异构问题,影响后续生产工艺的生产效率及产品质量。
(3)使用杂糖含量较高的阿拉伯糖晶体,对其进行溶解、提纯浓缩得到纯度为99.8%以上的阿拉伯糖晶体,并相对常规生产工艺可提高产品结晶收率3.5%以上。
附图说明
图1为本发明高纯度阿拉伯糖晶体的制备方法的步骤流程示意图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例和附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参照图1所示,本发明高纯度阿拉伯糖晶体的制备方法的较佳实施例。图中的箭头所示方向为物料的流动方向或流程移动方向示意。所述制备方法包括如下步骤:
步骤一、溶解:将低含量阿拉伯糖晶体进行溶解处理得到溶解糖液,溶解罐系统设置温度传感器、自动调节阀,通过西门子DCS自动温控系统实现物料溶解过程的温度监控,确保溶解过程溶解液温度55~60℃,所述低纯度阿拉伯糖晶体中阿拉伯糖含量为96~97%。确保料液的稳定性。
步骤二、勾兑:通过电磁流量计、自动调节阀和西门子智能化控制系统将溶解糖液经管道进入勾兑罐,向勾兑罐内加入步骤八的阿拉伯糖离心母液进行勾兑处理得到勾兑糖液,勾兑后的pH值在4.3~5.0的范围内,干基浓度为50~60%,勾兑后阿拉伯糖含量94±0.5%。
步骤三:离子交换:将勾兑糖液进行离子交换处理得到离交糖液,通过离交进料换热器把物料温度控制在45~50℃,离交糖液的pH稳定在5.5~6.5。所述离子交换处理使用离子交换柱,在离子交换柱中,阳离子树脂与阴离子树脂的比例为7:10。通过调节离交树脂阳、阴离子比例为7:10,进而稳定调控离交出料pH5.5~6.5,避免后续出现pH过低条件下阿拉伯糖转化为其他杂糖。
步骤四、脱色过滤:离交糖液经管道进入脱色罐进行脱色过滤处理得到脱色糖液,脱色温度控制在60~65℃,pH5.5~7.5。所述脱色过滤处理方式包括:向脱色罐内按照1.2~1.4Kg/吨干基加入活性炭进行脱色,在110rpm搅拌脱色30~45min,然后使用板框压滤机过滤去除掉活性炭。
步骤五、精滤:将脱色糖液使用孔径为0.45μm的精滤膜进行精滤处理得到精滤糖液,精滤过程中温度控制50~65℃,pH值5.0~7.5。
步骤六、蒸发浓缩:将精滤糖液进入MVR蒸发器进行蒸发浓缩处理得到浓缩糖液,控制温度为65~70℃,pH值5.0~7.5。
步骤七、结晶:将浓缩糖液进入真空煮糖系统进行结晶处理,温度控制在63~65℃,真空度在70~90mbar。所述结晶处理包括:在浓缩糖液过饱和度达到1.01~1.02之间按照万分之二的干基比例加入300~400目阿拉伯糖晶种进行真空蒸发结晶,结晶周期控制在8小时,搅拌转速控制在80rpm。
步骤八、离心:将步骤七处理后的物料经离心机进行离心分离处理,分离出固体阿拉伯糖和阿拉伯糖离心母液,阿拉伯糖离心母液通过管道通入勾兑罐进行步骤二的操作,阿拉伯糖离心母液中阿拉伯糖含量为89~91%。所述离心分离处理还包括洗水时间控制在10s、水温控制在55~60℃。
步骤九、干燥:用80℃热风对固体阿拉伯糖进行干燥处理,得到高纯度阿拉伯糖晶体,其中阿拉伯糖含量为99.8%以上。所述干燥处理方式还包括:水分控制在0.15~0.3%,水分合格后再用12~15℃洁净冷风把产品冷却至20~24℃。
严格控制液体物料处理阶段温度不超过70℃,避免阿拉伯糖高温加速转化为杂糖而降低纯度。
下面通过具体实施例进一步说明本发明的高纯度阿拉伯糖晶体的制备方法。
实施例1:确定温度和pH对阿拉伯糖含量的影响
本实施例包括如下步骤:
取L-阿拉伯糖样品100g加水配成折光60%的溶液,分别调pH2.7和4.3,再依次于60℃、65℃、70℃下加热48h,并分别在24h和48h取样检测,结果如下表1所示:
表1不同温度和pH条件下阿拉伯糖溶液的组分测定
Figure BDA0004004858190000041
对比可知,阿拉伯糖生产过程中pH越低、加热温度越高,随着时间的延长阿拉伯糖含量下降越快。对比不同条件下阿拉伯糖的变化趋势,pH是造成阿拉伯糖含量下降的主要因素,pH在4.3以上时,物料在75℃加热48小时,含量仅下降2.31%;而pH2.7的条件下,物料75℃加热48小时,含量下降8.9%,是pH4.3条件下的3倍多。
由此可见,有效调节阿拉伯糖糖液pH至4.3以上,可以减少高温对阿拉伯糖含量的影响,避免为控制物料含量而降低加工温度,进而使生产效率降低。
实施例2
本发明的高纯度阿拉伯糖晶体的制备方法的第一个实施例,包括如下步骤:
步骤11、溶解:将购买的低纯度阿拉伯糖晶体溶解,溶解罐系统设置温度传感器、自动调节阀,通过西门子DCS自动温控系统实现物料溶解过程的温度监控,确保溶解过程溶解液温度55~60℃,所述低纯度阿拉伯糖晶体中阿拉伯糖含量为96%。
步骤12、勾兑:通过电磁流量计、自动调节阀和西门子智能化控制系统将步骤11的糖液经管道进入勾兑罐,向勾兑罐内加入步骤18的阿拉伯糖离心母液进行勾兑,勾兑后的pH值5.0,干基浓度为50%,阿拉伯糖含量为93.84%。
步骤13:离交:将步骤12所得勾兑后糖液进入离交工序,通过离交进料换热器把糖液温度控制在45~50℃,调节离交系统阳、阴树脂比例为7:10,离交后液pH稳定在6.5。
步骤14、脱色过滤:离交后的糖液经管道进入脱色罐,向脱色罐内按照1.2Kg/吨干基加入活性炭进行脱色,在110rpm搅拌脱色30min,然后使用板框压滤机过滤去除掉活性炭,脱色温度控制在60℃,pH5.0~7.5。
步骤15、精滤:使用孔径为0.45μm的精滤膜精滤步骤14脱色后的糖液,精滤过程中温度控制50~65℃,pH值5.0~7.5。
步骤16、蒸发浓缩:步骤15处理后的糖液进入MVR蒸发器进行浓缩,控制温度为68℃,pH值5.0~7.5。
步骤17、结晶:步骤16处理后的糖液进入真空煮糖系统,温度控制在63~65℃,真空度在70~90mbar,在糖液过饱和度达到1.01~1.02之间按照万分之二的干基比例加入300~400目晶种进行真空蒸发结晶,结晶周期控制在8小时,搅拌转速控制在80rpm。
步骤18、离心:步骤17处理后的物料经离心机离心,洗水时间控制在10s、水温在55~60℃,分离出固体阿拉伯糖和阿拉伯糖离心母液,固体阿拉伯糖进行步骤19的操作,阿拉伯糖离心母液通过管道通入勾兑罐进行步骤12的操作,阿拉伯糖离心母液中阿拉伯糖含量为89%。
步骤19、干燥、包装:用80℃热风对步骤18处理后的固体阿拉伯糖进行干燥,水分控制在0.15~0.3%,水分合格后再用12~15℃洁净冷风把产品冷却至20~24度℃,得到高纯度阿拉伯糖晶体,其中阿拉伯糖含量为99.8%以上。使用包装机将处理后的阿拉伯糖晶体包装。
实施例3
本发明的高纯度阿拉伯糖晶体的制备方法的第二个实施例,包括如下步骤:
步骤21、溶解:将购买的低纯度阿拉伯糖晶体溶解,溶解罐系统设置温度传感器、自动调节阀,通过西门子DCS自动温控系统实现物料溶解过程的温度监控,确保溶解过程溶解液温度55~60℃,所述低纯度阿拉伯糖晶体中阿拉伯糖含量为97%。
步骤22、勾兑:通过电磁流量计、自动调节阀和西门子智能化控制系统将步骤21的糖液经管道进入勾兑罐,向勾兑罐内加入步骤28的阿拉伯糖离心母液进行勾兑,勾兑后的pH值在4.3~5.0的范围内,干基浓度为60%,阿拉伯糖含量94.57%。
步骤23:离交:将步骤22所得勾兑后糖液进入离交工序,通过离交进料换热器把糖液温度控制在45~50℃,调节离交系统阳、阴树脂比例为7:10,离交后液PH稳定在6.0。
步骤24、脱色过滤:离交后的糖液经管道进入脱色罐,向脱色罐内按照1.4Kg/吨干基加入活性炭进行脱色,在110rpm搅拌脱色35min,然后使用板框压滤机过滤去除掉活性炭,脱色温度控制在62℃、pH5.5~7.5。
步骤25、精滤:使用孔径为0.45μm的精滤膜精滤步骤24脱色后的糖液,精滤过程中温度控制50~65℃,pH值5.0~7.5。
步骤26、蒸发浓缩:步骤25处理后的糖液进入MVR蒸发器进行浓缩,控制温度为68℃,pH值5.0~7.5。
步骤27、结晶:步骤26处理后的糖液进入真空煮糖系统,温度控制在63~65℃,真空度在70~90mbar,在糖液过饱和度达到1.01~1.02之间按照万分之二的干基比例加入300~400目晶种进行真空蒸发结晶,结晶周期控制在8小时,搅拌转速控制在80rpm。
步骤28、离心:步骤27处理后的物料经离心机离心,洗水时间控制在10s、水温在55~60℃,分离出固体阿拉伯糖和阿拉伯糖离心母液,固体阿拉伯糖进行步骤29的操作,阿拉伯糖离心母液通过管道通入勾兑罐进行步骤22的操作,阿拉伯糖离心母液中阿拉伯糖含量为91%。
步骤29、干燥、包装:用80℃热风对步骤28处理后的固体阿拉伯糖进行干燥,水分控制在0.15~0.3%,水分合格后再用12~15℃洁净冷风把产品冷却至20~24度℃,得到高纯度阿拉伯糖晶体,其中阿拉伯糖含量为99.8%以上。使用包装机将处理后的阿拉伯糖晶体包装。
实施例4
本发明的高纯度阿拉伯糖晶体的制备方法的第三个实施例,包括如下步骤:
步骤31、溶解:将购买的低纯度阿拉伯糖晶体溶解,溶解罐系统设置温度传感器、自动调节阀,通过西门子DCS自动温控系统实现物料溶解过程的温度监控,确保溶解过程溶解液温度55~60℃,所述低纯度阿拉伯糖晶体中阿拉伯糖含量为96.5%。
步骤32、勾兑:通过电磁流量计、自动调节阀和西门子智能化控制系统将步骤31的糖液经管道进入勾兑罐,向勾兑罐内加入步骤38的阿拉伯糖离心母液进行勾兑,勾兑后的pH值在4.3~5.0的范围内,干基浓度为55%,阿拉伯糖含量94.50%。
步骤33:离交:将步骤32所得勾兑后糖液进入离交工序,通过离交进料换热器把糖液温度控制在45~50℃,调节离交系统阳、阴树脂比例为7:10,离交后液PH稳定在5.5。
步骤34、脱色过滤:离交后的糖液经管道进入脱色罐,向脱色罐内按照1.25Kg/吨干基加入活性炭进行脱色,在110rpm搅拌脱色45min,然后使用板框压滤机过滤去除掉活性炭,脱色温度控制在65℃,pH5.5~7.5。
步骤35、精滤:使用孔径为0.45μm的精滤膜精滤步骤34脱色后的糖液,精滤过程中温度控制50~65℃,pH值5.0~7.5。
步骤36、蒸发浓缩:步骤35处理后的糖液进入MVR蒸发器进行浓缩,控制温度为70℃,pH值5.0~7.5。
步骤37、结晶:步骤36处理后的糖液进入真空煮糖系统,温度控制在63~65℃,真空度在70~90mbar,在糖液过饱和度达到1.01~1.02之间按照万分之二的干基比例加入300~400目晶种进行真空蒸发结晶,结晶周期控制在8小时,搅拌转速控制在80rpm。
步骤38、离心:步骤37处理后的物料经离心机离心,洗水时间控制在10s、水温在55~60℃,分离出固体阿拉伯糖和阿拉伯糖离心母液,固体阿拉伯糖进行步骤39的操作,阿拉伯糖离心母液通过管道通入勾兑罐进行步骤32的操作,阿拉伯糖离心母液中阿拉伯糖含量为90.3%。
步骤39、干燥、包装:用80℃热风对步骤38处理后的固体阿拉伯糖进行干燥,水分控制在0.15~0.3%,水分合格后再用12~15℃洁净冷风把产品冷却至20~24度℃,得到高纯度阿拉伯糖晶体,其中阿拉伯糖含量为99.8%以上。使用包装机将处理后的阿拉伯糖晶体包装。
实施例5
本发明的高纯度阿拉伯糖晶体的制备方法的第四个实施例,包括如下步骤:
步骤41、溶解:将购买的低纯度阿拉伯糖晶体溶解,溶解罐系统设置温度传感器、自动调节阀,通过西门子DCS自动温控系统实现物料溶解过程的温度监控,确保溶解过程溶解液温度55~60℃,所述低纯度阿拉伯糖晶体中阿拉伯糖含量为96.9%。
步骤42、勾兑:通过电磁流量计、自动调节阀和西门子智能化控制系统将步骤41的糖液经管道进入勾兑罐,向勾兑罐内加入步骤48的阿拉伯糖离心母液进行勾兑,勾兑后的pH值在4.3~5.0的范围内,干基浓度为60%,阿拉伯糖含量94..43%。
步骤43:离交:将步骤42所得勾兑后糖液进入离交工序,通过离交进料换热器把糖液温度控制在45~50℃,调节离交系统阳、阴树脂比例为7:10,离交后液PH稳定在6.2。
步骤44、脱色过滤:离交后的糖液经管道进入脱色罐,向脱色罐内按照1.38Kg/吨干基加入活性炭进行脱色,在110rpm搅拌脱色40min,然后使用板框压滤机过滤去除掉活性炭,脱色温度控制在60℃,pH5.5~7.5。
步骤45、精滤:使用孔径为0.45μm的精滤膜精滤步骤44脱色后的糖液,精滤过程中温度控制50~65℃,pH值5.0~7.5。
步骤46、蒸发浓缩:步骤45处理后的糖液进入MVR蒸发器进行浓缩,控制温度为65℃,pH值5.0~7.5。
步骤47、结晶:步骤46处理后的糖液进入真空煮糖系统,温度控制在63~65℃,真空度在70~90mbar,在糖液过饱和度达到1.01~1.02之间按照万分之二的干基比例加入300~400目晶种进行真空蒸发结晶,结晶周期控制在8小时,搅拌转速控制在80rpm。
步骤48、离心:步骤47处理后的物料经离心机离心,洗水时间控制在10s、水温在55~60℃,分离出固体阿拉伯糖和阿拉伯糖离心母液,固体阿拉伯糖进行步骤49的操作,阿拉伯糖离心母液通过管道通入勾兑罐进行步骤42的操作,阿拉伯糖离心母液中阿拉伯糖含量为89.8%。
步骤49、干燥、包装:用80℃热风对步骤48处理后的固体阿拉伯糖进行干燥,水分控制在0.15~0.3%,水分合格后再用12~15℃洁净冷风把产品冷却至20~24度℃,得到高纯度阿拉伯糖晶体,其中阿拉伯糖含量为99.8%以上。使用包装机将处理后的阿拉伯糖晶体包装。
下面再通过对比例进一步说明本发明的高纯度阿拉伯糖晶体的制备方法的技术效果。
对比例
采用常规制备工艺,离子交换阶段阴、阳树脂比例1:1。
步骤51、溶解:将购买的低纯度阿拉伯糖晶体溶解,溶解罐系统设置温度传感器、自动调节阀,通过西门子DCS自动温控系统实现物料溶解过程的温度监控,确保溶解过程溶解液温度55~60℃,所述低纯度阿拉伯糖晶体中阿拉伯糖含量为97%,干基浓度为55%,pH值在3.5~5.0的范围内。
步骤52:离交:将步骤51所得糖液进入离交工序,通过离交进料换热器把糖液温度控制在45~50℃,调节离交系统阳、阴树脂比例为1:1,离交后液pH稳定在3.5~4.0。
步骤53、脱色过滤:离交后的糖液经管道进入脱色罐,向脱色罐内按照1.4Kg/吨干基加入活性炭进行脱色,在110rpm搅拌脱色45min,然后使用板框压滤机过滤去除掉活性炭,脱色温度控制在75~80℃、pH3.5~4.5。
步骤54、精滤:使用孔径为0.45μm的精滤膜精滤步骤53脱色后的糖液,精滤过程中温度控制50~65℃,pH值3.5~4.5。
步骤55、蒸发浓缩:步骤54处理后的糖液进入降膜蒸发器进行浓缩,控制温度为65~98℃,pH值3.5~4.5。
步骤56、结晶:步骤55处理后的糖液进入真空煮糖系统,温度控制在63~65℃,真空度在70~90mbar,在糖液过饱和度达到1.01~1.02之间按照万分之二的干基比例加入300~400目晶种进行真空蒸发结晶,结晶周期控制在8小时,搅拌转速控制在80rpm。
步骤57、离心:步骤56处理后的物料经离心机离心,洗水时间控制在10s、水温在55~60℃,分离出固体阿拉伯糖和阿拉伯糖离心母液,固体阿拉伯糖进行步骤58的操作,阿拉伯糖离心母液通过管道回套至步骤51。
步骤58、干燥、包装:用80℃热风对步骤57处理后的固体阿拉伯糖进行干燥,水分控制在0.15~0.3%,水分合格后再用12~15℃洁净冷风把产品冷却至20~24度℃,得到阿拉伯糖晶体,使用包装机将处理后的阿拉伯糖晶体包装。
表2各实施例和对比例的加工主要参数及产品收率对比
Figure BDA0004004858190000091
通过表2可以看出,各实施例制备的阿拉伯糖晶体中阿拉伯糖含量均大于99.8%,产品收率也均高于96%,均好于对比例制备的阿拉伯糖晶体的,达到预期效果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种高纯度阿拉伯糖晶体的制备方法,其特征在于,包括如下步骤:
步骤一、溶解:将低含量阿拉伯糖晶体进行溶解处理得到溶解糖液,溶解罐系统设置温度传感器、自动调节阀,通过西门子DCS自动温控系统实现物料溶解过程的温度监控,确保溶解过程溶解液温度55~60℃,所述低纯度阿拉伯糖晶体中阿拉伯糖含量为96~97%;
步骤二、勾兑:将溶解糖液经管道进入勾兑罐,向勾兑罐内加入步骤八的阿拉伯糖离心母液进行勾兑处理得到勾兑糖液,勾兑后的pH值在4.3~5.0的范围内,干基浓度为50~60%,勾兑后阿拉伯糖含量94±0.5%;
步骤三:离子交换:将勾兑糖液进行离子交换处理得到离交糖液,通过离交进料换热器把物料温度控制在45~50℃,离交糖液的pH稳定在5.5~6.5;
步骤四、脱色过滤:离交糖液经管道进入脱色罐进行脱色过滤处理得到脱色糖液,脱色温度控制在60~65℃,pH5.5~7.5;
步骤五、精滤:将脱色糖液使用孔径为0.45μm的精滤膜进行精滤处理得到精滤糖液,精滤过程中温度控制50~65℃,pH值5.0~7.5;
步骤六、蒸发浓缩:将精滤糖液进入MVR蒸发器进行蒸发浓缩处理得到浓缩糖液,控制温度为65~70℃,pH值5.0~7.5;
步骤七、结晶:将浓缩糖液进入真空煮糖系统进行结晶处理,温度控制在63~65℃,真空度在70~90mbar;
步骤八、离心:将步骤七处理后的物料经离心机进行离心分离处理,分离出固体阿拉伯糖和阿拉伯糖离心母液,阿拉伯糖离心母液通过管道通入勾兑罐进行步骤二的操作,阿拉伯糖离心母液中阿拉伯糖含量为89~91%;
步骤九、干燥:用80℃热风对固体阿拉伯糖进行干燥处理,得到高纯度阿拉伯糖晶体,其中阿拉伯糖含量为99.8%以上。
2.如权利要求1所述的高纯度阿拉伯糖晶体的制备方法,其特征在于,在步骤三中,所述离子交换处理使用离子交换柱,在离子交换柱中,阳离子树脂与阴离子树脂的比例为7:10。
3.如权利要求1所述的高纯度阿拉伯糖晶体的制备方法,其特征在于,在步骤四中,所述脱色过滤处理方式包括:向脱色罐内按照1.2~1.4Kg/吨干基加入活性炭进行脱色,在110rpm搅拌脱色30~45min,然后使用板框压滤机过滤去除掉活性炭。
4.如权利要求1所述的高纯度阿拉伯糖晶体的制备方法,其特征在于,在步骤七中,所述结晶处理包括:在浓缩糖液过饱和度达到1.01~1.02之间按照万分之二的干基比例加入300~400目阿拉伯糖晶种进行真空蒸发结晶,结晶周期控制在8小时,搅拌转速控制在80rpm。
5.如权利要求1所述的高纯度阿拉伯糖晶体的制备方法,其特征在于,在步骤八中,所述离心分离处理还包括洗水时间控制在10s、水温控制在55~60℃。
6.如权利要求1所述的高纯度阿拉伯糖晶体的制备方法,其特征在于,在步骤九中,所述干燥处理方式还包括:水分控制在0.15~0.3%,水分合格后再用12~15℃洁净冷风把产品冷却至20~24℃。
CN202211628377.2A 2022-12-17 2022-12-17 一种高纯度阿拉伯糖晶体的制备方法 Pending CN115785174A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211628377.2A CN115785174A (zh) 2022-12-17 2022-12-17 一种高纯度阿拉伯糖晶体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211628377.2A CN115785174A (zh) 2022-12-17 2022-12-17 一种高纯度阿拉伯糖晶体的制备方法

Publications (1)

Publication Number Publication Date
CN115785174A true CN115785174A (zh) 2023-03-14

Family

ID=85426057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211628377.2A Pending CN115785174A (zh) 2022-12-17 2022-12-17 一种高纯度阿拉伯糖晶体的制备方法

Country Status (1)

Country Link
CN (1) CN115785174A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116196691A (zh) * 2023-04-27 2023-06-02 山东归源生物科技有限公司 一种长链二元酸的精制系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351916A (zh) * 2011-08-24 2012-02-15 山东福田药业有限公司 一种制备d-阿拉伯糖的方法
CN102659854A (zh) * 2012-03-15 2012-09-12 济南圣泉唐和唐生物科技有限公司 一种l-阿拉伯糖的提纯方法
CN104892688A (zh) * 2015-06-05 2015-09-09 山东福田药业有限公司 利用l-阿拉伯糖结晶母液回收l-阿拉伯糖的方法
CN111205338A (zh) * 2020-02-11 2020-05-29 浙江华康药业股份有限公司 一种从阿拉伯糖母液中回收阿拉伯糖的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351916A (zh) * 2011-08-24 2012-02-15 山东福田药业有限公司 一种制备d-阿拉伯糖的方法
CN102659854A (zh) * 2012-03-15 2012-09-12 济南圣泉唐和唐生物科技有限公司 一种l-阿拉伯糖的提纯方法
CN104892688A (zh) * 2015-06-05 2015-09-09 山东福田药业有限公司 利用l-阿拉伯糖结晶母液回收l-阿拉伯糖的方法
CN111205338A (zh) * 2020-02-11 2020-05-29 浙江华康药业股份有限公司 一种从阿拉伯糖母液中回收阿拉伯糖的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116196691A (zh) * 2023-04-27 2023-06-02 山东归源生物科技有限公司 一种长链二元酸的精制系统和方法
CN116196691B (zh) * 2023-04-27 2024-01-12 山东归源生物科技有限公司 一种长链二元酸的精制系统和方法

Similar Documents

Publication Publication Date Title
CA2214443C (en) Method for recovery of xylose from solutions
CN115785174A (zh) 一种高纯度阿拉伯糖晶体的制备方法
JP7447104B2 (ja) 結晶性2’-フコシルラクトースを得る方法
CN102329212A (zh) 长链二元酸的精制方法
CN113248551B (zh) 一种利用木糖母液色谱提取液制备精制木糖的系统及方法
CN111254231B (zh) 一种从木糖母液中提取晶体木糖的方法
CN112679560A (zh) 一种春雷霉素的结晶工艺
CN104592004B (zh) 一种精制长链有机酸的方法
CN111187178B (zh) 谷氨酰胺晶体的制备方法
WO2023124395A1 (zh) 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法
CN108640816B (zh) 肌醇滤液高温快速离交的精制工艺
JP2024507514A (ja) キシリトール発酵液の精製システム及びその方法
CN113135965A (zh) 一种利用木糖母液生产结晶木糖的系统及方法
CN113754704A (zh) 一种利用离子树脂高效制备葡萄糖粉的制备方法
CN113545470A (zh) 一种用于高品质味精的生产方法
CN112239413A (zh) 一种甘氨酸的提纯及封闭生产方法
CN1063903A (zh) 结晶法制二代高果糖浆
CN216614473U (zh) 一种利用木糖母液联产木糖醇和焦糖色素的系统
CN108929248B (zh) 一种l-精氨酸盐酸盐的制备方法
CN111826408A (zh) 一种β-环糊精的制备工艺
CN215049793U (zh) 一种利用木糖母液生产结晶木糖的系统
CN101607893A (zh) 从食用级枸橼酸获得药用级枸橼酸的方法
CN113979839B (zh) 一种提升木糖醇母液利用率的方法
CN114149304B (zh) 一种多级木糖醇母液的结晶系统及其方法
CN106834555A (zh) 一种提高木糖收率的生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination