WO2023124395A1 - 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法 - Google Patents

一种利用木糖母液联产木糖醇和焦糖色素的系统和方法 Download PDF

Info

Publication number
WO2023124395A1
WO2023124395A1 PCT/CN2022/125220 CN2022125220W WO2023124395A1 WO 2023124395 A1 WO2023124395 A1 WO 2023124395A1 CN 2022125220 W CN2022125220 W CN 2022125220W WO 2023124395 A1 WO2023124395 A1 WO 2023124395A1
Authority
WO
WIPO (PCT)
Prior art keywords
xylose
mother liquor
xylitol
liquid
hydrogenation
Prior art date
Application number
PCT/CN2022/125220
Other languages
English (en)
French (fr)
Inventor
李勉
徐伟冬
陈德水
程新平
廖承军
吴强
杨武龙
秦淑芳
Original Assignee
浙江华康药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华康药业股份有限公司 filed Critical 浙江华康药业股份有限公司
Priority to JP2023549938A priority Critical patent/JP2024507212A/ja
Priority to EP22913659.3A priority patent/EP4311823A1/en
Publication of WO2023124395A1 publication Critical patent/WO2023124395A1/zh
Priority to US18/348,509 priority patent/US20230348350A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/88Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/78Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by condensation or crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/88Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
    • C07C29/90Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound using hydrogen only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B61/00Dyes of natural origin prepared from natural sources, e.g. vegetable sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment

Definitions

  • the invention belongs to the technical field of xylose mother liquor utilization, in particular to a system and method for co-producing xylitol and caramel pigment by using xylose mother liquor.
  • xylitol mostly uses corncobs, corn stalks, etc. as raw materials, extracts xylose from them, and then hydrogenates xylose to obtain xylitol.
  • the content of xylose components in the xylose mother liquor obtained after extracting xylose is still very high. If the xylose components in the xylose mother liquor can be extracted again to prepare xylitol, and the resulting chromatographic Sugar pigment will be more conducive to the utilization of resources and energy.
  • the patent of Publication No. CN109503676A introduces a method for preparing xylitol and mixed syrup from xylose mother liquor.
  • the xylose mother liquor is prepared by processes such as pretreatment, chromatographic separation, activated carbon decolorization, ion exchange desalination, evaporative crystallization, and hydrogenation refining. Xylitol crystals and mixed syrup are obtained, but the mixed syrup is not reused, which reduces the due value of the xylose mother liquor.
  • the technical problem to be solved by the present invention is to provide a system and method for utilizing xylose mother liquor to co-produce xylitol and caramel pigment, adopt nanofiltration membrane separation decolorization, ion exchange desalination, improve the yield of xylose, in addition through the The reuse of xylose chromatographically separated raffinate obtained additional products of caramel pigment, which improved the utilization value of xylose mother liquor.
  • the present invention is achieved by providing a system for co-producing xylitol and caramel pigment by using xylose mother liquor, including a raw material tank, a filter, a nanofiltration membrane device, a first ion exchange device, a chromatographic Separation device, refined hydrogenation component and browning reaction component, the raw material tank is used to store the xylose mother liquor, the filter is used to filter the impurities in the xylose mother liquor, and the nanofiltration membrane device is used to decolorize the xylose mother liquor flowing through to obtain The retentate and the permeate, the retentate is the pigment solution, the permeate is the decolorization solution, the first ion exchange device is used to desalt the decolorization solution flowing through to obtain the separation liquid, and the chromatographic separation device is used to decolorize the flow through The extract solution with high content of xylose component and the raffinate solution with low content of xylose component are separated by liquid exchange, the refining hydrogenation component is used to
  • the refined hydrogenation component includes an evaporation concentration device, a crystallization tank, a xylose crystal storage tank, a dissolution tank, a hydrogenation reaction kettle, a second ion exchange device and a vacuum crystallization component, and the evaporation concentration device is used to further concentrate the extract
  • the crystallization tank is used to crystallize xylose
  • the xylose crystal storage tank is used to store crystal xylose
  • the dissolving tank is used to dissolve crystal xylose into a liquid and store it
  • the hydrogenation reactor is used for the hydrogenation reduction reaction of xylose liquid to generate xylose Alcohol
  • the second ion exchange device is used to remove anions and cations in the xylitol liquid
  • the vacuum crystallization component is used to crystallize the feed liquid treated by the ion exchange device to obtain crystal xylitol.
  • the browning reaction assembly includes a concentration tank, a browning reaction kettle and a browning filter
  • the concentration tank is used to concentrate the raffinate to a certain concentration and store it
  • the browning reaction kettle is used to brown the raffinate
  • the reaction produces caramel color
  • the browning filter is used to filter the solid impurities in the caramel color.
  • the present invention is achieved like this, provides a kind of method that utilizes xylose mother liquor to co-produce xylitol and caramel pigment, it has used the system that utilizes xylose mother liquor to co-produce xylitol and caramel pigment as described above, described
  • the method includes the following steps:
  • Step 1 The xylose mother liquor raw material in the raw material tank is transported to the filter through a pipeline for a filtration and impurity removal treatment, and then sent to a nanofiltration membrane device for decolorization treatment.
  • Step 2 sending the feed liquid after the nanofiltration treatment into the first ion exchange device for desalination treatment to obtain the ion exchange liquid.
  • Step 3 sending the ionotropic liquid into the chromatographic separation device for chromatographic separation treatment, the extract solution with high xylose component content and the raffinate solution with low xylose component content obtained after the chromatographic separation treatment, the extract solution is sent to refining Xylitol crystals with a purity >99% are obtained after the hydrogenation component, and the raffinate is processed through the browning reaction component to prepare caramel pigment.
  • the dry matter concentration of the xylose mother liquor that is, the sugar concentration is 50-60wt%, wherein, in the dry matter, glucose contains 12-18wt%, xylose contains 40-50%wt, and arabinose contains 17 ⁇ 23wt%, mannose 10 ⁇ 22wt%, galactose 0 ⁇ 6wt%.
  • step one during the nanofiltration decolorization treatment, the operating temperature of the nanofiltration membrane device is 40-48°C, the operating pressure is 25bar-35bar, and the yield can reach 90%-98%.
  • step 2 during the ion exchange desalination treatment, the conductivity is controlled to be less than 50 us/cm, and the yield can reach 90%-98%.
  • step three dissolve xylose with water, control the refraction at 50% ⁇ 60%, pH at 5.00 ⁇ 7.00, add nickel catalyst with a mass percentage of 0.01% ⁇ 0.02%, and control the reaction temperature at 130°C ⁇ 140°C,
  • the steam pressure is above 0.4MPa
  • the pressure of the hydrogenation reaction is controlled at 7.0MPa ⁇ 9.5MPa
  • the hydrogenation reaction time is 60 minutes ⁇ 120 minutes
  • the raffinate is concentrated to a refractive index of 75% ⁇ 85%
  • the pH is adjusted to 7.00 ⁇ 9.00.
  • 6% ⁇ 12% compound amino compound (urea and ammonium carbonate compound, the compound ratio is 1:2 ⁇ 2:1) is used as catalyst
  • the browning reaction temperature is controlled at 120°C ⁇ 140°C
  • the browning reaction time is 60 minutes ⁇ 240 minutes.
  • the refined hydrogenation component treatment in step 3 refers to evaporating and concentrating the extract and then entering the crystallization tank, dissolving the crystallized xylose in water, and sending the xylose solution into the hydrogenation reactor for hydrogenation reaction to obtain wood Sugar alcohol solution, after the reaction is completed, sedimentation is carried out to remove the catalyst, and the sedimented supernatant is desalinated by the second ion exchange device, and the desalted feed liquid is vacuum evaporated and concentrated by the vacuum crystallization component, and then vacuum boiled sugar crystallization is carried out. Xylitol crystals are precipitated, and finally centrifuged and dried to obtain xylitol crystals.
  • the browning reaction component treatment in Step 3 refers to concentrating, browning and filtering the obtained raffinate to obtain a caramel pigment liquid, and the red index of the caramel pigment liquid is >7, at 610nm Absorbance >0.07.
  • the system and method of utilizing xylose mother liquor to co-produce xylitol and caramel pigment of the present invention have the following characteristics:
  • the present invention adopts the nanofiltration membrane separation technology to decolorize the xylose mother liquor, thereby improving the production yield.
  • the caramel pigment is prepared by raffinate, the utilization rate of reducing sugar is over 70%, and the value of raffinate is also doubled.
  • Fig. 1 is the schematic diagram of the system utilizing xylose mother liquor to co-produce xylitol and caramel pigment in the present invention
  • Fig. 2 is a schematic flow diagram of the present invention utilizing xylose mother liquor to co-produce xylitol and caramel pigment.
  • the preferred embodiment of the system that the present invention utilizes xylose mother liquor to co-produce xylitol and caramel pigment comprises raw material tank 1, filter 2, nanofiltration that are connected successively by pipeline Membrane device 3 , first ion exchange device 4 , chromatographic separation device 5 , refining hydrogenation component 6 and browning reaction component 7 .
  • Raw material tank 1 is used for storing xylose mother liquor A, and described xylose mother liquor A is the by-product that obtains after extracting xylose component from biomass raw material in the process of utilizing xylose to prepare xylitol.
  • concentration of the dry substance mass percentage that is, the sugar concentration is 50-60wt%, wherein, in the dry matter, glucose contains 12-18wt%, xylose contains 40-50%wt, arabinose contains 17-23wt%, nectar Sugar contains 10 ⁇ 22wt%, and galactose contains 0 ⁇ 6wt%.
  • Filter 2 is used to filter impurities in xylose mother liquor A.
  • the nanofiltration membrane device 3 is used to decolorize the xylose mother liquor flowing through to obtain a retentate liquid and a permeate liquid respectively, the retentate liquid is a pigment liquid, and the permeate liquid is a decolorization liquid.
  • the first ion exchange device 4 is used to desalt the xylose mother liquor decolorization liquid that flows through to obtain the ionized liquid B
  • the chromatographic separation device 5 is used to separate the extracted liquid with high content of xylose components from the ionized liquid B that flows through C and raffinate D low in xylose components.
  • the refining hydrogenation component 6 is used for refining and hydrogenating the extract C to prepare crystal xylitol E, and the browning reaction component 7 is used for browning the raffinate D to prepare caramel F.
  • the refined hydrogenation component 6 includes an evaporation concentration device 61 , a crystallization tank 62 , a xylose crystal storage tank 63 , a dissolution tank 64 , a hydrogenation reactor 65 , a second ion exchange device 66 and a vacuum crystallization component 67 .
  • the evaporation concentration device 61 is used to further concentrate the extract C
  • the crystallization tank 62 is used to crystallize xylose
  • the xylose crystal storage tank 63 is used to store crystal xylose
  • the dissolving tank 64 is used to dissolve crystal xylose into a liquid and store it
  • the hydrogenation reactor 65 is used for the hydrogenation reduction reaction of the xylose liquid to generate xylitol E
  • the second ion exchange device 66 is used to remove anions and cations in the xylitol E liquid
  • the vacuum crystallization assembly 67 is used to convert the ion exchange device
  • the treated feed liquid is subjected to crystallization treatment to obtain crystalline xylitol E.
  • the browning reaction assembly 7 includes a concentration tank 71 , a browning reaction kettle 72 and a browning filter 73 .
  • the concentration tank 71 is used to concentrate the raffinate D to a certain concentration and store it
  • the browning reaction kettle 72 is used for the browning reaction of the raffinate D to produce caramel pigment F
  • the browning filter 73 is used to filter the caramel pigment Solid impurities in F.
  • the present invention also discloses a method for co-producing xylitol and caramel pigment by using xylose mother liquor, which uses the system for co-producing xylitol and caramel pigment by utilizing xylose mother liquor as described above, and the method includes the following steps :
  • Step 1 the xylose mother liquor A raw material in the raw material tank 1 is transported to the filter 2 through a pipeline for a filtration and impurity removal treatment, and then sent to the nanofiltration membrane device 3 for decolorization treatment.
  • Step 2 Send the feed liquid after the nanofiltration treatment to the first ion exchange device 4 for desalination treatment to obtain the ion exchange liquid.
  • Step 3 sending the off-transition liquid into the chromatographic separation device 5 for chromatographic separation treatment, the extract C with high xylose component content and the raffinate D with low xylose component content obtained after the chromatographic separation treatment, the extract solution C is sent to the refining hydrogenation component 6 for processing to obtain xylitol E crystals with a purity >99%, and the raffinate D is processed by the browning reaction component 7 to prepare caramel F.
  • Step 1 during the nanofiltration decolorization treatment, the operating temperature of the nanofiltration membrane device 3 is 40-48° C., the operating pressure is 25 bar-35 bar, and the yield can reach 90%-98%.
  • the conductivity is controlled to be less than 50 us/cm, and the yield can reach 90%-98%.
  • step three dissolve xylose with water, control the refraction at 50% to 60%, pH at 5.00 to 7.00, add a nickel catalyst with a mass percentage of 0.01% to 0.02%, and control the reaction temperature at 130°C to 140°C,
  • the steam pressure is above 0.4MPa
  • the hydrogenation reaction pressure is controlled at 7.0MPa ⁇ 9.5MPa
  • the hydrogenation reaction time is 60 minutes ⁇ 120 minutes.
  • the raffinate D is concentrated to a refractive index of 75% ⁇ 85%, the pH is adjusted to 7.00 ⁇ 9.00, and a compound amino compound with a mass percentage of 6% ⁇ 12% (urea and ammonium carbonate is compounded, and the compounding ratio is 1:2 ⁇ 2:1) as a catalyst, control the browning reaction temperature 120 °C ⁇ 140 °C, browning reaction time 60 minutes ⁇ 240 minutes.
  • the treatment of the refining hydrogenation component 6 described in step 3 refers to evaporating and concentrating the extract C into the crystallization tank 62, dissolving the crystallized xylose in water, and sending the xylose solution into the hydrogenation reactor 65 for hydrogenation reaction to obtain Xylitol solution, after the reaction is finished, sedimentation is carried out to remove the catalyst, and the sedimented supernatant is desalted by the second ion exchange device 66, and the desalted feed liquid is vacuum evaporated and concentrated by the vacuum crystallization assembly 67, and then vacuum boiled crystallization to precipitate xylitol E crystals, and finally centrifuge and dry to obtain xylitol E crystals.
  • the treatment of the browning reaction component 7 in step 3 means that the obtained raffinate D is concentrated, browned and filtered to obtain a caramel pigment F liquid, and the red index of the caramel pigment F liquid is >7, 610nm Absorbance>0.07.
  • Step 1 the xylose mother liquor A raw material with refraction 60wt% in the raw material tank 1 is transported to the filter 2 through the pipeline to perform a filtration and impurity removal treatment, and then sent to the nanofiltration membrane device 3 for decolorization treatment, the nanofiltration membrane device 3
  • the operating temperature is 45°C and the operating pressure is 30bar.
  • Step 2 sending the nanofiltration-treated material into the first ion exchange device 4 for desalination treatment, and controlling the conductivity to be ⁇ 50 us/cm.
  • Step 3 send the ion-exchanging liquid after the treatment of the first ion exchange device 4 into the chromatographic separation device 5 for chromatographic separation treatment, after the chromatographic separation treatment, the extract C with high xylose content is sent to refinement, crystallization, and hydrogenation to obtain purity >99% Xylitol E.
  • the raffinate D with low xylose content obtained after chromatographic separation is sent to browning reaction.
  • the yield of decolorization and desalination process reaches 95%, and the yield of final crystallized xylose is 48%.
  • Step 4 Evaporate and concentrate the obtained chromatographically separated extract C into the crystallization tank 62, dissolve the crystallized xylose in water, control the refraction at 60%, pH 5.00, and add a nickel catalyst with a mass percentage of 0.015% to control the reaction
  • the temperature is 135°C
  • the steam pressure is above 0.4MPa
  • the hydrogenation reaction is carried out in the hydrogenation reactor 65.
  • the pressure of the hydrogenation reaction is controlled at 8MPa, and the reaction time is 90 minutes.
  • the catalyst is removed by settling, and the hydrogenated liquid is desalted by the second ion exchange device 66.
  • the desalted feed liquid is processed by the vacuum crystallization unit 67 to precipitate xylitol E crystals, and finally centrifuged and dried to obtain the purity It is 99% xylitol E crystal.
  • Step 5 Concentrate the obtained raffinate D to a refractive index of 80%, adjust the pH to 9.00, and add a compounded amino compound (urea and ammonium carbonate compounded with a compounding ratio of 1:2) with a mass percentage of 9% as a catalyst , control the browning reaction temperature at 120°C, and obtain the caramel pigment F liquid after the browning reaction time is 240 minutes.
  • the color rate of the caramel pigment F liquid is 20000EBC, the red index is 7.1, and the absorbance at 610nm is 0.078.
  • the utilization rate of reducing sugar in raffinate D is up to 70% (calculated on dry basis).
  • Utilization rate consumption of reducing sugar in browning reaction ⁇ total amount of reducing sugar in raffinate mother liquor.
  • the price of the caramel pigment prepared from the raffinate reaches 3,000 yuan/ton, and the value of the raffinate has been significantly improved.
  • the xylose mother liquor is directly used to prepare xylitol, and the specific steps include: the xylose mother liquor raw material with a refraction of 60wt% in the raw material tank 1 is transported to the filter 2 through a pipeline to perform a filtration and impurity removal treatment, and then add 0.5% Decolorization is carried out in the activated carbon decolorization tank. After decolorization, plate and frame pressure filtration is carried out, and the filtrate is sent to the first ion exchange module 4 for desalination treatment.
  • the yield of crystalline xylose is 45% (on a dry basis), which is xylitol after hydrogenation.
  • a large amount of raffinate was not effectively utilized, and was finally treated as mixed syrup.
  • the price of mixed syrup was 1,500 yuan/ton, and the value of raffinate did not increase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及一种利用木糖母液联产木糖醇和焦糖色素的系统,包括通过管路依次连通的原料罐、过滤器、纳滤膜装置、第一离子交换装置、色谱分离装置、精制氢化组件和褐变反应组件,色谱分离装置用于将流经的木糖母液分离出木糖组分含量高的提取液和木糖组分含量低的提余液,精制氢化组件用于将提取液精制氢化处理以制备晶体木糖醇,褐变反应组件用于提余液进行褐变反应处理以制备焦糖色素。本发明还公开一种使用该系统进行利用木糖母液联产木糖醇和焦糖色素的方法。本发明采用木糖母液经提纯结晶木糖后再制备木糖醇及离心后木糖色谱分离提余液制备焦糖色素,提高了木糖母液的利用价值。

Description

一种利用木糖母液联产木糖醇和焦糖色素的系统和方法 技术领域
本发明属于木糖母液利用技术领域,特别涉及一种利用木糖母液联产木糖醇和焦糖色素的系统和方法。
背景技术
木糖醇的生产多以玉米芯、玉米秸秆等为原料,提取其中的木糖,再将木糖加氢制得木糖醇。而提取木糖之后得到的木糖母液中木糖组分含量仍旧很高,如果可以将木糖母液中木糖组分再次提取制备木糖醇,并将产生的色谱分离提余液制备成焦糖色素,将更有利于资源和能源的利用。公开号CN109503676A的专利介绍了一种从木糖母液中制备木糖醇和混合糖浆的方法,将木糖母液通过预处理、色谱分离、活性炭脱色、离子交换脱盐、蒸发结晶、加氢精制等工艺制得木糖醇晶体和混合糖浆,但并没有将混合糖浆再利用,降低了木糖母液的应有价值。
技术问题
本发明所要解决的技术问题在于,提供一种利用木糖母液联产木糖醇和焦糖色素的系统和方法,采用纳滤膜分离脱色、离子交换脱盐,提高了木糖收率,另外通过对木糖色谱分离提余液的再利用得到了焦糖色素附加产品,提高了木糖母液的利用价值。
技术解决方案
本发明是这样实现的,提供一种利用木糖母液联产木糖醇和焦糖色素的系统,包括通过管路依次连通的原料罐、过滤器、纳滤膜装置、第一离子交换装置、色谱分离装置、精制氢化组件和褐变反应组件,原料罐用于储存木糖母液,过滤器用于过滤木糖母液中的杂质,纳滤膜装置用于将流经的木糖母液脱色处理后分别得到截留液和透过液,截留液为色素液,透过液为脱色液,第一离子交换装置用于将流经的脱色液脱盐,得到离交液,色谱分离装置用于将流经的离交液分离出木糖组分含量高的提取液和木糖组分含量低的提余液,精制氢化组件用于将提取液精制氢化处理以制备晶体木糖醇,褐变反应组件用于提余液进行褐变反应处理以制备焦糖色素。
进一步地,所述精制氢化组件包括蒸发浓缩装置、结晶罐、木糖晶体储罐、溶解罐、氢化反应釜、第二离子交换装置和真空结晶组件,蒸发浓缩装置用于将提取液进一步浓缩,结晶罐用于结晶木糖,木糖晶体储罐用于储存晶体木糖,溶解罐用于将晶体木糖溶解为液体并储存,氢化反应釜用于木糖液的加氢还原反应生成木糖醇,第二离子交换装置用于脱除木糖醇液体中的阴阳离子,真空结晶组件用于将离子交换装置处理后的料液进行结晶处理以得到晶体木糖醇。
进一步地,所述褐变反应组件包括浓缩罐、褐变反应釜和褐变过滤器,浓缩罐用于将提余液进行浓缩至一定浓度并存储,褐变反应釜用于提余液褐变反应制得焦糖色素,褐变过滤器用于过滤焦糖色素中的固体杂质。
本发明是这样实现的,提供一种利用木糖母液联产木糖醇和焦糖色素的方法,其使用了如前所述的利用木糖母液联产木糖醇和焦糖色素的系统,所述方法包括如下步骤:
步骤一、将原料罐中的木糖母液原料通过管路输送到过滤器进行一次过滤除杂处理,然后再将其送入纳滤膜装置中进行脱色处理。
步骤二、将纳滤处理后的料液送入第一离子交换装置中进行脱盐处理,得到离交液。
步骤三、将离交液送入色谱分离装置中进行色谱分离处理,色谱分离处理后得到的木糖组分含量高的提取液和木糖组分含量低的提余液,提取液送去精制氢化组件处理后得到纯度>99%的木糖醇晶体,提余液通过褐变反应组件处理后制备焦糖色素。
进一步地,在步骤一中,木糖母液的干物质量百分比浓度即糖浓度为50~60wt%,其中,在干物中,葡萄糖含12~18wt%,木糖含40~50%wt,阿拉伯糖含17~23wt%,甘露糖含10~22wt%,半乳糖含0~6wt%。
进一步地,在步骤一中,在纳滤脱色处理时,纳滤膜装置的运行温度40~48℃,运行压力25bar~35bar,收率可达90%~98%。
进一步地,在步骤二中,在离子交换脱盐处理时,控制电导率<50us/cm,收率可达90%~98%。
进一步地,在步骤三中,用水溶解木糖,折光控制在50%~60%,pH为5.00~7.00,添加质量百分比为0.01%~0.02%的镍催化剂,控制反应温度130℃~140℃,蒸汽压力0.4MPa以上,氢化反应的压力控制在7.0MPa~9.5MPa,氢化反应时间60分钟~120分钟;提余液浓缩至折光75%~85%,调节pH为7.00~9.00,添加质量百分比为6%~12%的复配氨基化合物(尿素和碳酸铵复配,复配比例为1:2~2:1)作催化剂,控制褐变反应温度120℃~140℃,褐变反应时间60分钟~240分钟。
进一步地,步骤三中所述精制氢化组件处理是指将提取液蒸发浓缩后进入结晶罐,结晶出的木糖再用水溶解,木糖溶解液送入氢化反应釜中进行加氢反应以得到木糖醇溶液,反应结束后进行沉降去除催化剂,将沉降的上清液采用第二离子交换装置进行脱盐处理,脱盐后的料液经过真空结晶组件进行真空蒸发浓缩后再进行真空煮糖结晶,使木糖醇晶体析出,最后经离心、烘干得到木糖醇晶体。
进一步地,步骤三中所述褐变反应组件处理是指将得到的提余液经过浓缩、褐变反应和过滤处理后得到焦糖色素液体,所述焦糖色素液体红色指数>7,610nm处吸光度>0.07。
有益效果
与现有技术相比,本发明的利用木糖母液联产木糖醇和焦糖色素的系统和方法具有以下特点:
1、本发明采用纳滤膜分离技术将木糖母液脱色,提高了生产收率。
2、将提余液经过浓缩再经过褐变反应以及过滤处理后得到焦糖色素产品,色率可达20000EBC,红色指数高达7。
3、通过提余液制备焦糖色素,还原糖利用率达70%以上,提余液的价值也提升了一倍。
附图说明
图1为本发明利用木糖母液联产木糖醇和焦糖色素的系统的原理示意图;
图2为本发明利用木糖母液联产木糖醇和焦糖色素的流程示意图。
本发明的最佳实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请同时参照图1以及图2所示,本发明利用木糖母液联产木糖醇和焦糖色素的系统的较佳实施例,包括通过管路依次连通的原料罐1、过滤器2、纳滤膜装置3、第一离子交换装置4、色谱分离装置5、精制氢化组件6和褐变反应组件7。
原料罐1用于储存木糖母液A,所述木糖母液A为在利用木糖制备木糖醇的过程中,从生物质原料中提取木糖组分后得到的副产物,在所述木糖母液A中,其干物质量百分比浓度即糖浓度为50~60wt%,其中,在干物中,葡萄糖含12~18wt%,木糖含40~50%wt,阿拉伯糖含17~23wt%,甘露糖含10~22wt%,半乳糖含0~6wt%。
过滤器2用于过滤木糖母液A中的杂质。纳滤膜装置3用于将流经的木糖母液脱色处理后分别得到截留液和透过液,截留液为色素液,透过液为脱色液。第一离子交换装置4用于将流经的木糖母液脱色液脱盐,得到离交液B,色谱分离装置5用于将流经的离交液B分离出木糖组分含量高的提取液C和木糖组分含量低的提余液D。精制氢化组件6用于将提取液C精制氢化处理以制备晶体木糖醇E,褐变反应组件7用于提余液D进行褐变反应处理以制备焦糖色素F。
具体地,所述精制氢化组件6包括蒸发浓缩装置61、结晶罐62、木糖晶体储罐63、溶解罐64、氢化反应釜65、第二离子交换装置66和真空结晶组件67。蒸发浓缩装置61用于将提取液C进一步浓缩,结晶罐62用于结晶木糖,木糖晶体储罐63用于储存晶体木糖,溶解罐64用于将晶体木糖溶解为液体并储存,氢化反应釜65用于木糖液的加氢还原反应生成木糖醇E,第二离子交换装置66用于脱除木糖醇E液体中的阴阳离子,真空结晶组件67用于将离子交换装置处理后的料液进行结晶处理以得到晶体木糖醇E。
具体地,所述褐变反应组件7包括浓缩罐71、褐变反应釜72和褐变过滤器73。浓缩罐71用于将提余液D进行浓缩至一定浓度并存储,褐变反应釜72用于提余液D褐变反应制得焦糖色素F,褐变过滤器73用于过滤焦糖色素F中的固体杂质。
本发明还公开一种利用木糖母液联产木糖醇和焦糖色素的方法,其使用了如前所述的利用木糖母液联产木糖醇和焦糖色素的系统,所述方法包括如下步骤:
步骤一、将原料罐1中的木糖母液A原料通过管路输送到过滤器2进行一次过滤除杂处理,然后再将其送入纳滤膜装置3中进行脱色处理。
步骤二、将纳滤处理后的料液送入第一离子交换装置4中进行脱盐处理,得到离交液。
步骤三、将离交液送入色谱分离装置5中进行色谱分离处理,色谱分离处理后得到的木糖组分含量高的提取液C和木糖组分含量低的提余液D,提取液C送去精制氢化组件6处理后得到纯度>99%的木糖醇E晶体,提余液D通过褐变反应组件7处理后制备焦糖色素F。
具体地,在步骤一中,在纳滤脱色处理时,纳滤膜装置3的运行温度40~48℃,运行压力25bar~35bar,收率可达90%~98%。
具体地,在步骤二中,在离子交换脱盐处理时,控制电导率<50us/cm,收率可达90%~98%。
具体地,在步骤三中,用水溶解木糖,折光控制在50%~60%,pH为5.00~7.00,添加质量百分比为0.01%~0.02%的镍催化剂,控制反应温度130℃~140℃,蒸汽压力0.4MPa以上,氢化反应的压力控制在7.0MPa~9.5MPa,氢化反应时间60分钟~120分钟。提余液D浓缩至折光75%~85%,调节pH为7.00~9.00,添加质量百分比为6%~12%的复配氨基化合物(尿素和碳酸铵复配,复配比例为1:2~2:1)作催化剂,控制褐变反应温度120℃~140℃,褐变反应时间60分钟~240分钟。
步骤三中所述精制氢化组件6处理是指将提取液C蒸发浓缩后进入结晶罐62,结晶出的木糖再用水溶解,木糖溶解液送入氢化反应釜65中进行加氢反应以得到木糖醇溶液,反应结束后进行沉降去除催化剂,将沉降的上清液采用第二离子交换装置66进行脱盐处理,脱盐后的料液经过真空结晶组件67进行真空蒸发浓缩后再进行真空煮糖结晶,使木糖醇E晶体析出,最后经离心、烘干得到木糖醇E晶体。
步骤三中所述褐变反应组件7处理是指将得到的提余液D经过浓缩、褐变反应和过滤处理后得到焦糖色素F液体,所述焦糖色素F液体红色指数>7,610nm处吸光度>0.07。
本发明的实施方式
下面通过具体实施例进一步说明本发明的利用木糖母液联产木糖醇和焦糖色素的系统和方法。
实施例1
本发明第一个利用木糖母液联产木糖醇和焦糖色素的系统和方法的实施例,包括如下步骤:
步骤一、将原料罐1中折光60wt%的木糖母液A原料通过管路输送到过滤器2进行一次过滤除杂处理,然后再送入纳滤膜装置3中进行脱色处理,纳滤膜装置3的运行温度45℃,运行压力30bar。
步骤二、将纳滤处理后的物料送入第一离子交换装置4中进行脱盐处理,控制电导率<50us/cm。
步骤三、将第一离子交换装置4处理后的离交液送入色谱分离装置5中进行色谱分离处理,色谱分离处理后得到木糖含量高的提取液C送去精制、结晶、氢化得到纯度>99%的木糖醇E。将色谱分离处理后得到的木糖含量低的提余液D送去褐变反应。脱色脱盐工艺收率达95%,最终结晶木糖收率为48%。
步骤四、将得到的色谱分离提取液C蒸发浓缩后进入结晶罐62,结晶出的木糖再用水溶解,折光控制在60%,pH为5.00,添加质量百分比为0.015%的镍催化剂,控制反应温度135℃,蒸汽压力0.4MPa以上,送入氢化反应釜65中进行加氢反应,氢化反应的压力控制在8MPa、反应时间90分钟。氢化反应结束后进行沉降去除催化剂,将氢化液采用第二离子交换装置66进行脱盐,脱盐后的料液经过真空结晶组件67处理,使木糖醇E晶体析出,最后经离心、烘干得到纯度为99%木糖醇E晶体。
步骤五、将得到的提余液D浓缩至折光80%,调节pH为9.00,添加质量百分比为9%的复配氨基化合物(尿素和碳酸铵复配,复配比例为1:2)作催化剂,控制褐变反应温度120℃,褐变反应时间240分钟后得到焦糖色素F液体,焦糖色素F液体的色率为20000EBC,红色指数为7.1,610nm处吸光度为0.078。
提余液D中还原糖利用率达70%(以干基计)。
利用率=褐变反应还原糖消耗量÷提余液母液还原糖总量。
提余液制备出的焦糖色素售价达3000元/吨,提余液的价值得到显著提升。
对比例1
将木糖母液直接用于制备木糖醇,具体步骤包括:将原料罐1中折光60wt%的木糖母液原料通过管路输送到过滤器2进行一次过滤除杂处理,然后在添加0.5%的活性炭脱色罐中进行脱色处理,脱色后进行板框压滤,将滤液输送第一离子交换组件4进行脱盐处理,脱色脱盐收率为85%,之后再经过色谱分离、蒸发浓缩、结晶离心,最终结晶木糖收率为45%(以干基计),加氢后为木糖醇。大量提余液未能得到有效利用,最终当作混合糖浆处理,混合糖浆售价为1500元/吨,提余液的价值未提升。
综上所述,通过纳滤脱色、离子交换脱盐处理,结晶木糖收率由45%提高到48%;通过提余液的高值化利用,由售价1500元/吨提余液转变为3000元/吨焦糖色素,大大提高了木糖母液的价值。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种利用木糖母液联产木糖醇和焦糖色素的系统,其特征在于,包括通过管路依次连通的原料罐、过滤器、纳滤膜装置、第一离子交换装置、色谱分离装置、精制氢化组件和褐变反应组件,原料罐用于储存木糖母液,过滤器用于过滤木糖母液中的杂质,纳滤膜装置用于将流经的木糖母液脱色处理后分别得到截留液和透过液,截留液为色素液,透过液为脱色液,第一离子交换装置用于将流经的脱色液脱盐,得到离交液,色谱分离装置用于将流经的离交液分离出木糖组分含量高的提取液和木糖组分含量低的提余液,精制氢化组件用于将提取液精制氢化处理以制备晶体木糖醇,褐变反应组件用于提余液进行褐变反应处理以制备焦糖色素。
  2. 如权利要求1所述的利用木糖母液联产木糖醇和焦糖色素的系统,其特征在于,所述精制氢化组件包括蒸发浓缩装置、结晶罐、木糖晶体储罐、溶解罐、氢化反应釜、第二离子交换装置和真空结晶组件,蒸发浓缩装置用于将提取液进一步浓缩,结晶罐用于结晶木糖,木糖晶体储罐用于储存晶体木糖,溶解罐用于将晶体木糖溶解为液体并储存,氢化反应釜用于木糖液的加氢还原反应生成木糖醇,第二离子交换装置用于脱除木糖醇液体中的阴阳离子,真空结晶组件用于将离子交换装置处理后的料液进行结晶处理以得到晶体木糖醇。
  3. 如权利要求1所述的利用木糖母液联产木糖醇和焦糖色素的系统,其特征在于,所述褐变反应组件包括浓缩罐、褐变反应釜和褐变过滤器,浓缩罐用于将提余液进行浓缩至一定浓度并存储,褐变反应釜用于提余液褐变反应制得焦糖色素,褐变过滤器用于过滤焦糖色素中的固体杂质。
  4. 一种利用木糖母液联产木糖醇和焦糖色素的方法,其特征在于,其使用了如权利要求1至3中任意一项所述的利用木糖母液联产木糖醇和焦糖色素的系统,所述方法包括如下步骤:
    步骤一、将原料罐中的木糖母液原料通过管路输送到过滤器进行一次过滤除杂处理,然后再将其送入纳滤膜装置中进行脱色处理;
    步骤二、将纳滤处理后的料液送入第一离子交换装置中进行脱盐处理,得到离交液;
    步骤三、将离交液送入色谱分离装置中进行色谱分离处理,色谱分离处理后得到的木糖组分含量高的提取液和木糖组分含量低的提余液,提取液送去精制氢化组件处理后得到纯度>99%的木糖醇晶体,提余液通过褐变反应组件处理后制备焦糖色素。
  5. 如权利要求4所述的利用木糖母液联产木糖醇和焦糖色素的方法,其特征在于,在步骤一中,木糖母液的干物质量百分比浓度即糖浓度为50~60wt%,其中,在干物中,葡萄糖含12~18wt%,木糖含40~50%wt,阿拉伯糖含17~23wt%,甘露糖含10~22wt%,半乳糖含0~6wt%。
  6. 如权利要求4所述的利用木糖母液联产木糖醇和焦糖色素的系统,其特征在于,在步骤一中,在纳滤脱色处理时,纳滤膜装置的运行温度40~48℃,运行压力25bar~35bar,收率可达90%~98%。
  7. 如权利要求4所述的利用木糖母液联产木糖醇和焦糖色素的方法,其特征在于,在步骤二中,在离子交换脱盐处理时,控制电导率<50us/cm,收率可达90%~98%。
  8. 如权利要求4所述的利用木糖母液联产木糖醇和焦糖色素的方法,其特征在于,在步骤三中,用水溶解木糖,折光控制在50%~60%,pH为5.00~7.00,添加质量百分比为0.01%~0.02%的镍催化剂,控制反应温度130℃~140℃,蒸汽压力0.4MPa以上,氢化反应的压力控制在7.0MPa~9.5MPa,氢化反应时间60分钟~120分钟;提余液浓缩至折光75%~85%,调节pH为7.00~9.00,添加质量百分比为6%~12%的复配氨基化合物作催化剂,控制褐变反应温度120℃~140℃,褐变反应时间60分钟~240分钟。
  9. 如权利要求4所述的利用木糖母液联产木糖醇和焦糖色素的方法,其特征在于,步骤三中所述精制氢化组件处理是指将提取液蒸发浓缩后进入结晶罐,结晶出的木糖再用水溶解,木糖溶解液送入氢化反应釜中进行加氢反应以得到木糖醇溶液,反应结束后进行沉降去除催化剂,将沉降的上清液采用第二离子交换装置进行脱盐处理,脱盐后的料液经过真空结晶组件进行真空蒸发浓缩后再进行真空煮糖结晶,使木糖醇晶体析出,最后经离心、烘干得到木糖醇晶体。
  10. 如权利要求4所述的利用木糖母液联产木糖醇和焦糖色素的方法,其特征在于,步骤三中所述褐变反应组件处理是指将得到的提余液经过浓缩、褐变反应和过滤处理后得到焦糖色素液体,所述焦糖色素液体红色指数>7,610nm处吸光度>0.07。
PCT/CN2022/125220 2021-12-29 2022-10-13 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法 WO2023124395A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023549938A JP2024507212A (ja) 2021-12-29 2022-10-13 キシロース母液を用いたキシリトール・カラメル色素併産システム、及び方法
EP22913659.3A EP4311823A1 (en) 2021-12-29 2022-10-13 System and method for co-producing xylitol and caramel color by using xylose mother liquor
US18/348,509 US20230348350A1 (en) 2021-12-29 2023-07-07 Systems and methods for co-producing xylitol and caramel pigment by utilizing xylose mother liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111644482.0A CN114213215B (zh) 2021-12-29 2021-12-29 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法
CN202111644482.0 2021-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/348,509 Continuation-In-Part US20230348350A1 (en) 2021-12-29 2023-07-07 Systems and methods for co-producing xylitol and caramel pigment by utilizing xylose mother liquid

Publications (1)

Publication Number Publication Date
WO2023124395A1 true WO2023124395A1 (zh) 2023-07-06

Family

ID=80706861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125220 WO2023124395A1 (zh) 2021-12-29 2022-10-13 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法

Country Status (5)

Country Link
US (1) US20230348350A1 (zh)
EP (1) EP4311823A1 (zh)
JP (1) JP2024507212A (zh)
CN (1) CN114213215B (zh)
WO (1) WO2023124395A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213215B (zh) * 2021-12-29 2023-11-10 浙江华康药业股份有限公司 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法
CN116083657A (zh) * 2022-12-05 2023-05-09 浙江华康药业股份有限公司 利用玉米芯联产优级木糖和高端焦糖色素的系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823939A (zh) * 2009-09-29 2010-09-08 山东福田药业有限公司 一种木糖醇制备新工艺
CN101857523A (zh) * 2010-06-07 2010-10-13 禹城绿健生物技术有限公司 一种利用木糖母液同时生产木糖醇和阿拉伯糖醇的方法
CN102241707A (zh) * 2011-05-09 2011-11-16 浙江华康药业股份有限公司 一种提取l-阿拉伯糖与制备木糖醇的方法
CN103409315A (zh) * 2013-07-15 2013-11-27 重庆大学 木糖醇结晶母液制备葡萄糖酸的反应分离耦合装置和工艺
CN106591384A (zh) * 2016-12-21 2017-04-26 浙江华康药业股份有限公司 一种木糖母液的综合处理方法
CN107893132A (zh) * 2017-12-06 2018-04-10 江苏久吾高科技股份有限公司 一种木糖的生产方法及装置
CN109503676A (zh) 2018-11-27 2019-03-22 浙江华康药业股份有限公司 一种从木糖母液中制备木糖醇和混合糖浆的方法
CN113214531A (zh) * 2021-05-28 2021-08-06 江南大学 一种疏/亲水型互贯网络树脂及其制备和应用
CN114213215A (zh) * 2021-12-29 2022-03-22 浙江华康药业股份有限公司 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823939A (zh) * 2009-09-29 2010-09-08 山东福田药业有限公司 一种木糖醇制备新工艺
CN101857523A (zh) * 2010-06-07 2010-10-13 禹城绿健生物技术有限公司 一种利用木糖母液同时生产木糖醇和阿拉伯糖醇的方法
CN102241707A (zh) * 2011-05-09 2011-11-16 浙江华康药业股份有限公司 一种提取l-阿拉伯糖与制备木糖醇的方法
CN103409315A (zh) * 2013-07-15 2013-11-27 重庆大学 木糖醇结晶母液制备葡萄糖酸的反应分离耦合装置和工艺
CN106591384A (zh) * 2016-12-21 2017-04-26 浙江华康药业股份有限公司 一种木糖母液的综合处理方法
CN107893132A (zh) * 2017-12-06 2018-04-10 江苏久吾高科技股份有限公司 一种木糖的生产方法及装置
CN109503676A (zh) 2018-11-27 2019-03-22 浙江华康药业股份有限公司 一种从木糖母液中制备木糖醇和混合糖浆的方法
CN113214531A (zh) * 2021-05-28 2021-08-06 江南大学 一种疏/亲水型互贯网络树脂及其制备和应用
CN114213215A (zh) * 2021-12-29 2022-03-22 浙江华康药业股份有限公司 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法

Also Published As

Publication number Publication date
EP4311823A1 (en) 2024-01-31
CN114213215A (zh) 2022-03-22
US20230348350A1 (en) 2023-11-02
CN114213215B (zh) 2023-11-10
JP2024507212A (ja) 2024-02-16

Similar Documents

Publication Publication Date Title
CN109503676B (zh) 一种从木糖母液中制备木糖醇和混合糖浆的方法
WO2023124395A1 (zh) 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法
CN102976923B (zh) 从乳酸发酵液中提取乳酸的工艺
CN102912043B (zh) 一种纯化果糖生产方法
JP2016520093A (ja) 前処理ありのフェルラ酸の最適化抽出方法
CN110272461B (zh) 一种从发酵液中提纯β-胸苷的方法
CN107383135B (zh) 从发酵液中分离纯化β-胸苷的方法
JP7454103B2 (ja) コーンスターチを用いたエリスリトール・液状ソルビトール同時生産システム及び方法
WO2013159263A1 (zh) 一种用蔗髓为原料生产高纯度l-阿拉伯糖的方法
CN113248551B (zh) 一种利用木糖母液色谱提取液制备精制木糖的系统及方法
CN112679560A (zh) 一种春雷霉素的结晶工艺
CN218860763U (zh) 一种利用玉米芯联产优级木糖和高端焦糖色素的系统
JP2024507514A (ja) キシリトール発酵液の精製システム及びその方法
CN110835656A (zh) 一种基于多糖纤维炭除胶技术的沙琪玛糖浆纯化工艺
CN108640816B (zh) 肌醇滤液高温快速离交的精制工艺
CN113135965A (zh) 一种利用木糖母液生产结晶木糖的系统及方法
CN216614473U (zh) 一种利用木糖母液联产木糖醇和焦糖色素的系统
CN115785174A (zh) 一种高纯度阿拉伯糖晶体的制备方法
CN113754704A (zh) 一种利用离子树脂高效制备葡萄糖粉的制备方法
AU2001274392A1 (en) Process for pretreating colored aqueous sugar solutions to produce a low colored crystallized sugar
CN215049793U (zh) 一种利用木糖母液生产结晶木糖的系统
CN113045610A (zh) 一种从n-乙酰氨基葡萄糖发酵液中提取氨基葡萄糖的方法
CN114436816B (zh) 一种离子交换技术高效提取莽草酸的方法
CN116496222B (zh) 一种从发酵液中分离纯化四氢嘧啶的方法
CN113979839B (zh) 一种提升木糖醇母液利用率的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549938

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022913659

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022913659

Country of ref document: EP

Effective date: 20230915