CN1157584A - 含危险金属土壤的净化方法 - Google Patents
含危险金属土壤的净化方法 Download PDFInfo
- Publication number
- CN1157584A CN1157584A CN95195008A CN95195008A CN1157584A CN 1157584 A CN1157584 A CN 1157584A CN 95195008 A CN95195008 A CN 95195008A CN 95195008 A CN95195008 A CN 95195008A CN 1157584 A CN1157584 A CN 1157584A
- Authority
- CN
- China
- Prior art keywords
- soil
- ammonia
- metal
- liquid
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/02—Extraction using liquids, e.g. washing, leaching, flotation
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B17/00—Obtaining cadmium
- C22B17/04—Obtaining cadmium by wet processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B43/00—Obtaining mercury
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B60/00—Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
- C22B60/02—Obtaining thorium, uranium, or other actinides
- C22B60/0204—Obtaining thorium, uranium, or other actinides obtaining uranium
- C22B60/0217—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
- C22B60/0221—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
- C22B60/0247—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using basic solutions or liquors
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/008—Wet processes by an alkaline or ammoniacal leaching
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/001—Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
- G21F9/002—Decontamination of the surface of objects with chemical or electrochemical processes
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/122—Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Food Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Soil Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Processing Of Solid Wastes (AREA)
- Fire-Extinguishing Compositions (AREA)
- Chemical And Physical Treatments For Wood And The Like (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Treatment Of Sludge (AREA)
- Catching Or Destruction (AREA)
Abstract
包括被核废料和/或危险的金属或非金属离子污染的砂和粘土在内的土壤,通过无水液氨单独处理或无水液氨和溶剂化电子共同处理,可实现其净化。该方法包括通过与氨溶液混合提供含氨性液体的配位复合物的产物而除去危险的金属或非金属离子。该方法也包括浓缩污染物如钚、铀和钍于土壤和粘土的细粒中生成基本上不含污染物的残存土壤而使之再生。因为氨可被回收和再循环,因此经济上优于水系统处理法。通过将核废料和非核废料浓缩于土壤细粒中,用于贮存未处理土壤通常所需的空间和处理费用均能显著地减少。
Description
技术领域
本发明涉及土壤的净化方法,更具体地讲,涉及通过使残留土壤物再生的方法,实现含核废料土壤,危险的非放射性金属离子或非金属离子污染的土壤以及混合废物污染的土壤的净化。
发明的背景
由于包括核装置爆炸在内的军事演习,在美国和其它国家,环境、尤其是试验区的大面积土壤被核废料污料。在一些情形下,如核装置的爆炸未能达到放射性组分所要求的临界质量,则导致相当大量的富集铀和钚散布于大面积试验基地。除了核试验,放射性物质对土壤的污染还通过泄漏和释放到环境中,发生在核武器制造地如华盛顿的Hanford、科罗拉多的Rocky Flats、乔治亚的Savanman River、田纳西的Oak Ridge和其它地方。
由于大量的土壤需要处理和/或贮存,成功地净化这些场所的努力证明这是非常困难的且花费极大。如果污染的土壤被挖掘并转移到其它地方贮藏起来,则净化意味着一个漫长且昂贵的过程。废弃的盐矿和山上的岩洞曾被建议作为核废料的贮藏室,但后来由于技术的和/或政治的原因被否决了。因为贮存核废料的空间有限,所以污染场所再生的进度是缓慢的。
在缓解核废料贮存危机的尝试中,曾建议使用减少需要贮存的污染土壤整体量的体系,在该体系中,放射性组分被浓缩于固体部分。例如,一个体系使用了水溶液清洗过程,该过程需要使用固体清洗药品、多个分离步骤、水处理等等。尽管将放射性组分浓缩于土壤的淤泥和粘土部分是非常有效的,但每吨土壤处理的资本和操作费用从经济学角度上看是没有吸引力的。因此浓缩核废料的方法大多未被广泛接受。
与核废料类似,金属离子尤其是存在于土壤或地下水的金属离子对环境的污染,给人、动物和植物生命造成严重威胁。金属如铅、铬、镉和砷已经大量地被释放到环境中,为了保证民众的健康,必须建立大规模的补救措施。这些金属代表了人们较难对付的环境污染,因为这些金属生成盐或氧化物,它们反过来又解离为离子化的物质,从而使之更易进入食物和生物链。
相应地,需要一个新颖的、成本有效的方法来净化含核废料如产生在核武器工厂、核试验场所的核废料的土壤,并要求处理相当体积的被放射性物质污染的土壤。该方法应能减少空间,也就是要求通过将未处理的土壤浓缩于土壤的一小部分中来贮存,并同时也允许这些场所的再生。同样,需要有一个成本有效的方法来净化含有危险的非放射性金属和非金属如汞、砷、硒、铬、铅等离子以及含有这些危险离子和核废料如锕系放射性核素和/或有机合物如PCB类的混合废物的土壤。
发明的概述
因此本发明的主要目的是提供改进的更经济的方法将放射性和非放射性组分从污染的土壤中分离出来,其中处理过的土壤基本上不含有潜在毒性的组分即金属和非金属组分,以使土壤再生。术语“基本上不含”是指根据本发明处理的土壤应:(i)差不多除去了所有的不需要的放射性同位素(放射性核素),或(ii)含有低数量级的残留放射性同位素,可使处理的土壤再生,或(iii)含有低数量级的放射性同位素,该放射性同位素可用惰性材料充分稀释以降低其活性至可接受的水平。
在说明书和权利要求书中所引用的如“核废料”和“放射性废料”等术语也指被具有不稳定核的元素的同位素污染的土壤。该同位素通常以α粒子,β粒子和γ射线的形式蜕变和辐射能量。这些废料主要包括核裂变的产物或副产物,或核装置中来反应的产物。这种放射性核素的代表性的例子包括Cs137;Co60;K40;Pu236;U235;U238;Ru103;Te;Sr90;Rb;Y;Re;Rh;Pd;Tc;Np和Am。
本发明的方法提供了从土壤部分、尤其是从体积小、表面积大的颗粒如土壤细粒和粘土的淤泥部分回收核废料,以便以后的处置或进一步处理。例如,通过将核废料浓缩于土壤细粒和粘土淤泥中,每吨被处理的土壤的贮存空间会显著减小,可能比未处理的土壤所需贮存空间减少了百分之九十。
本发明的方法包括步骤:
(a)将液氨或氨性液体和被核废料污染的土壤在密闭容器中混合,形成含氨-核废料的土壤分散体系或淤浆;
(b)使土壤颗粒从步骤(a)的淤浆或分散体系中选择性地沉淀,形成土壤颗粒的下层固体相,同时也形成土壤细粒分散于液氨之中的上层液-固相;
(c)将上层液-固相与土壤颗粒的下层固体相分开,该上层液-固相的细粒中含有绝大部分的放射性核素污染物,也就是说,下层固体相基本上不含核废料,使土壤颗粒再生。
(d)将氨性液体与含核废料的土壤细粒分开,以进行细粒的处置或进一步处理。
术语“处置”包括含核废料的土壤细粒的贮存。术语“进一步处理”包括改变核废料潜在毒性的任何过程,所述过程将放射性核素材料转变为毒性和对环境的影响减小了的物质,或转变为可作为有用的副产物回收的材料。可以理解,浓缩的核废料的处置和进一步处理都不构成本发明的组成部分。这些方法是本领域的技术人员已知的。
Mazur等人在美国专利第5,110,364中公开了氨用于从土壤中解吸有机化合物尤其是象PCB类的卤代有机化合物的预处理,随后通过化合物的化学破坏,即通过溶剂化电子的化学还原机理进行去卤代作用。然而,Mazur等人没有教导或提议使用氨作为将土壤分割成部分的手段,即将粒大、表面积小的颗粒从含有粒小、表面积大的土壤细粒的低密度固相中分离出来。相反,Mazur等人的方法提供了在卤代碳化物污染物的还原中处理“整体”土壤,而没有通过相分离和其它分离步骤将土壤颗粒或土壤部分和氨/土壤淤浆分离开。
偶然地发现放射性核素表现出对颗粒较小的、表面积较大的土壤粘土和沙子的细粒和淤泥具有优先亲合力。因此,通过分离细粒和淤泥颗粒、尤其是相对于从氨-固分散体系中沉淀出来的颗粒来说具有较大表面积的较小颗粒,将核废料有选择地浓缩于天然固体载体材料的最小体积,从而有效地减少需要贮存或进一步处理的材料的吨体积。相应地,本发明的主要目的是提供一种改进的、更经济的方法来将相当部分的核废料浓缩于还原的土壤部分以便更有效地进行包括大量土壤在内的土壤净化,从而使得先前污染的土壤的大量再生。
本发明的另一目的是选择性地包括回收和再循环步骤以重新使用从前述方法步骤(d)得到的氨,该回收和再循环通过本领域已知的方法完成。
对本发明来说,“液氨”和“氨性液体”是指包括含氮溶剂如液氨。还包括无水液氨和含少量水的氨溶液。然而,当被用于溶解金属反应以形成溶剂化电子时(将在下面作较详细的讨论),氨性液体优选为无水的。除了液氨以外,可使用的其它含氮溶剂和共溶剂,所述溶剂在溶剂化电子存在下是惰性的。代表性的种类包括伯胺、仲胺、叔胺和这些胺的混合物。这些胺的例子包括烷基胺,如甲胺、乙胺、二甲胺、三乙胺、正-丙胺、异丙胺、四氢呋喃(THF)和其它含氮溶剂和共溶剂,所述溶剂在电子存在下是惰性的。
本发明的另一目的是提供另一种实施方案,通过下列步骤净化含核废料的土壤:
(a)将液氨或氨性液体和核废料污染的土壤在密闭容器中混合,形成氨-含核废料土壤的分散体系或淤浆;
(b)通过与活泼金属接触,用溶剂化电子处理步骤(a)的分散体系或淤浆;
(c)使土壤颗粒从步骤(b)的分散体系或淤浆中选择性地沉淀出来,形成土壤颗粒的下层相,同时也形成包含土壤细粒(悬浮于液氨)的上层液-固相;
(d)将上层液-固相与下层土壤颗粒相分开,下层土壤颗粒相基本上不含核废料,和
(e)将氨与土壤细粒分开,以进行细粒的处置或进一步处理。
发明人观察到氨在与土壤混合时具有形成非常细小的淤浆的独特能力,同时也观察到,当由溶解金属和氨反应生成的溶剂化电子存在时,通过某些不十分清楚的机理,土壤的分散度表现出进一步的变化。也就是说,通过使氨化的土壤分散体系和碱金属或碱土金属接触,在混合物中生成了溶剂化电子。在某些情形,该溶剂化电子对较小的土壤细粒分离最佳。在颗粒的横截面大于所要求的一些情况下,在液氨中的溶剂化电子对含有核废料的较小细粒表现出更好的划分和分离,使这些污染的较小细粒与淤浆的其它颗粒分开。
如同本发明的第一实施方案,前述本发明的第二实施方案考虑到回收和再循环步骤(e)得到的液氨以重新使用之。同样地,步骤(d)沉淀的残留固体土壤颗粒“基本上不含”放射性同位素,可允许大量土壤再生。
根据本发明,人们也发现:前述使用氨性溶液净化的诸方法,在净化含危险物但非放射性金属的土壤时也是适用的,其步骤如下:
(a)将氨性液体和被至少一种危险的金属或非金属离子污染的土壤在密闭的容器中混合,形成分散体系或淤浆。
(b)将含氨性液体的产物与步骤(a)的分散体系或淤浆分开,生成基本上不含危险金属或非金属离子的土壤残渣,从而使之再生,和
(c)将氨性液体与步骤(b)的含氨性液体的产物分开,生成含危险金属或非金属的残渣,用于处置或进一步处理。
尽管不希望考虑从土壤中分离危险金属和非金属离子受任何特殊的作用机制的限制,人们还是观察到靶材料经常溶于氨性液体。基于这种观点,土壤在用氨清洗的过程中可形成配位化合物,亦可能形成金属-氨配体复合物。这些配位化合物和配体复合物的代表性的金属包括砷、锑、硒、镉、钴、汞、铬、铅及其混合物。
配位化合物也可通过将其它配体配位剂引入含危险金属的氨-土壤淤浆中制备。例如,可通过形成氨可溶的金属氰化物的配体复合物而将这种金属除去,这种配体复合物可通过向淤浆中添加氰化物离子源如氰化钠、氰化铵等等而形成。氨性液体的除去导致土壤部分危险金属的清除。
作为本发明的进一步的实施方案,含有危险非放射性金属的土壤可通过下列步骤净化:
(a)将氨性液体和被至少一种危险金属或非金属离子污染的土壤在密闭的容器中混合,形成分散体系或淤浆;
(b)使土壤颗粒从步骤(a)的分散体系或淤浆中选择性地沉淀出来,形成包含土壤颗粒沉淀的下层相,同时形成包含分散于所述氨性液体中的土壤细粒的上层液-固相;
(c)将上层液-固相与下层相分开,下层相的土壤颗粒沉淀基本上不含危险的金属或非金属离子,从而使所述的土壤颗粒再生,和
(d)将上层液-固相的氨性液体分离出来,生成含有危险的金属或非金属的残渣,以进行处置或进一步处理。
本发明的另一方面是提供处理被混合废物污染的土壤的方法,其中该废料,例如,可能包含危险的非放射性金属或非金属离子和核废料。核废料一般由放射性核素或放射性同位素金属组成。这些放射性物质一般包括锕系金属如铀、钚、钍及其混合物。
作为本发明的进一步的实施方案,被危险的非放射性金属污染的土壤可用氨性液体和溶剂化电子净化,其步骤是:
(a)将氨性液体和被至少一种危险的金属或非金属离子污染的土壤在密闭的容器中混合,形成分散体系或淤浆;
(b)通过与活泼金属接触用溶剂化电子处理步骤(a)的分散体系或淤浆,所述活泼金属选自碱金属、碱土金属和铝;
(c)将含有氨性液体的产物与步骤(b)的分散体系或淤浆分开,形成基本上不含危险金属或非金属离子的土壤残渣,从而使土壤再生;
(d)将氨性液体与步骤(c)的含氨性液体的产物分开,生成含危险的金属或非金属的残渣,以便处置或进一步处理。
步骤(b)中的方法可通过使至少部分的氨性液体循环经过含活泼金属的旁路而完成。使溶剂化电子的溶液再循环回到密闭的容器中,以便处理被污染的土壤。
本发明的这个方面也考虑到处理被混合废物(例如,由危险的非放射性金属或非金属离子和核废料)污染的土壤。典型地,核废料包含锕系放射性核素或放射性同位素金属,例如铀、钚、钍及其混合物。
本发明也包括含危险的非放射性金属或非金属离子和有机化合物(具体地讲为卤代有机化合物如PCB类、双氧素类(dioxins)和农药)的混合废物。
附图的简要说明
为了进一步理解本发明及其结构特征,应参照附图,其中:
图1通过过滤净化含危险金属的土壤的系统示意图。
图2选择性地使用溶剂化电子,分离污染土壤中的放射性核素并将之浓缩于减少的土壤部分的系统示意图。
优选实施方案的描述
本发明涉及将不需要的核废料和危险的金属,尤其是放射性核素和具有潜在毒性的非放射性金属和非金属的解离形式如砷、锑、和硒,在某种情形下通过浓缩于土壤或粘土的很小的颗粒或细粒中,使之从土壤中分离出来的改进方法。例如,这些含有被浓缩的放射性核素和非放射性金属离子的细粒处于允许更有效的处置如贮存或进一步处理的状态,以改变这些危险的物质使之成为毒性小且对环境更有益的物质。
该方法是在观察到液氨具有破碎土壤成非常小的颗粒的独特能力的基础上得出的。还发现这些极细颗粒的悬浮液可通过与氨混合的方法制得。将放射性核素污染的土壤和危险的非放射性金属和非金属的离子污染的土壤或上述两者污染的土壤混合,优选与无水液氨混合以形成微细分散的混悬液或淤浆。相对于水来说氨的密度较低,因此十分小的土壤颗粒仍然悬浮在液体中,而悬浮在水中的颗粒很容易从分散体系中沉淀出来,这是由于氨的密度和粘度较低所致。含有被沉淀的较大颗粒的大部分土壤基本上不含放射性核素或危险的非放射性金属或非金属离子污染物,因此允许大量被处理过的土壤再生。
例如,人们观察到,即使在处理后的氨中无颗粒可见,在氨溶液尤其是无水液氨中洗涤的土壤导致某些金属离子浓度的显著减少。相应地,发现液氨在物理上或化学上对净化均有效:液氨破坏结合紧密的粘土,使之形成细粒的淤浆,通过运送机制以造成金属污染物的最大限度的提取和暴露,同时以复合或螯合的反应形式成为结合污染金属的配体。
氨性液体优选是无水液氨,当完全使用氨时,也可使用至少50%重量比的氨水溶液。
被危险性的非放射性金属和非金属如砷和铬(VI)离子污染的土壤或被混合废物如放射性同位素金属铀、钚和钍以及危险的非放射性金属离子污染的土壤也能用无水液氨有效地处理形成分散体系或淤浆,通过使氨-土壤淤浆与活泼金属尤其是正电性较强的金属如钠、钾、钡和钙接触,用形成的溶剂化电子处理所述分散体系或淤浆。当金属如钠溶解于液氨时,丢失价电子而成为阳离子,如下列反应式所示:
然后氨分子根据下面反应式可逆地溶剂化这些离子和电子
“氨化的电子”使该溶液显示强的还原性。基于这种考虑,本发明的方法适合于处理被危险性的铬(VI)污染的土壤,其中溶剂化的电子将危险性较高的氧化态的离子还原为低危险性的铬(III)。
本文描述的方法特别适合于从土壤中选择性地除去铅,尤其是当用溶剂化电子处理时。
溶剂化电子在净化混合废物污染的土壤中也是有用的,所述的混合废物例如为危险性的非放射性金属离子或非金属以及多卤代有机化合物,如多氯化联苯(PCBs)以及双氧素类(2,3,7,8-四氯-二苯并-对-dioxin),和氯化的双氧素类家族的其它几个成员和各种农药。术语“农药”表示用于毁灭或抑制植物和动物的害虫的任何有机的或无机的物质。因此农药包括杀虫剂、除草剂、杀鼠剂、刹螨剂等。相应地,本发明的这个方面在处理混合废物污染的土壤时特别有效,其方法是通过氨的作用形成分散体系来分离和络合危险性金属离子,从而同时使卤代化合物还原为毒性较小、对环境影响较小的化合物。美国专利5,110,364公开了破坏卤代有机化合物的方法。
根据本发明用氨性溶液净化含有危险性的非放射性金属或非金属离子的土壤的一般方法如图1所示。首先将土壤加入图1的混合器中。无水液氨从贮氨罐中循环进入混合器并用来液化土壤,结果形成微细的悬浮在氨中的土壤淤浆。通过泵将贮氨罐和混合器之间的氨(A)循环的方法来搅拌悬浮液。当然也可使用其它的混合方法。淤浆被充分混合后,通过倾倒,压滤(B)或其已知的方法使液氨从土壤中分离出来。贮氨罐中的氨含有金属离子,通过蒸发使氨从出口逸出后即可回收金属离子。逸出的氨可通过常规的氨收集装置收集起来以重新利用。
本发明的方法也可在主要是砂和实际上不含粘土和有机组分的土壤上进行。在这个实施方案中,将具有离子交换性质的粘土如atapulgite,蒙脱石,高岭土等加入到氨性反应混合器中,其中危险性的离子被粘土吸附,将该粘土-金属分散体系从砂中倾出。
作为本发明的进一步的实施方案,氨性溶液也能使用已知的配位/螯合剂如EDTA、NTA(次氮基三乙酸)、8-羟基喹啉、氰化物离子等,这些试剂能提高金属离子在溶剂中的溶解度,以除去土壤淤浆中危险性金属。
下面以具体的实施说明本发明,然而可以理解,这些例子仅仅是说明性的,而不是对条件和范围的完全限定。
实施例I
本发明的方法可以通过如图1所示的体系实施。用一密闭反应器10作为位于容器底部的核废料污染的土壤14的混合容器。术语“土壤”具有其通常所理解的含义,且包括一种或多种不同性质的组分如粘土、石块、碎石粒或沙子、有机物和不同量的水等等。很明显,土壤组合物可依据其来源和产地有很大范围的不同。例如,来自沙漠或其它干旱地区的土壤主要为带有少量有机物或粘土组分的含沙组合物。发现来自俄亥俄州的称为俄亥俄土(Ohio Loam)的代表性的土壤具有35%的砂、32%的淤泥、33%的粘土和4.1%的有机物,其pH为7.7。相反,来自田纳西州Dak Ridge的土壤只包含1%的砂,26%的淤泥,73%的粘土,不含有机物,其pH为5.2。总之,本发明用的术语“土壤”具有宽的组成范围,包括不同范围的粘土、碎石/沙粒、有机物、淤泥细粒、水分等等。包括主要由粘土或沙子构成的土壤。
无水液氨16或含少量水的液氨溶液由氨贮存器18注入密闭反应器10,一经注满,液氨通过位于输出管22的循环泵20从反应器10低于液面排出。液氨流由三通分流阀24-25控制,该分流阀通向旁路26或含活泼金属床30的溶剂化器28,所述活泼金属例如为碱金属、碱土金属或其混合物。适合的代表性的金属包括钠、钾、锂、钙和镁。铝也是适合的活泼金属。通过使氨16循环经过反应器28的金属床,在回路(in-line)生成溶剂化电子。这避免了直接向容器10插入金属棒或其它金属源。相应地,本发明的方法考虑选择性地用氨和在氨中溶剂化的电子增强土壤和粘土中放射性组分的划分和分离。
不论使氨循环经过旁路26还是溶剂化器28,使溶液通过阀门32再循环到反应器10的底部,在反应器中调整流体化流型。这样产生土壤和氨性溶液和/或溶剂化电子的混合从而形成淤浆。一旦土壤在氨中形成均匀分散,泵20不再工作使分散体系进行相分离,即形成下层固相和上层液--固相分离。分散体系的较大颗粒在反应器10底部以固相34的形式沉淀出来,且基本上不含放射性核素污物,后者浓缩于由细粒或淤泥组成的较小土壤部分,所述细粒或淤泥粒分散于氨溶液成为上层液-固相36。
悬浮了颗粒细粒的淤浆形成的上层液-固相36从反应器10中排出,通过打开的阀42经管40进入蒸发容器38。氨43被蒸发使其与放射性细粒44分离。如果需要再循环氨使之在净化步骤中进一步使用,也可选择将氨经管48转移到压缩器46再液化。液化的氨接着通过管50转移到氨贮存器18。
实施例IIA部分
以下实验说明用氨性液体净化土壤的方法:
向2公斤普通俄亥俄州土(Ohio loam)中掺入少量硝酸钴。分析该掺钻的土壤,发现含有4.5ppm的钴。将10克的掺合土与大约80克的无水液氨混合,振摇直至混合充分。然后将土壤从氨液中过滤出来,送去分析,使过滤出来的氨蒸发。分析土样显示钴的含量为4.5-1.1ppm。B部分
为了改进从土壤中除去Co+2离子(该除去法不如Co+3的除去法有效)可使用两种方法:
在第一种方法中,将相当于1.5当量乙二胺四乙酸(EDTA)/CO+2离子与土壤和无水液氨混合。可溶性的Co·EDTA复合物很容易从土壤基质中过滤出来,使土壤中的Co+2浓度降到了能被接受的水平。
在第二种方法中,将硝酸铵(以每100克土壤含10克硝酸铵的量)加入土壤样品中,混合物用无水液氨搅拌。过滤,被溶解的Co+2和溶剂氨一起被除去。用蒸发去溶剂的方法将有毒杂质和过量的硝酸铵分开,然后用本领域已知的方法处理。
实施例III
将被150ppm Sr90和500ppm多氯化联苯(PCBs)两者污染的土壤样品150克置于反应器10中(图2)。然后向该反应器中装入1.5升的无水液氨,按实施例I描述的方法使液氨通过再循环环路,以便搅拌土壤。经过适当的时间以后,使液氨流入溶剂化器28,通过与10克钙金属30接触和溶解产生溶剂化电子溶液。溶剂化电子的产生可能是一次性的,金属在连续的液氨流中完全被消耗。或者,间歇使用旁通26以中断溶剂化电子溶液流,这样使引入的反应物产生连续脉冲。
当加入的反应物已经足够量时,停止氨循环泵20,土壤淤浆沉积,致使该体系形成较大的土壤颗粒的底相和氨/土壤细粒/金属颗粒的上清悬浮液相。将悬浮物转移到贮液罐38,通过蒸发把氨分离出来,留下的土壤细粒/金属物质的体积大大地减小以便根据已经确立的地方、州和联邦的规定作最后处理。
装入反应器的大量最初土壤样品仍然留在那里。放射性核素和PCBs的浓度足够低以致允许被处理的土壤恢复到环境补救领域允许接受的土地填埋。
实施例IV
将砷化合物掺入一种比实施例I有较高粘土量的土壤或一种比实施例I有较高阳离子交换容量的粘土部份的土壤。这种土壤用实施例I的氨处理(但是没有引入溶剂化电子)。搅拌后,土壤细粒分离出来,较大的土壤颗粒部分大体上没有毒性非金属,以致允许其恢复为适当的土地填料或返回到挖掘的原场所。含砷杂质的粘土细粒的体积大大地减少,因此能被贮存在比原先需求的较小的空间。
实施例V
将用危险的铬离子(VI)污染的土壤与液氨在一个密闭的反应容器中混合,搅拌,以使土壤颗粒彻底分散。每磅土壤大约使用0.5咖伦的液氨。用引入反应器的钙金属与液氨反应生成溶剂化电子溶液。金属的添加可以是一次性注入或通过连续添加模式注入。当溶剂化电子的典型的兰色持续不变时,终止金属的进一步添加。停置几分钟后以确保反应完全,溶剂化电子溶液不再产生。将氨蒸发并回收以供进一步使用。此时土壤中的铬离子的氧化数均少于VI价,为三价铬离子,适合于再生,无需进一步处理。
实施例VI
将500克被钚化合物污染的砂子样品在图1所示的反应设备中用1.0升的无水液氨做成淤浆。停止搅拌,砂子很快沉积下来,由于没有任何细微的颗粒而出现清沏的氨层。将氨倾出,发现含有非常少的溶解了的钚化合物,证明砂子中钚化合物的量几乎没有变化。
为比较的目的,将25克蒙脱石粘土加入反应器中,粘土和砂子的混合物重新悬浮在1.0升的无水液氨中。持续搅拌以前所示的一段时间,使粘土吸附钚离子。停止搅拌,砂子很快沉积下来,在其上面留下粘土/氨的悬浮物,通过倾倒将悬浮物除去。
因为一些粘土/氨的悬浮物仍留在反应器中,另外加入氨,重复搅拌、沉积和倾倒,直至吸附钚的土壤的量降低到希望的程度。
将被处理的砂子除去,并作适当的处理。通过蒸发液体,使粘土不含氨。粘土固体按钚污染物规定的方式处理。因为废物的体积减小了,处理和安置更有效。
实施例VII
将150克含镉盐(144ppm Cd+2)的土壤在3升的压力容器中用1.5升的无水液氨处理。加入8.5克的氰化钠,将混合物在室温搅拌1-2小时。过滤混合物。土壤的最大量部分仍留在滤器上,少量土壤的细粒通过。用开口的容器将上述两种土壤蒸发至均不含氨。发现在滤器上的比较大的土壤颗粒(19.5克滤饼)仅含有38ppm的Cd+2离子。通过滤器的土壤细粒含有116ppm的Cd+2离子。这代表了土壤最初量90%的镉。
这个例子证明了氨性液体和氰化物离子在除去并浓缩危险的金属离子于土壤小颗粒部分的能力。
因此,本发明公开的方法提供了下述优点:在分离核废料和/或危险的非放射性金属或非金属离子方面,借助于较小颗粒的方法比依赖于水系统的方法更有利;允许氨再循环而不依赖花费高的化学品净化;提供了将液氨与细微颗粒分离的简便方法;不再需要向沙漠地区运输和贮存水,另外提供了用溶剂化电子将颗粒大小控制在预定的范围内的方法。
本发明结合多个实施方案进行描述,它们仅为说明性的。相应地,本领域的技术人员根据前面的详细描述显而易见地可作许多替换,更改和变化。因此所有这样的改变和变化都会落入所附的权利要求的精神和广泛的范围内。
Claims (43)
1.含危险金属土壤的净化方法,其特征在于下列步骤:
(a)将氨性液体和被至少一种危险性金属离子或非金属离子污染的土壤在密闭的容器内混合,形成分散体系或淤浆;
(b)将含氨性液体的产物与步骤(a)的分散体系或淤浆分开,生成基本上不含所述危险的金属或非金属离子的土壤残渣,使其再生;
(c)将氨性液体与步骤(b)的含氨性液体的产物分开,生成含危险金属或非金属的残渣,用于处置或进一步处理。
2.权利要求1的方法,其特征在于氨性液体为无水液氨或含氨溶液。
3.权利要求2的方法,其特征在于所述的危险金属或非金属离子,所述金属或非金属选自放射性金属、非放射性金属及其混合物。
4.权利要求2的方法,其特征在于所述的危险金属或非金属离子,所述金属或非金属为非放射性的并选自砷、锑、硒、镉、钴、汞、铬、铅及其混合物。
5.权利要求2的方法,其特征在于所述步骤(b)的含氨性液体的产物包含由危险的非放射性金属或非金属离子和氨形成的配位化合物。
6.权利要求5的方法,其特征在于配位化合物为金属-氨的配位复合物。
7.权利要求2的方法,其特征在于所述的步骤(b)的含氨性液体的产物包含由危险的金属或非金属离子和氰化物离子形成的配位化合物。
8.权利要求1的方法,其特征在于进一步循环步骤(c)的氨性液体的步骤。
9.权利要求1的方法,其特征在于进一步添加螯合剂到所述的密闭容器中。
10.权利要求1的方法,其特征在于主要含有砂的污染土壤和包括添加粘土到所述的容器中的步骤。
11.含有危险金属土壤的净化方法,其特征在于以下步骤:
(a)将氨性液体和被至少一种危险的金属或非金属离子污染的土壤在密闭的容器中混合,形成分散体系或淤浆;
(b)使土壤颗粒选择性地从步骤(a)的分散体系或淤浆中沉淀出来,形成含有土壤颗粒沉淀的下层相,同时形成含有分散于所述的氨性溶液中的土壤细粒的上层液-固相;
(c)将所述的下层相与所述的上层液-固相分开,所述的下层相的土壤颗粒沉淀基本上不含所述的危险金属或非金属离子,使所述的土壤颗粒再生;
(d)分离所述的上层液-固相中的氨性液体,生成含有危险金属或非金属的残渣,用于处置或进一步处理。
12.权利要求11的方法,其特征在于进一步将来自步骤(d)的氨性液体进行回收和再循环的步骤。
13.权利要求11的方法,其特征在于步骤(a)的氨性液体是无水液氨或含氨溶液。
14.权利要求11的方法,其特征在于所述的危险金属或非金属离子,所述的金属或非金属选自放射性金属、非放射性金属及其混合物。
15.权利要求11的方法,其特征在于所述的危险金属或非金属离子,所述金属或非金属是非放射性的并选自砷、锑、硒、镉、钴、汞、铬、铅及其混合物。
16.权利要求14的方法,其特征在于土壤含有选自粘土、碎石、砂、有机物及其混合物的成员。
17.权利要求11的方法,其特征在于向所述的密闭容器中进一步添加螯合剂。
18.权利要求11的方法,其特征在于向所述的密闭容器中进一步添加配体配位剂。
19.权利要求18的方法,其特征在于配体配位剂为产生盐或化合物的氰化物离子。
20.权利要求11的方法,其特征在于土壤主要是砂子和步骤(a)包括向所述的密闭容器中添加粘土。
21.权利要求11的方法,其特征在于步骤(a)的土壤含有混合废物。
22.权利要求21的方法,其特征在于所述的混合废物包含危险的非放射性金属或非金属离子和核废料。
23.权利要求21的方法,其特征在于所述的混合废物包含危险的非放射性金属或非金属离子和放射性同位素金属的离子。
24.权利要求22的方法,其特征在于核废料至少包含一种放射性核素。
25.权利要求24的方法,其特征在于放射性核素是锕系的成员。
26.权利要求23的方法,其特征在于放射性同位素金属选自铀、钚、钍及其混合物。
27.土壤的净化方法,其特征在于下列步骤:
(a)将氨性液体和被至少一种危险的金属或非金属离子污染的土壤在密闭的容器中混合,形成分散体系或淤浆;
(b)通过与活泼金属接触,用溶剂化电子处理步骤(a)的分散体系或淤浆;所述活泼金属选自碱金属、碱土金属和铝。
(c)将含有氨性液体的产物与所述的步骤(b)的分散体系或淤浆分开,产生基本上不含危险金属或非金属离子的土壤残渣,从而使土壤再生。
(d)将所述的氨性液与所述的步骤(c)的含氨性液体的产物分开,产生含危险金属或非金属的残渣,用于处置或进一步处理。
28.权利要求27的方法,其特征在于步骤(b)如下完成:使至少部分的氨性液体循环经过含有活泼金属的旁路形成溶剂化电子,使形成的溶剂化电子再循环到密闭的容器中用于处理被污染的土壤。
29.权利要求27的方法,其特征在于危险金属或非金属离子,所述的金属或非金属选自放射性金属、非放射性金属及其混合物。
30.权利要求29的方法,其特征在于步骤(a)的氨性液体为无水液氨或含氨溶液。
31.权利要求29的方法,其特征在于所述的危险金属或非金属离子,所述的金属或非金属是非放射性的并选自砷、锑、硒、镉、钴、汞、铬、铅及其混合物。
32.权利要求30的方法,其特征在于被铬VI污染的土壤被溶剂化电子还原。
33.权利要求29的方法,其特征在于土壤含有选自粘土,碎石,砂、有机物及其混合物的成员。
34.权利要求29的方法,其特征在于土壤主要为砂子,步骤(a)包括向容器中加入粘土。
35.权利要求27的方法,其特征在于步骤(a)的土壤含有混合废物。
36.权利要求35的方法,其特征在于混合废物包含危险的非放射性金属或非金属离子和核废料。
37.权利要求35的方法,其特征在于混合废物包含危险的非放射性金属或非金属离子和放射性同位素金属的离子。
38.权利要求36的方法,其特征在于核废料包含至少一种放射性核素。
39.权利要求38的方法,其特征在于放射性核素为锕系的成员。
40.权利要求39的方法,其特征在于放射性同位素金属选自由铀、钚、钍及其混合物。
41.权利要求35的方法,其特征在于混合废物包含危险的金属或非金属的离子和有机化合物。
42.权利要求41的方法,其特征在于有机化合物为卤代有机化合物。
43.权利要求42的方法,其特征在于卤代有机化合物选自PCB类,双氧素类和农药。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/304,791 | 1994-09-12 | ||
US08/304,791 US5495062A (en) | 1994-09-12 | 1994-09-12 | Methods of decontaminating nuclear waste-containing soil |
US08/507,126 | 1995-08-23 | ||
US08/507,126 US5613238A (en) | 1994-09-12 | 1995-08-23 | Methods of decontaminating soils containing hazardous metals |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1157584A true CN1157584A (zh) | 1997-08-20 |
CN1083302C CN1083302C (zh) | 2002-04-24 |
Family
ID=23178046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN95195008A Expired - Fee Related CN1083302C (zh) | 1994-09-12 | 1995-09-12 | 含危险金属土壤的净化方法 |
Country Status (17)
Country | Link |
---|---|
US (3) | US5495062A (zh) |
EP (1) | EP0781174B1 (zh) |
JP (1) | JP2908029B2 (zh) |
KR (1) | KR970705822A (zh) |
CN (1) | CN1083302C (zh) |
AT (1) | ATE214307T1 (zh) |
AU (1) | AU686894B2 (zh) |
BR (1) | BR9509005A (zh) |
CA (1) | CA2198385A1 (zh) |
DE (1) | DE69525844T2 (zh) |
IL (1) | IL115271A (zh) |
MX (1) | MX9701827A (zh) |
NZ (1) | NZ294383A (zh) |
PH (1) | PH31448A (zh) |
PL (1) | PL319052A1 (zh) |
WO (1) | WO1996008323A1 (zh) |
ZA (2) | ZA957643B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104438306A (zh) * | 2013-09-20 | 2015-03-25 | 重庆文理学院 | 一种机械搅拌式土壤重金属洗脱装置 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5495062A (en) * | 1994-09-12 | 1996-02-27 | Commodore Laboratories, Inc. | Methods of decontaminating nuclear waste-containing soil |
GB9501604D0 (en) * | 1995-01-27 | 1995-03-15 | Ici Canada | Mercury recovery process |
TR199800822T2 (xx) * | 1995-11-07 | 1998-08-21 | Commodore Applied Technologies, Inc. | Kimyasal sava� maddelerini imha y�ntemi ve cihaz�. |
US5928495A (en) * | 1995-12-05 | 1999-07-27 | Legkow; Alexander | Emulsion for heavy oil dilution and method of using same |
US6086769A (en) * | 1996-09-16 | 2000-07-11 | Commodore Separation Technologies, Inc. | Supported liquid membrane separation |
ZA9710751B (en) * | 1996-12-12 | 1999-05-28 | Commodore Applied Technologies | Method for destroying energetic materials |
US5833395A (en) * | 1997-04-24 | 1998-11-10 | Atlantic Richfield Company | Method for reducing the concentration of contaminating radioactive material in contaminated soil |
US6080907A (en) * | 1998-04-27 | 2000-06-27 | Teledyne Commodore, L.L.C. | Ammonia fluidjet cutting in demilitarization processes using solvated electrons |
US6016660A (en) * | 1998-05-14 | 2000-01-25 | Saint-Gobain Industrial Ceramics, Inc. | Cryo-sedimentation process |
US6049021A (en) * | 1999-02-11 | 2000-04-11 | Commodore Applied Technologies, Inc. | Method for remediating sites contaminated with toxic waste |
WO2000065607A1 (en) * | 1999-04-26 | 2000-11-02 | Commodore Applied Technologies, Inc. | Deactivation of metal liquid coolants used in nuclear reactor systems |
US6175051B1 (en) | 2000-04-04 | 2001-01-16 | Commodore Applied Technologies, Inc. | Deactivation of metal liquid coolants used in nuclear reactor systems |
US6382423B1 (en) * | 1999-05-03 | 2002-05-07 | Bpf, Incorporated | Selective reduction of naturally occurring radioactive material to be treated, and its treatment |
US6375912B1 (en) | 1999-08-16 | 2002-04-23 | Agere Systems Guardian Corp. | Electrochemical abatement of perfluorinated compounds |
WO2001037937A1 (en) * | 1999-11-23 | 2001-05-31 | Commodore Applied Technologies, Inc. | Destruction of metal halides using solvated electrons |
US7879593B2 (en) * | 1999-12-16 | 2011-02-01 | Whiteman G Robert | Fermentation systems, methods and apparatus |
ATE552924T1 (de) * | 2003-05-22 | 2012-04-15 | Bruso Bruce L | Verfahren zur behandlung von mit biofeststoffen und anderen toxinen kontaminiertem schlamm |
US7514493B1 (en) * | 2004-10-27 | 2009-04-07 | Sandia Corporation | Strippable containment and decontamination coating composition and method of use |
US20070259793A1 (en) * | 2006-05-03 | 2007-11-08 | Matthew Feller | Activated silicon-containing-aluminum complex soil detoxification and method of preparation thereof |
JP5834272B2 (ja) * | 2011-09-20 | 2015-12-16 | 株式会社湘南数理研究会 | 汚染土の除染方法 |
JP5753760B2 (ja) * | 2011-10-20 | 2015-07-22 | 三井住友建設株式会社 | 放射性物質汚染土壌の浄化方法 |
JP5207328B1 (ja) * | 2012-04-16 | 2013-06-12 | 株式会社エコン | セシウムで汚染された砂利状物の除染設備 |
FR2990364B1 (fr) * | 2012-05-11 | 2014-06-13 | Commissariat Energie Atomique | Procede de decontamination radioactive d'une terre par mousse de flottation a air disperse et ladite mousse |
JP6196770B2 (ja) * | 2012-08-23 | 2017-09-13 | 公立大学法人県立広島大学 | 放射性物質含有粉粒体の処理方法 |
RU2562806C9 (ru) | 2014-08-11 | 2015-11-10 | Общество с ограниченной ответственностью "Корпорация по Ядерным Контейнерам" (ООО "КПОЯК") | Способ очистки почвогрунта от загрязнений и установка для его осуществления |
JP2016070781A (ja) * | 2014-09-30 | 2016-05-09 | 株式会社ネオス | 放射能汚染物質洗浄剤およびこれを用いた洗浄方法 |
US10199129B1 (en) * | 2016-08-10 | 2019-02-05 | U.S. Department Of Energy | Method for radionuclide contaminatecontaminant mitigation |
JP7273740B2 (ja) * | 2020-02-07 | 2023-05-15 | 株式会社東芝 | 汚染懸濁液処理装置 |
CN111408617A (zh) * | 2020-04-18 | 2020-07-14 | 袁倪鸿 | 一种土壤修复装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4880607A (en) * | 1982-12-20 | 1989-11-14 | Phillips Petroleum Company | Recovering mineral values from ores |
US4853040A (en) * | 1987-03-30 | 1989-08-01 | A. L. Sandpiper Corporation | Processes for decontaminating polluted substrates |
US5110364A (en) * | 1987-03-30 | 1992-05-05 | A.L. Sandpiper Corporation | Processes for decontaminating polluted substrates |
EP0313116B1 (de) * | 1987-10-22 | 1993-08-04 | Metallgesellschaft Ag | Verfahren zur Aufbereitung von kontaminierten Böden |
US4906302A (en) * | 1987-10-26 | 1990-03-06 | Bruya James E | Solids decontamination method with ammonia |
US4841998A (en) * | 1987-10-26 | 1989-06-27 | Bruya James E | Soil decontamination method |
US5055196A (en) * | 1988-12-22 | 1991-10-08 | Ensr Corporation | Extraction process to remove pcbs from soil and sludge |
US5128068A (en) * | 1990-05-25 | 1992-07-07 | Westinghouse Electric Corp. | Method and apparatus for cleaning contaminated particulate material |
CA2057217C (en) * | 1990-12-11 | 1999-08-31 | Bruce Edward Holbein | A process for the decontamination of toxic, heavy-metal containing soils |
US5162600A (en) * | 1990-12-28 | 1992-11-10 | Rheox, Inc. | Method of treating lead contaminated soil |
US5266494A (en) * | 1991-01-31 | 1993-11-30 | Westinghouse Electric Corp. | Bench scale treatability method for evaluation of soil washing |
EP0601027B1 (en) * | 1991-08-19 | 1998-07-01 | Commonwealth Scientific And Industrial Research Organisation | Titanium extraction |
US5494649A (en) * | 1991-10-03 | 1996-02-27 | Cognis, Inc. | Process for removing heavy metals from paint chips |
US5322644A (en) * | 1992-01-03 | 1994-06-21 | Bradtec-Us, Inc. | Process for decontamination of radioactive materials |
GB9212145D0 (en) * | 1992-06-09 | 1992-07-22 | Ca Nat Research Council | Soil remediation process |
FR2696663B1 (fr) * | 1992-10-12 | 1994-11-10 | Elf Aquitaine | Procédé de décontamination de sols pollués par des métaux lourds. |
US5640701A (en) * | 1992-12-29 | 1997-06-17 | Westinghouse Electric Corporation | Method for remediating soil containing radioactive contaminants |
US5421906A (en) * | 1993-04-05 | 1995-06-06 | Enclean Environmental Services Group, Inc. | Methods for removal of contaminants from surfaces |
US5495062A (en) * | 1994-09-12 | 1996-02-27 | Commodore Laboratories, Inc. | Methods of decontaminating nuclear waste-containing soil |
-
1994
- 1994-09-12 US US08/304,791 patent/US5495062A/en not_active Expired - Fee Related
-
1995
- 1995-06-07 US US08/472,505 patent/US5516968A/en not_active Expired - Fee Related
- 1995-08-23 US US08/507,126 patent/US5613238A/en not_active Expired - Fee Related
- 1995-09-12 AT AT95934971T patent/ATE214307T1/de not_active IP Right Cessation
- 1995-09-12 PH PH51274A patent/PH31448A/en unknown
- 1995-09-12 BR BR9509005A patent/BR9509005A/pt not_active Application Discontinuation
- 1995-09-12 PL PL95319052A patent/PL319052A1/xx unknown
- 1995-09-12 CA CA 2198385 patent/CA2198385A1/en not_active Abandoned
- 1995-09-12 ZA ZA957643A patent/ZA957643B/xx unknown
- 1995-09-12 AU AU37167/95A patent/AU686894B2/en not_active Ceased
- 1995-09-12 CN CN95195008A patent/CN1083302C/zh not_active Expired - Fee Related
- 1995-09-12 MX MX9701827A patent/MX9701827A/es unknown
- 1995-09-12 EP EP19950934971 patent/EP0781174B1/en not_active Expired - Lifetime
- 1995-09-12 KR KR1019970701075A patent/KR970705822A/ko not_active Application Discontinuation
- 1995-09-12 ZA ZA957642A patent/ZA957642B/xx unknown
- 1995-09-12 IL IL115271A patent/IL115271A/en active IP Right Grant
- 1995-09-12 WO PCT/US1995/011538 patent/WO1996008323A1/en active Search and Examination
- 1995-09-12 JP JP8510279A patent/JP2908029B2/ja not_active Expired - Lifetime
- 1995-09-12 NZ NZ294383A patent/NZ294383A/en unknown
- 1995-09-12 DE DE69525844T patent/DE69525844T2/de not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104438306A (zh) * | 2013-09-20 | 2015-03-25 | 重庆文理学院 | 一种机械搅拌式土壤重金属洗脱装置 |
Also Published As
Publication number | Publication date |
---|---|
NZ294383A (en) | 1998-03-25 |
DE69525844D1 (de) | 2002-04-18 |
JP2908029B2 (ja) | 1999-06-21 |
DE69525844T2 (de) | 2002-10-31 |
PL319052A1 (en) | 1997-07-21 |
PH31448A (en) | 1998-11-03 |
WO1996008323A1 (en) | 1996-03-21 |
AU686894B2 (en) | 1998-02-12 |
IL115271A0 (en) | 1995-12-31 |
JPH10505902A (ja) | 1998-06-09 |
CA2198385A1 (en) | 1996-03-21 |
US5613238A (en) | 1997-03-18 |
ZA957642B (en) | 1996-05-13 |
EP0781174A1 (en) | 1997-07-02 |
ATE214307T1 (de) | 2002-03-15 |
IL115271A (en) | 1998-03-10 |
EP0781174B1 (en) | 2002-03-13 |
CN1083302C (zh) | 2002-04-24 |
ZA957643B (en) | 1996-05-13 |
KR970705822A (ko) | 1997-10-09 |
AU3716795A (en) | 1996-03-29 |
MX9701827A (es) | 1997-06-28 |
US5516968A (en) | 1996-05-14 |
BR9509005A (pt) | 1997-11-25 |
US5495062A (en) | 1996-02-27 |
EP0781174A4 (en) | 1999-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1083302C (zh) | 含危险金属土壤的净化方法 | |
MXPA97001827A (en) | Methods to decontaminate lands that continue metallic noci | |
CN1083303C (zh) | 含危险物质土壤的净化方法 | |
EP0619764B1 (en) | Process for removing heavy metals from soils | |
JP6409235B2 (ja) | 液体放射性廃棄物の処理及びその再利用の方法 | |
JP2013178221A (ja) | 放射性物質に汚染された固形物の除染装置および除染方法 | |
CA2362469C (en) | Method for remediating sites contaminated with toxic waste | |
US5678231A (en) | Methods of decontaminating substates with in-situ generated cyanides | |
US5607060A (en) | Method and apparatus for removing metal contamination from soil | |
KR102096451B1 (ko) | 방사성세슘으로 오염된 점성토를 제염 및 정화하는 이동형 시스템 | |
Neale et al. | Design and development of a continuous-flow counter-current metal extraction system to remove heavy metals from contaminated soils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |