WO2023124395A1 - 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法 - Google Patents
一种利用木糖母液联产木糖醇和焦糖色素的系统和方法 Download PDFInfo
- Publication number
- WO2023124395A1 WO2023124395A1 PCT/CN2022/125220 CN2022125220W WO2023124395A1 WO 2023124395 A1 WO2023124395 A1 WO 2023124395A1 CN 2022125220 W CN2022125220 W CN 2022125220W WO 2023124395 A1 WO2023124395 A1 WO 2023124395A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- xylose
- mother liquor
- xylitol
- liquid
- hydrogenation
- Prior art date
Links
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 title claims abstract description 240
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 title claims abstract description 123
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 title claims abstract description 123
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 title claims abstract description 63
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 title claims abstract description 63
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 title claims abstract description 63
- 239000000811 xylitol Substances 0.000 title claims abstract description 63
- 229960002675 xylitol Drugs 0.000 title claims abstract description 63
- 235000010447 xylitol Nutrition 0.000 title claims abstract description 63
- 239000012452 mother liquor Substances 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000000940 FEMA 2235 Substances 0.000 title abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 58
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 45
- 238000006243 chemical reaction Methods 0.000 claims abstract description 43
- 238000005342 ion exchange Methods 0.000 claims abstract description 35
- 239000013078 crystal Substances 0.000 claims abstract description 28
- 238000001728 nano-filtration Methods 0.000 claims abstract description 25
- 238000013375 chromatographic separation Methods 0.000 claims abstract description 23
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 239000012528 membrane Substances 0.000 claims abstract description 17
- 238000007670 refining Methods 0.000 claims abstract description 13
- MIDXCONKKJTLDX-UHFFFAOYSA-N 3,5-dimethylcyclopentane-1,2-dione Chemical compound CC1CC(C)C(=O)C1=O MIDXCONKKJTLDX-UHFFFAOYSA-N 0.000 claims description 47
- 235000013736 caramel Nutrition 0.000 claims description 47
- 239000000049 pigment Substances 0.000 claims description 47
- 238000002425 crystallisation Methods 0.000 claims description 27
- 230000008025 crystallization Effects 0.000 claims description 27
- 239000000284 extract Substances 0.000 claims description 20
- 238000004042 decolorization Methods 0.000 claims description 18
- 238000010612 desalination reaction Methods 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 11
- 239000012141 concentrate Substances 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 9
- 239000003054 catalyst Substances 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims description 8
- 230000035484 reaction time Effects 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 230000008020 evaporation Effects 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 6
- -1 compound amino compound Chemical class 0.000 claims description 5
- 239000012466 permeate Substances 0.000 claims description 5
- 239000012465 retentate Substances 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 238000002835 absorbance Methods 0.000 claims description 4
- 238000004090 dissolution Methods 0.000 claims description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- 150000001450 anions Chemical class 0.000 claims description 3
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 claims description 3
- 150000001768 cations Chemical class 0.000 claims description 3
- 229930182830 galactose Natural products 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 238000006722 reduction reaction Methods 0.000 claims description 3
- 238000004062 sedimentation Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000006228 supernatant Substances 0.000 claims description 3
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 claims description 2
- 238000004040 coloring Methods 0.000 claims description 2
- 230000001057 ionotropic effect Effects 0.000 claims description 2
- 230000000172 allergic effect Effects 0.000 claims 1
- 208000010668 atopic eczema Diseases 0.000 claims 1
- 150000002500 ions Chemical class 0.000 claims 1
- 238000000605 extraction Methods 0.000 abstract 2
- 238000005119 centrifugation Methods 0.000 abstract 1
- 229960003487 xylose Drugs 0.000 description 80
- 235000008504 concentrate Nutrition 0.000 description 5
- 239000006188 syrup Substances 0.000 description 5
- 235000020357 syrup Nutrition 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 235000012501 ammonium carbonate Nutrition 0.000 description 3
- 239000001099 ammonium carbonate Substances 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-NGQZWQHPSA-N d-xylitol Chemical compound OC[C@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-NGQZWQHPSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/006—Preparation of organic pigments
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/88—Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
- C07C29/78—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by condensation or crystallisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/132—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
- C07C29/136—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
- C07C29/14—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
- C07C29/141—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/88—Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
- C07C29/90—Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound using hydrogen only
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B61/00—Dyes of natural origin prepared from natural sources, e.g. vegetable sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/04—Specific process operations in the feed stream; Feed pretreatment
Definitions
- the invention belongs to the technical field of xylose mother liquor utilization, in particular to a system and method for co-producing xylitol and caramel pigment by using xylose mother liquor.
- xylitol mostly uses corncobs, corn stalks, etc. as raw materials, extracts xylose from them, and then hydrogenates xylose to obtain xylitol.
- the content of xylose components in the xylose mother liquor obtained after extracting xylose is still very high. If the xylose components in the xylose mother liquor can be extracted again to prepare xylitol, and the resulting chromatographic Sugar pigment will be more conducive to the utilization of resources and energy.
- the patent of Publication No. CN109503676A introduces a method for preparing xylitol and mixed syrup from xylose mother liquor.
- the xylose mother liquor is prepared by processes such as pretreatment, chromatographic separation, activated carbon decolorization, ion exchange desalination, evaporative crystallization, and hydrogenation refining. Xylitol crystals and mixed syrup are obtained, but the mixed syrup is not reused, which reduces the due value of the xylose mother liquor.
- the technical problem to be solved by the present invention is to provide a system and method for utilizing xylose mother liquor to co-produce xylitol and caramel pigment, adopt nanofiltration membrane separation decolorization, ion exchange desalination, improve the yield of xylose, in addition through the The reuse of xylose chromatographically separated raffinate obtained additional products of caramel pigment, which improved the utilization value of xylose mother liquor.
- the present invention is achieved by providing a system for co-producing xylitol and caramel pigment by using xylose mother liquor, including a raw material tank, a filter, a nanofiltration membrane device, a first ion exchange device, a chromatographic Separation device, refined hydrogenation component and browning reaction component, the raw material tank is used to store the xylose mother liquor, the filter is used to filter the impurities in the xylose mother liquor, and the nanofiltration membrane device is used to decolorize the xylose mother liquor flowing through to obtain The retentate and the permeate, the retentate is the pigment solution, the permeate is the decolorization solution, the first ion exchange device is used to desalt the decolorization solution flowing through to obtain the separation liquid, and the chromatographic separation device is used to decolorize the flow through The extract solution with high content of xylose component and the raffinate solution with low content of xylose component are separated by liquid exchange, the refining hydrogenation component is used to
- the refined hydrogenation component includes an evaporation concentration device, a crystallization tank, a xylose crystal storage tank, a dissolution tank, a hydrogenation reaction kettle, a second ion exchange device and a vacuum crystallization component, and the evaporation concentration device is used to further concentrate the extract
- the crystallization tank is used to crystallize xylose
- the xylose crystal storage tank is used to store crystal xylose
- the dissolving tank is used to dissolve crystal xylose into a liquid and store it
- the hydrogenation reactor is used for the hydrogenation reduction reaction of xylose liquid to generate xylose Alcohol
- the second ion exchange device is used to remove anions and cations in the xylitol liquid
- the vacuum crystallization component is used to crystallize the feed liquid treated by the ion exchange device to obtain crystal xylitol.
- the browning reaction assembly includes a concentration tank, a browning reaction kettle and a browning filter
- the concentration tank is used to concentrate the raffinate to a certain concentration and store it
- the browning reaction kettle is used to brown the raffinate
- the reaction produces caramel color
- the browning filter is used to filter the solid impurities in the caramel color.
- the present invention is achieved like this, provides a kind of method that utilizes xylose mother liquor to co-produce xylitol and caramel pigment, it has used the system that utilizes xylose mother liquor to co-produce xylitol and caramel pigment as described above, described
- the method includes the following steps:
- Step 1 The xylose mother liquor raw material in the raw material tank is transported to the filter through a pipeline for a filtration and impurity removal treatment, and then sent to a nanofiltration membrane device for decolorization treatment.
- Step 2 sending the feed liquid after the nanofiltration treatment into the first ion exchange device for desalination treatment to obtain the ion exchange liquid.
- Step 3 sending the ionotropic liquid into the chromatographic separation device for chromatographic separation treatment, the extract solution with high xylose component content and the raffinate solution with low xylose component content obtained after the chromatographic separation treatment, the extract solution is sent to refining Xylitol crystals with a purity >99% are obtained after the hydrogenation component, and the raffinate is processed through the browning reaction component to prepare caramel pigment.
- the dry matter concentration of the xylose mother liquor that is, the sugar concentration is 50-60wt%, wherein, in the dry matter, glucose contains 12-18wt%, xylose contains 40-50%wt, and arabinose contains 17 ⁇ 23wt%, mannose 10 ⁇ 22wt%, galactose 0 ⁇ 6wt%.
- step one during the nanofiltration decolorization treatment, the operating temperature of the nanofiltration membrane device is 40-48°C, the operating pressure is 25bar-35bar, and the yield can reach 90%-98%.
- step 2 during the ion exchange desalination treatment, the conductivity is controlled to be less than 50 us/cm, and the yield can reach 90%-98%.
- step three dissolve xylose with water, control the refraction at 50% ⁇ 60%, pH at 5.00 ⁇ 7.00, add nickel catalyst with a mass percentage of 0.01% ⁇ 0.02%, and control the reaction temperature at 130°C ⁇ 140°C,
- the steam pressure is above 0.4MPa
- the pressure of the hydrogenation reaction is controlled at 7.0MPa ⁇ 9.5MPa
- the hydrogenation reaction time is 60 minutes ⁇ 120 minutes
- the raffinate is concentrated to a refractive index of 75% ⁇ 85%
- the pH is adjusted to 7.00 ⁇ 9.00.
- 6% ⁇ 12% compound amino compound (urea and ammonium carbonate compound, the compound ratio is 1:2 ⁇ 2:1) is used as catalyst
- the browning reaction temperature is controlled at 120°C ⁇ 140°C
- the browning reaction time is 60 minutes ⁇ 240 minutes.
- the refined hydrogenation component treatment in step 3 refers to evaporating and concentrating the extract and then entering the crystallization tank, dissolving the crystallized xylose in water, and sending the xylose solution into the hydrogenation reactor for hydrogenation reaction to obtain wood Sugar alcohol solution, after the reaction is completed, sedimentation is carried out to remove the catalyst, and the sedimented supernatant is desalinated by the second ion exchange device, and the desalted feed liquid is vacuum evaporated and concentrated by the vacuum crystallization component, and then vacuum boiled sugar crystallization is carried out. Xylitol crystals are precipitated, and finally centrifuged and dried to obtain xylitol crystals.
- the browning reaction component treatment in Step 3 refers to concentrating, browning and filtering the obtained raffinate to obtain a caramel pigment liquid, and the red index of the caramel pigment liquid is >7, at 610nm Absorbance >0.07.
- the system and method of utilizing xylose mother liquor to co-produce xylitol and caramel pigment of the present invention have the following characteristics:
- the present invention adopts the nanofiltration membrane separation technology to decolorize the xylose mother liquor, thereby improving the production yield.
- the caramel pigment is prepared by raffinate, the utilization rate of reducing sugar is over 70%, and the value of raffinate is also doubled.
- Fig. 1 is the schematic diagram of the system utilizing xylose mother liquor to co-produce xylitol and caramel pigment in the present invention
- Fig. 2 is a schematic flow diagram of the present invention utilizing xylose mother liquor to co-produce xylitol and caramel pigment.
- the preferred embodiment of the system that the present invention utilizes xylose mother liquor to co-produce xylitol and caramel pigment comprises raw material tank 1, filter 2, nanofiltration that are connected successively by pipeline Membrane device 3 , first ion exchange device 4 , chromatographic separation device 5 , refining hydrogenation component 6 and browning reaction component 7 .
- Raw material tank 1 is used for storing xylose mother liquor A, and described xylose mother liquor A is the by-product that obtains after extracting xylose component from biomass raw material in the process of utilizing xylose to prepare xylitol.
- concentration of the dry substance mass percentage that is, the sugar concentration is 50-60wt%, wherein, in the dry matter, glucose contains 12-18wt%, xylose contains 40-50%wt, arabinose contains 17-23wt%, nectar Sugar contains 10 ⁇ 22wt%, and galactose contains 0 ⁇ 6wt%.
- Filter 2 is used to filter impurities in xylose mother liquor A.
- the nanofiltration membrane device 3 is used to decolorize the xylose mother liquor flowing through to obtain a retentate liquid and a permeate liquid respectively, the retentate liquid is a pigment liquid, and the permeate liquid is a decolorization liquid.
- the first ion exchange device 4 is used to desalt the xylose mother liquor decolorization liquid that flows through to obtain the ionized liquid B
- the chromatographic separation device 5 is used to separate the extracted liquid with high content of xylose components from the ionized liquid B that flows through C and raffinate D low in xylose components.
- the refining hydrogenation component 6 is used for refining and hydrogenating the extract C to prepare crystal xylitol E, and the browning reaction component 7 is used for browning the raffinate D to prepare caramel F.
- the refined hydrogenation component 6 includes an evaporation concentration device 61 , a crystallization tank 62 , a xylose crystal storage tank 63 , a dissolution tank 64 , a hydrogenation reactor 65 , a second ion exchange device 66 and a vacuum crystallization component 67 .
- the evaporation concentration device 61 is used to further concentrate the extract C
- the crystallization tank 62 is used to crystallize xylose
- the xylose crystal storage tank 63 is used to store crystal xylose
- the dissolving tank 64 is used to dissolve crystal xylose into a liquid and store it
- the hydrogenation reactor 65 is used for the hydrogenation reduction reaction of the xylose liquid to generate xylitol E
- the second ion exchange device 66 is used to remove anions and cations in the xylitol E liquid
- the vacuum crystallization assembly 67 is used to convert the ion exchange device
- the treated feed liquid is subjected to crystallization treatment to obtain crystalline xylitol E.
- the browning reaction assembly 7 includes a concentration tank 71 , a browning reaction kettle 72 and a browning filter 73 .
- the concentration tank 71 is used to concentrate the raffinate D to a certain concentration and store it
- the browning reaction kettle 72 is used for the browning reaction of the raffinate D to produce caramel pigment F
- the browning filter 73 is used to filter the caramel pigment Solid impurities in F.
- the present invention also discloses a method for co-producing xylitol and caramel pigment by using xylose mother liquor, which uses the system for co-producing xylitol and caramel pigment by utilizing xylose mother liquor as described above, and the method includes the following steps :
- Step 1 the xylose mother liquor A raw material in the raw material tank 1 is transported to the filter 2 through a pipeline for a filtration and impurity removal treatment, and then sent to the nanofiltration membrane device 3 for decolorization treatment.
- Step 2 Send the feed liquid after the nanofiltration treatment to the first ion exchange device 4 for desalination treatment to obtain the ion exchange liquid.
- Step 3 sending the off-transition liquid into the chromatographic separation device 5 for chromatographic separation treatment, the extract C with high xylose component content and the raffinate D with low xylose component content obtained after the chromatographic separation treatment, the extract solution C is sent to the refining hydrogenation component 6 for processing to obtain xylitol E crystals with a purity >99%, and the raffinate D is processed by the browning reaction component 7 to prepare caramel F.
- Step 1 during the nanofiltration decolorization treatment, the operating temperature of the nanofiltration membrane device 3 is 40-48° C., the operating pressure is 25 bar-35 bar, and the yield can reach 90%-98%.
- the conductivity is controlled to be less than 50 us/cm, and the yield can reach 90%-98%.
- step three dissolve xylose with water, control the refraction at 50% to 60%, pH at 5.00 to 7.00, add a nickel catalyst with a mass percentage of 0.01% to 0.02%, and control the reaction temperature at 130°C to 140°C,
- the steam pressure is above 0.4MPa
- the hydrogenation reaction pressure is controlled at 7.0MPa ⁇ 9.5MPa
- the hydrogenation reaction time is 60 minutes ⁇ 120 minutes.
- the raffinate D is concentrated to a refractive index of 75% ⁇ 85%, the pH is adjusted to 7.00 ⁇ 9.00, and a compound amino compound with a mass percentage of 6% ⁇ 12% (urea and ammonium carbonate is compounded, and the compounding ratio is 1:2 ⁇ 2:1) as a catalyst, control the browning reaction temperature 120 °C ⁇ 140 °C, browning reaction time 60 minutes ⁇ 240 minutes.
- the treatment of the refining hydrogenation component 6 described in step 3 refers to evaporating and concentrating the extract C into the crystallization tank 62, dissolving the crystallized xylose in water, and sending the xylose solution into the hydrogenation reactor 65 for hydrogenation reaction to obtain Xylitol solution, after the reaction is finished, sedimentation is carried out to remove the catalyst, and the sedimented supernatant is desalted by the second ion exchange device 66, and the desalted feed liquid is vacuum evaporated and concentrated by the vacuum crystallization assembly 67, and then vacuum boiled crystallization to precipitate xylitol E crystals, and finally centrifuge and dry to obtain xylitol E crystals.
- the treatment of the browning reaction component 7 in step 3 means that the obtained raffinate D is concentrated, browned and filtered to obtain a caramel pigment F liquid, and the red index of the caramel pigment F liquid is >7, 610nm Absorbance>0.07.
- Step 1 the xylose mother liquor A raw material with refraction 60wt% in the raw material tank 1 is transported to the filter 2 through the pipeline to perform a filtration and impurity removal treatment, and then sent to the nanofiltration membrane device 3 for decolorization treatment, the nanofiltration membrane device 3
- the operating temperature is 45°C and the operating pressure is 30bar.
- Step 2 sending the nanofiltration-treated material into the first ion exchange device 4 for desalination treatment, and controlling the conductivity to be ⁇ 50 us/cm.
- Step 3 send the ion-exchanging liquid after the treatment of the first ion exchange device 4 into the chromatographic separation device 5 for chromatographic separation treatment, after the chromatographic separation treatment, the extract C with high xylose content is sent to refinement, crystallization, and hydrogenation to obtain purity >99% Xylitol E.
- the raffinate D with low xylose content obtained after chromatographic separation is sent to browning reaction.
- the yield of decolorization and desalination process reaches 95%, and the yield of final crystallized xylose is 48%.
- Step 4 Evaporate and concentrate the obtained chromatographically separated extract C into the crystallization tank 62, dissolve the crystallized xylose in water, control the refraction at 60%, pH 5.00, and add a nickel catalyst with a mass percentage of 0.015% to control the reaction
- the temperature is 135°C
- the steam pressure is above 0.4MPa
- the hydrogenation reaction is carried out in the hydrogenation reactor 65.
- the pressure of the hydrogenation reaction is controlled at 8MPa, and the reaction time is 90 minutes.
- the catalyst is removed by settling, and the hydrogenated liquid is desalted by the second ion exchange device 66.
- the desalted feed liquid is processed by the vacuum crystallization unit 67 to precipitate xylitol E crystals, and finally centrifuged and dried to obtain the purity It is 99% xylitol E crystal.
- Step 5 Concentrate the obtained raffinate D to a refractive index of 80%, adjust the pH to 9.00, and add a compounded amino compound (urea and ammonium carbonate compounded with a compounding ratio of 1:2) with a mass percentage of 9% as a catalyst , control the browning reaction temperature at 120°C, and obtain the caramel pigment F liquid after the browning reaction time is 240 minutes.
- the color rate of the caramel pigment F liquid is 20000EBC, the red index is 7.1, and the absorbance at 610nm is 0.078.
- the utilization rate of reducing sugar in raffinate D is up to 70% (calculated on dry basis).
- Utilization rate consumption of reducing sugar in browning reaction ⁇ total amount of reducing sugar in raffinate mother liquor.
- the price of the caramel pigment prepared from the raffinate reaches 3,000 yuan/ton, and the value of the raffinate has been significantly improved.
- the xylose mother liquor is directly used to prepare xylitol, and the specific steps include: the xylose mother liquor raw material with a refraction of 60wt% in the raw material tank 1 is transported to the filter 2 through a pipeline to perform a filtration and impurity removal treatment, and then add 0.5% Decolorization is carried out in the activated carbon decolorization tank. After decolorization, plate and frame pressure filtration is carried out, and the filtrate is sent to the first ion exchange module 4 for desalination treatment.
- the yield of crystalline xylose is 45% (on a dry basis), which is xylitol after hydrogenation.
- a large amount of raffinate was not effectively utilized, and was finally treated as mixed syrup.
- the price of mixed syrup was 1,500 yuan/ton, and the value of raffinate did not increase.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
Claims (10)
- 一种利用木糖母液联产木糖醇和焦糖色素的系统,其特征在于,包括通过管路依次连通的原料罐、过滤器、纳滤膜装置、第一离子交换装置、色谱分离装置、精制氢化组件和褐变反应组件,原料罐用于储存木糖母液,过滤器用于过滤木糖母液中的杂质,纳滤膜装置用于将流经的木糖母液脱色处理后分别得到截留液和透过液,截留液为色素液,透过液为脱色液,第一离子交换装置用于将流经的脱色液脱盐,得到离交液,色谱分离装置用于将流经的离交液分离出木糖组分含量高的提取液和木糖组分含量低的提余液,精制氢化组件用于将提取液精制氢化处理以制备晶体木糖醇,褐变反应组件用于提余液进行褐变反应处理以制备焦糖色素。
- 如权利要求1所述的利用木糖母液联产木糖醇和焦糖色素的系统,其特征在于,所述精制氢化组件包括蒸发浓缩装置、结晶罐、木糖晶体储罐、溶解罐、氢化反应釜、第二离子交换装置和真空结晶组件,蒸发浓缩装置用于将提取液进一步浓缩,结晶罐用于结晶木糖,木糖晶体储罐用于储存晶体木糖,溶解罐用于将晶体木糖溶解为液体并储存,氢化反应釜用于木糖液的加氢还原反应生成木糖醇,第二离子交换装置用于脱除木糖醇液体中的阴阳离子,真空结晶组件用于将离子交换装置处理后的料液进行结晶处理以得到晶体木糖醇。
- 如权利要求1所述的利用木糖母液联产木糖醇和焦糖色素的系统,其特征在于,所述褐变反应组件包括浓缩罐、褐变反应釜和褐变过滤器,浓缩罐用于将提余液进行浓缩至一定浓度并存储,褐变反应釜用于提余液褐变反应制得焦糖色素,褐变过滤器用于过滤焦糖色素中的固体杂质。
- 一种利用木糖母液联产木糖醇和焦糖色素的方法,其特征在于,其使用了如权利要求1至3中任意一项所述的利用木糖母液联产木糖醇和焦糖色素的系统,所述方法包括如下步骤:步骤一、将原料罐中的木糖母液原料通过管路输送到过滤器进行一次过滤除杂处理,然后再将其送入纳滤膜装置中进行脱色处理;步骤二、将纳滤处理后的料液送入第一离子交换装置中进行脱盐处理,得到离交液;步骤三、将离交液送入色谱分离装置中进行色谱分离处理,色谱分离处理后得到的木糖组分含量高的提取液和木糖组分含量低的提余液,提取液送去精制氢化组件处理后得到纯度>99%的木糖醇晶体,提余液通过褐变反应组件处理后制备焦糖色素。
- 如权利要求4所述的利用木糖母液联产木糖醇和焦糖色素的方法,其特征在于,在步骤一中,木糖母液的干物质量百分比浓度即糖浓度为50~60wt%,其中,在干物中,葡萄糖含12~18wt%,木糖含40~50%wt,阿拉伯糖含17~23wt%,甘露糖含10~22wt%,半乳糖含0~6wt%。
- 如权利要求4所述的利用木糖母液联产木糖醇和焦糖色素的系统,其特征在于,在步骤一中,在纳滤脱色处理时,纳滤膜装置的运行温度40~48℃,运行压力25bar~35bar,收率可达90%~98%。
- 如权利要求4所述的利用木糖母液联产木糖醇和焦糖色素的方法,其特征在于,在步骤二中,在离子交换脱盐处理时,控制电导率<50us/cm,收率可达90%~98%。
- 如权利要求4所述的利用木糖母液联产木糖醇和焦糖色素的方法,其特征在于,在步骤三中,用水溶解木糖,折光控制在50%~60%,pH为5.00~7.00,添加质量百分比为0.01%~0.02%的镍催化剂,控制反应温度130℃~140℃,蒸汽压力0.4MPa以上,氢化反应的压力控制在7.0MPa~9.5MPa,氢化反应时间60分钟~120分钟;提余液浓缩至折光75%~85%,调节pH为7.00~9.00,添加质量百分比为6%~12%的复配氨基化合物作催化剂,控制褐变反应温度120℃~140℃,褐变反应时间60分钟~240分钟。
- 如权利要求4所述的利用木糖母液联产木糖醇和焦糖色素的方法,其特征在于,步骤三中所述精制氢化组件处理是指将提取液蒸发浓缩后进入结晶罐,结晶出的木糖再用水溶解,木糖溶解液送入氢化反应釜中进行加氢反应以得到木糖醇溶液,反应结束后进行沉降去除催化剂,将沉降的上清液采用第二离子交换装置进行脱盐处理,脱盐后的料液经过真空结晶组件进行真空蒸发浓缩后再进行真空煮糖结晶,使木糖醇晶体析出,最后经离心、烘干得到木糖醇晶体。
- 如权利要求4所述的利用木糖母液联产木糖醇和焦糖色素的方法,其特征在于,步骤三中所述褐变反应组件处理是指将得到的提余液经过浓缩、褐变反应和过滤处理后得到焦糖色素液体,所述焦糖色素液体红色指数>7,610nm处吸光度>0.07。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023549938A JP2024507212A (ja) | 2021-12-29 | 2022-10-13 | キシロース母液を用いたキシリトール・カラメル色素併産システム、及び方法 |
EP22913659.3A EP4311823A1 (en) | 2021-12-29 | 2022-10-13 | System and method for co-producing xylitol and caramel color by using xylose mother liquor |
US18/348,509 US12006281B2 (en) | 2021-12-29 | 2023-07-07 | Systems and methods for co-producing xylitol and caramel pigment by utilizing xylose mother liquid |
US18/661,567 US20240300877A1 (en) | 2021-12-29 | 2024-05-10 | Methods for co-producing xylitol and caramel pigment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111644482.0 | 2021-12-29 | ||
CN202111644482.0A CN114213215B (zh) | 2021-12-29 | 2021-12-29 | 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/348,509 Continuation-In-Part US12006281B2 (en) | 2021-12-29 | 2023-07-07 | Systems and methods for co-producing xylitol and caramel pigment by utilizing xylose mother liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023124395A1 true WO2023124395A1 (zh) | 2023-07-06 |
Family
ID=80706861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/125220 WO2023124395A1 (zh) | 2021-12-29 | 2022-10-13 | 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US12006281B2 (zh) |
EP (1) | EP4311823A1 (zh) |
JP (1) | JP2024507212A (zh) |
CN (1) | CN114213215B (zh) |
WO (1) | WO2023124395A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114213215B (zh) | 2021-12-29 | 2023-11-10 | 浙江华康药业股份有限公司 | 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法 |
CN116083657A (zh) * | 2022-12-05 | 2023-05-09 | 浙江华康药业股份有限公司 | 利用玉米芯联产优级木糖和高端焦糖色素的系统及方法 |
CN116003483A (zh) * | 2022-12-11 | 2023-04-25 | 浙江华康药业股份有限公司 | 一种利用木糖糖膏联产木糖晶体和焦糖色素的系统及方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101823939A (zh) * | 2009-09-29 | 2010-09-08 | 山东福田药业有限公司 | 一种木糖醇制备新工艺 |
CN101857523A (zh) * | 2010-06-07 | 2010-10-13 | 禹城绿健生物技术有限公司 | 一种利用木糖母液同时生产木糖醇和阿拉伯糖醇的方法 |
CN102241707A (zh) * | 2011-05-09 | 2011-11-16 | 浙江华康药业股份有限公司 | 一种提取l-阿拉伯糖与制备木糖醇的方法 |
CN103409315A (zh) * | 2013-07-15 | 2013-11-27 | 重庆大学 | 木糖醇结晶母液制备葡萄糖酸的反应分离耦合装置和工艺 |
CN106591384A (zh) * | 2016-12-21 | 2017-04-26 | 浙江华康药业股份有限公司 | 一种木糖母液的综合处理方法 |
CN107893132A (zh) * | 2017-12-06 | 2018-04-10 | 江苏久吾高科技股份有限公司 | 一种木糖的生产方法及装置 |
CN109503676A (zh) | 2018-11-27 | 2019-03-22 | 浙江华康药业股份有限公司 | 一种从木糖母液中制备木糖醇和混合糖浆的方法 |
CN113214531A (zh) * | 2021-05-28 | 2021-08-06 | 江南大学 | 一种疏/亲水型互贯网络树脂及其制备和应用 |
CN114213215A (zh) * | 2021-12-29 | 2022-03-22 | 浙江华康药业股份有限公司 | 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法 |
-
2021
- 2021-12-29 CN CN202111644482.0A patent/CN114213215B/zh active Active
-
2022
- 2022-10-13 EP EP22913659.3A patent/EP4311823A1/en active Pending
- 2022-10-13 JP JP2023549938A patent/JP2024507212A/ja active Pending
- 2022-10-13 WO PCT/CN2022/125220 patent/WO2023124395A1/zh active Application Filing
-
2023
- 2023-07-07 US US18/348,509 patent/US12006281B2/en active Active
-
2024
- 2024-05-10 US US18/661,567 patent/US20240300877A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101823939A (zh) * | 2009-09-29 | 2010-09-08 | 山东福田药业有限公司 | 一种木糖醇制备新工艺 |
CN101857523A (zh) * | 2010-06-07 | 2010-10-13 | 禹城绿健生物技术有限公司 | 一种利用木糖母液同时生产木糖醇和阿拉伯糖醇的方法 |
CN102241707A (zh) * | 2011-05-09 | 2011-11-16 | 浙江华康药业股份有限公司 | 一种提取l-阿拉伯糖与制备木糖醇的方法 |
CN103409315A (zh) * | 2013-07-15 | 2013-11-27 | 重庆大学 | 木糖醇结晶母液制备葡萄糖酸的反应分离耦合装置和工艺 |
CN106591384A (zh) * | 2016-12-21 | 2017-04-26 | 浙江华康药业股份有限公司 | 一种木糖母液的综合处理方法 |
CN107893132A (zh) * | 2017-12-06 | 2018-04-10 | 江苏久吾高科技股份有限公司 | 一种木糖的生产方法及装置 |
CN109503676A (zh) | 2018-11-27 | 2019-03-22 | 浙江华康药业股份有限公司 | 一种从木糖母液中制备木糖醇和混合糖浆的方法 |
CN113214531A (zh) * | 2021-05-28 | 2021-08-06 | 江南大学 | 一种疏/亲水型互贯网络树脂及其制备和应用 |
CN114213215A (zh) * | 2021-12-29 | 2022-03-22 | 浙江华康药业股份有限公司 | 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4311823A1 (en) | 2024-01-31 |
US20230348350A1 (en) | 2023-11-02 |
JP2024507212A (ja) | 2024-02-16 |
CN114213215A (zh) | 2022-03-22 |
CN114213215B (zh) | 2023-11-10 |
US20240300877A1 (en) | 2024-09-12 |
US12006281B2 (en) | 2024-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023124395A1 (zh) | 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法 | |
CN109503676B (zh) | 一种从木糖母液中制备木糖醇和混合糖浆的方法 | |
CN102976923B (zh) | 从乳酸发酵液中提取乳酸的工艺 | |
CN102912043B (zh) | 一种纯化果糖生产方法 | |
JP2016520093A (ja) | 前処理ありのフェルラ酸の最適化抽出方法 | |
CN114436816B (zh) | 一种离子交换技术高效提取莽草酸的方法 | |
CN107383135B (zh) | 从发酵液中分离纯化β-胸苷的方法 | |
CN113248551A (zh) | 一种利用木糖母液色谱提取液制备精制木糖的系统及方法 | |
JP7454103B2 (ja) | コーンスターチを用いたエリスリトール・液状ソルビトール同時生産システム及び方法 | |
CN110835656A (zh) | 一种基于多糖纤维炭除胶技术的沙琪玛糖浆纯化工艺 | |
WO2024119730A1 (zh) | 利用玉米芯联产优级木糖和高端焦糖色素的系统及方法 | |
CN112679560A (zh) | 一种春雷霉素的结晶工艺 | |
CN218860763U (zh) | 一种利用玉米芯联产优级木糖和高端焦糖色素的系统 | |
JP2024507514A (ja) | キシリトール発酵液の精製システム及びその方法 | |
CN113135965A (zh) | 一种利用木糖母液生产结晶木糖的系统及方法 | |
CN216614473U (zh) | 一种利用木糖母液联产木糖醇和焦糖色素的系统 | |
CN113754704A (zh) | 一种利用离子树脂高效制备葡萄糖粉的制备方法 | |
CN111635964A (zh) | 利用粘胶纤维生产过程中的二次碱液生产木糖的方法 | |
CN215049793U (zh) | 一种利用木糖母液生产结晶木糖的系统 | |
CN113045610A (zh) | 一种从n-乙酰氨基葡萄糖发酵液中提取氨基葡萄糖的方法 | |
CN116496222B (zh) | 一种从发酵液中分离纯化四氢嘧啶的方法 | |
CN114105849B (zh) | 一种l-羟基脯氨酸的提取方法 | |
CN113979839B (zh) | 一种提升木糖醇母液利用率的方法 | |
CN221479921U (zh) | 一种葡萄糖醛酸的生产装置 | |
EP3356563B1 (en) | Methods of enriching arabinose fractions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22913659 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023549938 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022913659 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022913659 Country of ref document: EP Effective date: 20230915 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |