CN115732023A - 泄漏检测电路、非易失性存储器装置以及存储器系统 - Google Patents

泄漏检测电路、非易失性存储器装置以及存储器系统 Download PDF

Info

Publication number
CN115732023A
CN115732023A CN202210971094.1A CN202210971094A CN115732023A CN 115732023 A CN115732023 A CN 115732023A CN 202210971094 A CN202210971094 A CN 202210971094A CN 115732023 A CN115732023 A CN 115732023A
Authority
CN
China
Prior art keywords
circuit
voltage
memory device
leak detection
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210971094.1A
Other languages
English (en)
Inventor
刘炳晟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
SK Hynix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Hynix Inc filed Critical SK Hynix Inc
Publication of CN115732023A publication Critical patent/CN115732023A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/021Detection or location of defective auxiliary circuits, e.g. defective refresh counters in voltage or current generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/025Detection or location of defective auxiliary circuits, e.g. defective refresh counters in signal lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/20Address generation devices; Devices for accessing memories, e.g. details of addressing circuits using counters or linear-feedback shift registers [LFSR]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5004Voltage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5006Current

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)

Abstract

本公开涉及泄漏检测电路、非易失性存储器装置以及存储器系统。一种泄漏检测电路可以包括:比较电路,其被配置为将基于操作电压节点的电平而改变的输入电压与参考电压进行比较,并且被配置为输出检测信号;以及状态判定电路,其被配置为基于所述检测信号来确定与确定时段相对应的计数值,并且被配置为基于所述计数值来输出泄漏状态信息。

Description

泄漏检测电路、非易失性存储器装置以及存储器系统
技术领域
各种实施方式总体上涉及存储器系统,更具体地,涉及包括非易失性存储器装置的存储器系统。
背景技术
本公开涉及一种检测非易失性存储器装置中的电流泄漏(current leakage)的程度的泄漏检测电路。
电子装置可以包括多个电子部件。在电子装置当中,计算机系统可以包括由半导体构成的多个电子部件。在构成计算机系统的半导体装置中,诸如处理器或存储器控制器的主机可以执行与存储器装置的数据通信。存储器装置可包括可由字线和位线指定的多个存储器单元,以便存储数据。
发明内容
在一个实施方式中,泄漏检测电路可以包括:比较电路,其被配置为将基于操作电压节点的电平而改变的输入电压与参考电压进行比较,并且被配置为输出检测信号;以及状态判定电路,其被配置为基于所述检测信号来确定与确定时段相对应的计数值,并且被配置为基于所述计数值来输出泄漏状态信息。
在一个实施方式中,非易失性存储器装置可以包括:电压供应电路,其被配置为在内部操作正在执行的同时提供操作电压;泄漏检测电路,其被配置为执行泄漏检测操作,该泄漏检测操作检测来自所述操作电压的电压传输路径的电流泄漏;以及控制电路,其被配置为控制所述泄漏检测操作。
在一个实施方式中,存储器系统可以包括:非易失性存储器装置,其被配置为在对目标存储块执行内部操作的同时执行泄漏检测操作;以及控制器,其被配置为基于所述泄漏检测操作的执行结果对所述目标存储块执行存储器管理操作。
附图说明
图1是示出根据实施方式的非易失性存储器装置的框图。
图2是示出根据实施方式的图1的数据存储电路的详细配置的框图。
图3是示出根据实施方式的图1的比较电路的详细配置的框图。
图4是示出根据实施方式的图1的状态判定电路的详细配置的框图。
图5是用于描述根据实施方式的图1的泄漏检测电路的操作的时序图。
图6是用于描述根据实施方式的执行泄漏检测操作的时间点的图。
图7是示出根据实施方式的存储器系统的框图。
图8是用于描述根据实施方式的用于设置图7的泄漏检测电路的泄漏检测操作的方法的图。
图9是用于描述根据实施方式的控制器控制非易失性存储器装置的泄漏检测操作的方法的流程图。
图10是用于描述根据实施方式的控制器基于泄漏状态信息执行存储器管理操作的方法的流程图。
图11是用于描述根据实施方式的控制器执行存储器管理操作的方法的图。
图12是示出根据实施方式的包括固态驱动器(SSD)的数据处理系统的图。
图13是示出根据实施方式的包括存储器系统的网络系统的图。
具体实施方式
将参考附图通过以下实施方式描述本公开的优点和特征以及用于实现这些优点和特征的方法。然而,本公开不限于这里描述的实施方式,而是可以以不同的方式实施。提供本实施方式仅仅是为了详细描述本公开,使得本公开所属领域的技术人员能够容易地执行本公开的技术思想。
本实施方式不限于附图中所示的特定形状,而是可能为了清楚起见而被夸大。在本说明书中,使用了特定术语。然而,这些术语仅用于描述本公开,而不限制权利要求中描述的本公开的范围。
在本说明书中,诸如“和/或”的表述可以指示包括在该表述之前/之后列出的一个或更多个部件。此外,诸如“连接/联接”的表述可以指示一个元件直接连接/联接到另一元件或通过又一元件间接连接/联接到另一元件。除非另有相反指示,否则单数形式的术语可以包括复数形式。此外,“包括”和“包含”或者“具有”和“含有”的含义可以指明部件、步骤、操作和元件,并且不排除存在或添加一个或更多个其他部件、步骤、操作和元件。
各种实施方式涉及一种通过泄漏检测操作确定电流泄漏程度的泄漏检测电路,以及包括该泄漏检测电路的非易失性存储器装置。
此外,各种实施方式涉及一种存储器系统,该存储器系统根据泄漏检测操作的执行结果对非易失性存储器装置执行存储器管理操作,从而保证数据可靠性。
根据当前实施方式,泄漏检测电路和包括该泄漏检测电路的非易失性存储器装置可以通过泄漏检测操作来确定电流泄漏的程度。
此外,存储器系统可以根据泄漏检测操作的执行结果对非易失性存储器装置执行存储器管理操作,从而保证数据可靠性。
在下文中,将参考附图详细描述实施方式。
图1是示出根据实施方式的非易失性存储器装置100的框图。
参照图1,非易失性存储器装置100可以包括控制电路110、电压供应电路120、数据存储电路130和泄漏检测电路200。
控制电路110可以基于外部控制器来控制非易失性存储器装置100的整体操作。控制电路110可以基于控制器控制非易失性存储器装置100的内部操作,例如读取操作、编程操作或擦除操作。当基于控制器执行内部操作时,控制电路110可以控制电压供应电路120、数据存储电路130和泄漏检测电路200的操作。
控制电路110可以基于控制器控制泄漏检测电路200以执行泄漏检测操作。基于控制器,控制电路110可以存储用于泄漏检测操作的设置值,并且控制泄漏检测电路200根据设置值执行泄漏检测操作。基于控制器,控制电路110可以确定要对其执行泄漏检测操作的操作电压的类型。操作电压的类型可以是读取电压、编程电压、编程验证电压、擦除电压和擦除验证电压中的至少一个。控制电路110可以基于控制器向控制器输出泄漏状态信息LKG_ST作为泄漏检测操作的执行结果。
当基于控制电路110执行内部操作时,电压供应电路120可以向操作电压节点VN供应各种操作电压。操作电压可以包括例如一个或更多个读取电压、一个或更多个编程电压、一个或更多个编程验证电压、一个或更多个擦除电压、以及一个或更多个擦除验证电压。
当基于控制电路110执行内部操作时,数据存储电路130可以从操作电压节点VN接收操作电压,并基于操作电压执行与内部操作相关的子操作。例如,数据存储电路130可以包括存储器单元,并且数据存储电路130可以在编程操作期间执行用于将数据存储在存储器单元中的子操作并且可以在读取操作期间执行用于从存储器单元读取数据的子操作。
泄漏检测电路200可以基于控制电路110对操作电压节点VN的操作电压执行泄漏检测操作。泄漏检测电路200可以执行泄漏检测操作,以检测来自包括在数据存储电路130中的操作电压的电压传输路径的电流泄漏。
泄漏检测电路200可以包括比较电路210和状态判定电路220。比较电路210可以将基于操作电压节点VN的电平而改变的输入电压与参考电压进行比较,并且可以输出检测信号LKGD。状态判定电路220可以基于比较电路210的检测信号LKGD来确定与确定时段相对应的计数值,并且可以基于该计数值来输出泄漏状态信息LKG_ST。泄漏状态信息LKG_ST可以对应于三种状态中的任何一种,例如“安全(safe)”状态、“风险(risky)”状态和“危险(dangerous)”状态,并且泄漏状态信息LKG_ST可以指示执行内部操作的目标存储块的状态。
在一个实施方式中,比较电路210可以输出在确定时段中具有第一逻辑电平并且在其余时段中具有第二逻辑电平的检测信号LKGD。确定时段可以在移除对操作电压节点VN的操作电压供应时开始。换句话说,当已经向操作电压节点VN供应操作电压的电压供应电路120关断时,确定时段可以开始。
图2是示出根据实施方式的图1的数据存储电路130的详细配置的框图。
参照图2,数据存储电路130可以包括全局字线解码器131、局部字线解码器132和存储器单元阵列133。
全局字线解码器131可以基于控制电路110选择性地将操作电压节点VN联接到全局字线GWL。具体地,全局字线解码器131可以基于控制电路110选择性地将操作电压节点VN联接到在全局字线GWL中选择的一个或更多个全局字线。
局部字线解码器132可以基于控制电路110选择性地将全局字线GWL联接到局部字线LWL。具体地,局部字线解码器132可以基于控制电路110将一个或更多个选定全局字线联接到在局部字线LWL中选择的一个或更多个局部字线。
存储器单元阵列133可以包括多个存储器单元。存储器单元中的每一个可以联接到相应局部字线,并且可以在相应局部字线被驱动时被访问。
当执行非易失性存储器装置100的内部操作(例如,编程操作)时,电压供应电路120可以将操作电压(例如,编程电压)供应到操作电压节点VN。可以通过全局字线解码器131和局部字线解码器132经由一个或更多个选定全局字线和一个或更多个选定局部字线将施加到操作电压节点VN的编程电压施加到一个或更多个选定存储器单元。所述一个或更多个选定存储器单元可以通过编程电压被编程。即,编程电压可以通过电压传输路径从操作电压节点VN传输到所述一个或更多个选定存储器单元。编程电压的电压传输路径可以包括选定全局字线和/或选定局部字线。
此时,由于各种原因,可能从编程电压的电压传输路径发生电流泄漏。例如,一个原因可能是电路元件的损耗水平。随着非易失性存储器装置100的操作计数(例如擦除计数、编程计数或读取计数)的增加,电流泄漏可能严重。即,随着非易失性存储器装置100越来越多地被使用和损耗,电流泄漏可能变得严重。严重的电流泄漏可能导致编程电压不能正常地传输到存储器单元。在这种情况下,可能发生编程失败,或者即使没有发生编程失败,数据的可靠性也可能降低。此外,在读取操作期间电流泄漏的增加可能导致不可校正的错误。
因此,如下面将描述的,基于控制电路110,泄漏检测电路200可以在内部操作正在执行时检测操作电压节点VN的电平,并且检测来自操作电压的电压传输路径的电流泄漏。
图3是示出根据实施方式的图1的比较电路210的详细配置的框图。
参照图3,比较电路210可以包括第一电容器C1、第二电容器C2和检测信号输出电路211。第一电容器C1可以联接在操作电压节点VN和输入节点VR2之间。第二电容器C2可以联接在接地节点VSS和输入节点VR2之间。当第一电容器C1和第二电容器C2都具有小电容时,输入节点VR2的输入电压VREF2的电平可以改变为与操作电压节点VN的电平类似的电平。检测信号输出电路211可以联接到输入节点VR2和参考节点VR1。基于控制电路110,检测信号输出电路211可以将输入节点VR2的输入电压VREF2与参考节点VR1的参考电压VREF1进行比较,并且可以输出检测信号LKGD。在一个实施方式中,检测信号输出电路211可以包括运算放大器。
检测信号输出电路211可以输出在确定时段中具有第一逻辑电平(例如,逻辑高电平)并且在其他时段中具有第二逻辑电平(例如,逻辑低电平)的检测信号LKGD。换句话说,检测信号输出电路211可以输出在确定时段开始之前具有第二逻辑电平、在确定时段中具有第一逻辑电平、并且在确定时段结束时具有第二逻辑电平的检测信号LKGD。
当电压供应电路120向操作电压节点VN供应操作电压VOP以利用操作电压VOP对操作电压VOP的电压传输路径进行充电、并且然后被关断时,确定时段可以开始。因此,在确定时段的开始,操作电压VOP和输入电压VREF2可以高于参考电压VREF1。控制电路110可以向检测信号输出电路211发送使能信号EN,该使能信号EN通知确定时段的开始。检测信号输出电路211可以基于通知确定时段的开始的使能信号EN来输出检测信号LKGD。在一个实施方式中,可以从电压供应电路120输出使能信号EN。
当确定时段开始时,检测信号输出电路211可以将检测信号LKGD从第二逻辑电平改变为第一逻辑电平,并且可以确定输入电压VREF2是否变得低于参考电压VREF1。当输入电压VREF2变得低于参考电压VREF1时,检测信号输出电路211可以将检测信号LKGD从第一逻辑电平改变为第二逻辑电平。
第一电容器C1和第二电容器C2可以联接到输入节点VR2,以便去除噪声。在一个实施方式中,比较电路210可以不包括第一电容器C1和第二电容器C2,并且检测信号输出电路211的输入节点VR2可以直接联接到操作电压节点VN。
在一个实施方式中,参考电压VREF1可以根据当执行泄漏检测操作时的操作电压VOP的类型而不同。例如,当操作电压VOP是编程电压时的参考电压VREF1可以不同于当操作电压VOP是编程验证电压时的参考电压VREF1。
图4是示出根据实施方式的图1的状态判定电路220的详细配置的框图。
参照图4,状态判定电路220可以包括计数器221和计数评估电路222。
计数器221可以基于从比较电路210输出的检测信号LKGD和从控制电路110输出的时钟信号CK输出计数值CNT。计数器221可以通过基于检测信号LKGD对确定时段中的时钟信号CK的脉冲的数量进行计数来输出计数值CNT。换句话说,计数器221可以在检测信号LKGD处于第一逻辑电平(例如,逻辑高电平)时对时钟信号CK的脉冲的数量进行计数,并且可以输出计数值CNT。在一个实施方式中,基于检测信号LKGD,计数器221可以对确定时段中的时钟信号CK的上升沿的数量进行计数,并且可以输出计数值CNT。在一个实施方式中,基于检测信号LKGD,计数器221可以对确定时段中的时钟信号CK的下降沿的数量进行计数,并输出计数值CNT。
在一个实施方式中,控制电路110可以从确定时段开始时开始向计数器221发送时钟信号CK。
计数评估电路222可以基于一个或更多个参考值和从计数器221输出的计数值CNT来输出泄漏状态信息LKG_ST。一个或更多个参考值可分别限定对应于不同泄漏状态值的两个或更多个状态区域。计数评估电路222可以确定计数值CNT属于哪个状态区域,并且输出泄漏状态值中的与该状态区域相对应的泄漏状态值作为泄漏状态信息LKG_ST。
例如,计数评估电路222可以将计数值CNT与两个参考值(即,第一参考值V1和第二参考值V2)进行比较,并且输出对应于三个状态(例如,“安全”状态、“风险”状态及“危险”状态)中的任何一种状态的泄漏状态信息LKG_ST。当计数值CNT等于或大于第一参考值V1时,计数评估电路222可以输出对应于“安全”状态的泄漏状态值“00”作为泄漏状态信息LKG_ST。此外,当计数值CNT等于或大于第二参考值V2且小于第一参考值V1时,计数评估电路222可以输出对应于“风险”状态的泄漏状态值“01”作为泄漏状态信息LKG_ST。此外,当计数值CNT低于第二参考值V2时,计数评估电路222可以输出与“危险”状态相对应的泄漏状态值“10”作为泄漏状态信息LKG_ST。“安全”、“风险”和“危险”可各自指示其中执行内部操作的目标存储块的泄漏状态。第一参考值V1和第二参考值V2可以通过测试预先确定。
值“00”、“01”和“10”仅是示例。在一个实施方式中,计数评估电路222可以使用不同的值。此外,三个泄漏状态,即“安全”状态、“风险”状态和“危险”状态仅是示例,并且计数评估电路222可以辨识比三个泄漏状态更少或更多数量的泄漏状态。例如,当参考值的数量为“i”时,计数评估电路222可以辨识“i+1”个泄漏状态。
在一个实施方式中,可以根据当执行泄漏检测操作时的操作电压VOP的类型来改变一个或更多个参考值。例如,当操作电压VOP是编程电压时的一个或更多个参考值可以不同于当操作电压VOP是编程验证电压时的一个或更多个参考值。
在一个实施方式中,泄漏状态信息LKG_ST可以存储在在非易失性存储器装置100中包括的单独区域中,例如状态寄存器中。在一个实施方式中,计数值CNT可以存储在单独区域中,例如状态寄存器。如下所述,控制电路110可以基于控制器向控制器输出泄漏状态信息LKG_ST和/或计数值CNT。
图5是用于描述根据实施方式的图1的泄漏检测电路200的操作的时序图。
参照图1和图3至图5,基于控制电路110,泄漏检测电路200可以在内部操作正在执行的同时执行泄漏检测操作。首先,电压供应电路120可以在内部操作(例如,编程操作)正在执行的同时将操作电压VOP(例如,编程电压VPGM)供应到操作电压节点VN。因此,第一电容器C1和第二电容器C2可以被充电,并且输入节点VR2的输入电压VREF2可以上升到编程电压VPGM的电平。比较电路210可以输出处于第二逻辑电平(例如逻辑低电平)的检测信号LKGD。例如,状态判定电路220可以将计数值CNT和泄漏状态信息LKG_ST的初始值输出为“00”。然后,可以用编程电压VPGM对编程电压VPGM的电压传输路径充电,并且可以在时间点T1关断电压供应电路120。
在电压供应电路120在时间点T1处被关断之后,比较电路210可以基于控制电路110输出处于第一逻辑电平(例如,逻辑高电平)的检测信号LKGD。即,时间点T1可以对应于确定时段的开始点。当输入电压VREF2高于参考电压VREF1时,比较电路210可以输出处于逻辑高电平的检测信号LKGD。在时间点T1之后,控制电路110可以将时钟信号CK发送至状态判定电路220。状态判定电路220可以对时钟信号CK的脉冲进行计数。由于电压供应电路120被关断,因此输入电压VREF2可以逐渐下降。当输入电压VREF2变得低于参考电压VREF1时,比较电路210可以输出处于逻辑低电平的检测信号LKGD,并且确定时段可以结束。在确定时段结束之后,状态判定电路220可以输出计数值CNT和泄漏状态信息LKG_ST。
具体地,当从电压传输路径发生严重的电流泄漏时,输入电压VREF2可如线L51所示急剧下降。在这种情况下,确定时段R1可以较短,并且在确定时段R1期间获取的计数值CNT可以相对较小。例如,当计数值CNT低于第二参考值V2时,可以输出“10”作为对应于危险状态的泄漏状态信息LKG_ST。
另一方面,当几乎没有从电压传输路径发生电流泄漏时,输入电压VREF2可以如线L53所示缓慢下降。在这种情况下,确定时段R3可以较长,并且在确定时段R3期间获取的计数值CNT可以相对较高。例如,当计数值CNT等于或大于第一参考值V1时,可以输出“00”作为对应于安全状态的泄漏状态信息LKG_ST。
此外,当输入电压VREF2下降时,如线52所示,对应于确定时段R2的计数值CNT可以等于或大于第二参考值V2,并且低于第一参考值V1,并且可以输出“01”作为对应于风险状态的泄漏状态信息LKG_ST。
图6是用于描述执行根据本实施方式的泄漏检测操作的时间点的图。
参照图6,外部控制器可以确定泄漏检测电路200将要执行泄漏检测操作所针对的操作电压VOP的类型。泄漏检测电路200可以基于控制器对所确定的操作电压VOP的类型执行泄漏检测操作。
在读取操作的情况下,非易失性存储器装置100可以例如将三个读取电压RV1至RV3施加到选定存储器单元。可以对读取电压RV1至RV3中的一个或更多个执行泄漏检测操作。换句话说,泄漏检测电路200可以对提供给操作电压节点VN的读取电压执行泄漏检测操作。
在编程操作的情况下,非易失性存储器装置100可以例如施加一个或更多个编程电压VPGM和一个或更多个编程验证电压,并且确定编程操作是通过还是失败。非易失性存储器装置100可以重复地施加一个或更多个编程电压VPGM和一个或更多个编程验证电压,直到编程操作被确定为通过为止。可以对编程电压VPGM1至VPGM3和编程验证电压VR1至VR3中的一个或更多个执行泄漏检测操作。
在擦除操作的情况下,非易失性存储器装置100可以例如施加一个或更多个擦除电压和一个或更多个擦除验证电压,并且确定擦除操作是通过还是失败。非易失性存储器装置100可以重复地施加一个或更多个擦除电压和一个或更多个擦除验证电压,直到擦除操作被确定为通过为止。可以对擦除电压VER1至VER3和擦除验证电压EVR1至EVR3中的一个或更多个执行泄漏检测操作。
图7是示出根据实施方式的存储器系统10的框图。
参照图7,存储器系统10可以被配置为基于主机的写入请求存储从外部主机提供的数据。此外,存储器系统10可以被配置为基于主机的读取请求将存储在其中的数据提供给主机。
存储器系统10可以包括PCMCIA(个人计算机存储卡国际协会)卡、CF(紧凑型闪存)卡、智能媒体卡、记忆棒、各种多媒体卡(MMC、eMMC、RS-MMC和MMC-micro)、SD(安全数字)卡(SD、Mini-SD、Micro-SD)、UFS(通用闪存存储)、SSD(固态驱动器)等。
存储器系统10可以包括控制器11和非易失性存储器装置12。
控制器11可以控制存储器系统10的整体操作。控制器11可以根据主机装置的指令控制非易失性存储器装置12执行前台操作。根据主机装置的指令(即,写入或读取请求),前台操作可以包括向非易失性存储器装置12写入数据或从非易失性存储器装置12读取数据的操作。
控制器11可以控制非易失性存储器装置12以执行独立于主机装置的内部所需的后台操作。后台操作可以包括对非易失性存储器装置12的损耗均衡操作、垃圾收集(GC)操作、擦除操作、读回收操作和刷新操作中的一个或更多个。类似于前台操作,后台操作可以包括向非易失性存储器装置12写入数据和从非易失性存储器装置12读取数据的操作。
控制器11可以控制非易失性存储器装置12以在非易失性存储器装置12对目标存储块执行内部操作的同时执行泄漏检测操作,并且可以基于泄漏检测操作的执行结果对目标存储块执行存储器管理操作。
在一个实施方式中,控制器11可以基于非易失性存储器装置12的操作计数(例如,擦除计数、编程计数、读取计数等)来确定是否控制非易失性存储器装置12以执行泄漏检测操作。例如,当擦除计数、编程计数和读取计数中的至少一个超过阈值时,控制器11可以控制非易失性存储器装置12以执行泄漏检测操作。即,控制器11可以在非易失性存储器装置12操作一定时间量之后控制非易失性存储器装置12执行泄漏检测操作。擦除计数、编程计数、读取计数等可以是针对整个非易失性存储器装置12的计数。在一个实施方式中,擦除计数、编程计数、读取计数等可以是针对包括在非易失性存储器装置12中的每个存储块的计数。
控制器11可以确定将对其执行泄漏检测操作的操作电压(图3中的VOP)的类型。要执行泄漏检测操作的操作电压VOP的类型可以包括读取电压、编程电压、编程验证电压、擦除电压和擦除验证电压中的一个或更多个。在一个实施方式中,控制器11可以根据要执行泄漏检测操作的操作电压VOP的类型不同地确定参考电压(图3中的VREF)。在一个实施方式中,控制器11可以根据要执行泄漏检测操作的操作电压VOP的类型不同地确定一个或更多个参考值(例如,图4的V1和V2)。
控制器11可以基于泄漏检测操作的执行结果来确定对目标存储块执行存储器管理操作的时间点。在一个实施方式中,当泄漏检测操作的执行结果指示第一泄漏状态时,控制器11可对目标存储块执行前台GC操作,并将目标存储块指定为坏块。当泄漏检测操作的执行结果指示第二泄漏状态时,控制器11可对目标存储块执行后台GC操作。
基于控制器11,非易失性存储器装置12可以存储从控制器11发送的数据,读取存储在其中的数据,并将读取的数据发送到控制器11。非易失性存储器装置12可以包括多个存储块(未示出)。每个存储块可以对应于非易失性存储器装置12执行擦除操作的单位。每个存储块可以包括多个存储区域。每个存储区域可以对应于非易失性存储器装置12执行编程操作和读取操作的单位。
非易失性存储器装置12可以包括诸如NAND闪存或NOR闪存、FeRAM(铁电随机存取存储器)、PCRAM(相变随机存取存储器)、MRAM(磁随机存取存储器)或ReRAM(电阻式随机存取存储器)的闪存存储器装置。
非易失性存储器装置12可以包括一个或更多个平面、一个或更多个存储器芯片、一个或更多个存储器管芯或一个或更多个存储器封装。
图1示出了存储器系统10包括一个非易失性存储器装置12,但是存储器系统10中包括的非易失性存储器装置的数量不限于此。
非易失性存储器装置12可以包括图1的非易失性存储器装置100。非易失性存储器装置12可以包括泄漏检测电路13。泄漏检测电路13可以以与图1的泄漏检测电路200基本相同的方式来配置和操作。
图8是用于描述根据实施方式的用于设置图7的泄漏检测电路13的泄漏检测操作的方法的图。
参照图8,控制器11可以通过使用预定命令,例如设置功能命令(set featurecommand)SET,来设置泄漏检测操作的详细操作方法。在一个实施方式中,每当控制非易失性存储器装置12的内部操作时,控制器11可以通过设置功能命令SET来设置泄漏检测操作。在一个实施方式中,如果需要,控制器11可以通过设置功能命令SET来设置泄漏检测操作。
控制器11可以利用设置功能命令SET向非易失性存储器装置12发送针对泄漏检测操作的具有第一设置值P0至第四设置值P3的设置信息。第一设置值P0至第三设置值P2可各自指示将对其执行泄漏检测操作的操作电压VOP的类型。第四设置值P3可以不用于设置功能命令SET。因此,例如,当在设置功能命令SET中设置第一设置值P0时,非易失性存储器装置12可以被设置为对读取电压执行泄漏检测操作。
此外,非易失性存储器装置12可以基于控制器11的内部操作命令CMD执行内部操作,并且在执行内部操作的同时以预设方式执行泄漏检测操作。在执行泄漏检测操作之后,非易失性存储器装置12可以将计数值CNT和泄漏状态信息LKG_ST存储在状态寄存器中。
在内部操作完成之后,控制器11可以通过使用预定命令(例如,状态读取命令SR)来获取泄漏状态信息LKG_ST。非易失性存储器装置12可以基于状态读取命令SR将泄漏状态信息LKG_ST输出到控制器11。控制器11可以通过泄漏状态信息LKG_ST执行存储器管理操作,如将在下文描述的那样。
控制器11可以通过使用预定命令(例如获得功能命令(get feature command)GET)来获取计数值CNT。此时,非易失性存储器装置12可以基于获得功能命令GET将具有第一设置值P0至第四设置值P3的设置信息发送到控制器11。第四设置值P3可以包括计数值CNT。控制器11可以通过计数值CNT来更具体地辨识目标存储块的泄漏状态。
图9是用于描述根据实施方式的控制器11控制非易失性存储器装置12的泄漏检测操作的方法的流程图。
参照图9,在步骤S110中,控制器11可以参考的操作计数。在一个实施方式中,操作计数可以包括擦除计数、编程计数和读取计数中的一个或更多个。在一个实施方式中,操作计数可以是针对要对其执行内部操作的目标存储块的计数。在一个实施方式中,操作计数可以是针对包括在非易失性存储器装置12中的一个或更多个存储块的计数。
在步骤S120中,基于操作计数,控制器11可以确定是否要控制非易失性存储器装置12执行泄漏检测操作。在一个实施方式中,当操作计数超过预定阈值时,控制器11可以确定控制非易失性存储器装置12执行泄漏检测操作。当控制器11确定控制非易失性存储器装置12执行泄漏检测操作时,过程可以前进到步骤S130。当控制器11确定控制非易失性存储器装置12不执行泄漏检测操作时,过程可以结束。
在步骤S130中,控制器11可以将非易失性存储器装置12设置为执行泄漏检测操作。如参照图8所描述的,控制器11可以将非易失性存储器装置12设置为在执行内部操作的同时执行泄漏检测操作。
图10是用于描述根据实施方式的控制器11基于泄漏状态信息LKG_ST执行存储器管理操作的方法的流程图。图10基于非易失性存储器装置12被设置为执行泄漏检测操作并且泄漏状态信息LKG_ST指示三个泄漏状态(即,安全状态、风险状态和危险状态)中的任何一个的假设。
参照图10,在步骤S210中,控制器11可以控制非易失性存储器装置12以对目标存储块执行内部操作。内部操作可以是读取操作、编程操作和擦除操作中的任何一种。
在步骤S220中,控制器11可以根据非易失性存储器装置12的内部操作的执行结果而继续。在一个实施方式中,在内部操作完成之后,控制器11可以通过使用预定命令(例如,状态读取命令SR)来获取内部操作的执行结果。当读取操作结束或编程或擦除操作通过时,过程可以进行到步骤S230。当编程操作或擦除操作失败时,过程可以进行到步骤S260。
在步骤S230中,控制器11可以根据从非易失性存储器装置12输出的泄漏状态信息LKG_ST而继续。在内部操作完成之后,控制器11可以通过使用预定命令(例如,状态读取命令SR)来获取泄漏状态信息LKG_ST。当泄漏状态信息LKG_ST指示安全状态时,过程可以结束。当泄漏状态信息LKG_ST指示风险状态时,过程可以进行到步骤S240。当泄漏状态信息LKG_ST指示危险状态时,过程可以进行到步骤S250。
在步骤S240中,控制器11可以对已对其执行内部操作的目标存储块调度后台GC操作。后台GC操作可以指示当非易失性存储器装置12处于空闲状态时执行的GC操作。即,由于目标存储块的数据可靠性不高,因此即使针对目标存储块的内部操作通过,控制器11也可以确定对处于空闲状态的目标存储块执行后台GC操作。当执行后台GC操作时,可以将存储在目标存储块中的数据迁移到另一存储块。
在步骤S250中,控制器11可对已对其执行内部操作的目标存储块执行前台GC操作。前台GC操作可以指示即使非易失性存储器装置12不处于空闲状态也立即执行的GC操作。即,由于目标存储块的数据可靠性非常低,因此即使针对目标存储块的内部操作通过,控制器11也可以确定立即对目标存储块执行前台GC操作。当执行前台GC操作时,可以将存储在目标存储块中的数据迁移到另一存储块。
在步骤S260中,控制器11可以将目标存储块注册为坏块。即,控制器11可以将目标存储块注册为坏块,以便禁止目标存储块在之后被使用。当过程从步骤S220进行到步骤S260时,控制器11可以将目标存储块注册为坏块,而与目标存储块的泄漏状态无关。
图11是用于描述根据实施方式的控制器11执行存储器管理操作的方法的图。
参照图11,控制器11可以将非易失性存储器装置12的当前状态确定为第一状态至第四状态中的任何一种。控制器11可以通过另外考虑包括在非易失性存储器装置12中的空存储块的数量以及泄漏状态信息LKG_ST来确定非易失性存储器装置12的当前状态。
具体地,当非易失性存储器装置12中包括足够数量的空存储块时,控制器11可以将非易失性存储器装置12的状态确定为第一状态。当非易失性存储器装置12处于第一状态时,控制器11可能由于预定原因确定对于某个存储块需要GC操作(例如,通过损耗均衡操作或读取回收操作)。在这种情况下,控制器11可以将针对对应的存储块的GC操作调度为后台GC操作。在一个实施方式中,控制器11可以向被确定处于第一状态的后台GC操作给予低优先级。此外,当泄漏状态信息LKG_ST指示安全状态时,控制器11可以将非易失性存储器装置12的状态确定为第一状态。
此外,当关于目标存储块的泄漏状态信息LKG_ST指示风险状态时,控制器11可以将非易失性存储器装置12的状态确定为第二状态。控制器11可以基于泄漏状态信息LKG_ST将针对目标存储块的GC操作调度为后台GC操作。在一个实施方式中,控制器11可以向被确定处于第二状态的后台GC操作给予中优先级。具有中优先级的后台GC操作可以在具有低优先级的后台GC操作之前执行。
当关于目标存储块的泄漏状态信息LKG_ST指示危险状态时,控制器11可以将非易失性存储器装置12的状态确定为第三状态。控制器11可以基于泄漏状态信息LKG_ST来将针对目标存储块的GC操作调度为前台GC操作。在一个实施方式中,控制器11可以向被确定为处于第三状态的前台GC操作给予高优先级。具有高优先级的前台GC操作可以在具有中优先级和低优先级的后台GC操作之前执行。
当非易失性存储器装置12中包括的空存储块的数量不足时,控制器11可以将非易失性存储器装置12的状态确定为第四状态。当非易失性存储器装置12处于第四状态时,控制器11可能由于预定原因确定针对某个存储块需要GC操作(例如,通过损耗均衡操作或读取回收操作)。在这种情况下,控制器11可以将针对对应的存储块的GC操作调度为前台GC操作。在一个实施方式中,控制器11可以向被确定处于第四状态的前台GC操作给予高优先级。
在一个实施方式中,控制器11可以管理正常队列和泄漏队列。正常队列可以包括关于被确定处于第一状态和第四状态的GC操作的信息。泄漏队列可以包括关于被确定处于第二状态和第三状态的GC操作的信息。控制器11可以基于在正常队列和泄漏队列中排队的信息,根据优先级执行GC操作。
在一个实施方式中,控制器11可以管理后台GC队列和前台GC队列。后台GC队列可以包括关于被确定处于第一状态和第二状态的GC操作的信息。前台GC队列可以包括关于被确定处于第三状态和第四状态的GC操作的信息。控制器11可以基于在后台GC队列和前台GC队列中排队的信息,根据优先级执行GC操作。
图12是示出根据实施方式的具有固态驱动器(SSD)的数据处理系统1000的图。参照图12,数据处理系统1000可以包括主机装置1100和SSD 1200。
SSD 1200可以包括控制器1210、缓冲存储器装置1220、多个非易失性存储器装置1231至123n、电源1240、信号连接器1250和电源连接器1260。
控制器1210可以控制SSD 1200的一般操作。控制器1210可以包括主机接口单元1211、控制单元1212、随机存取存储器1213、纠错码(ECC)单元1214和存储器接口单元1215。
主机接口单元1211可以通过信号连接器1250与主机装置1100交换信号SGL。信号SGL可以包括命令、地址、数据等。主机接口单元1211可以根据主机装置1100的协议将主机装置1100和SSD 1200接口连接。例如,主机接口单元1211可以通过诸如安全数字、通用串行总线(USB)、多媒体卡(MMC)、嵌入式MMC(eMMC)、个人计算机存储卡国际协会(PCMCIA)、并行高级技术附件(PATA)、串行高级技术附件(SATA)、小型计算机系统接口(SCSI)、串行附接SCSI(SAS)、外围组件互连(PCI)PCIExpress(PCI-E)和通用闪存存储(UFS)的标准接口协议中的任何一种与主机装置1100通信。
控制单元1212可以分析和处理从主机装置1100接收的信号SGL。控制单元1212可以根据用于驱动SSD 1200的固件或软件来控制内部功能块的操作。随机存取存储器1213可以用作用于驱动这样的固件或软件的工作存储器。
ECC单元1214可以生成要发送到非易失性存储器装置1231至123n中的至少一个的数据的奇偶校验数据。所生成的奇偶校验数据可以与数据一起存储在非易失性存储器装置1231至123n中。ECC单元1214可以基于奇偶校验数据来检测从非易失性存储器装置1231至123n中的至少一个读取的数据的错误。如果检测到的错误在可校正范围内,则ECC单元1214可以校正检测到的错误。
存储器接口单元1215可以根据控制单元1212的控制向非易失性存储器装置1231至123n中的至少一个提供控制信号,例如命令和地址。此外,存储器接口单元1215可以根据控制单元1212的控制与非易失性存储器装置1231至123n中的至少一个交换数据。例如,存储器接口单元1215可以将存储在缓冲存储器装置1220中的数据提供给非易失性存储器装置1231至123n中的至少一个,或者将从非易失性存储器装置1231至123n中的至少一个读取的数据提供给缓冲存储器装置1220。
缓冲存储器装置1220可以临时存储要存储在非易失性存储器装置1231至123n中的至少一个中的数据。此外,缓冲存储器装置1220可以临时存储从非易失性存储器装置1231至123n中的至少一个读取的数据。可以基于控制器1210将临时存储在缓冲存储器装置1220中的数据发送到主机装置1100或非易失性存储器装置1231至123n中的至少一个。
非易失性存储器装置1231至123n可以用作SSD 1200的存储介质。非易失性存储器装置1231至123n可以分别通过多个通道CH1至CHn与控制器1210联接。一个或更多个非易失性存储器装置可联接到一个通道。联接到每个通道的非易失性存储器装置可以联接到相同的信号总线和数据总线。
电源1240可以将通过电源连接器1260输入的电力PWR提供给SSD 1200的内部。电源1240可以包括辅助电源1241。当发生突然断电时,辅助电源1241可以提供电力以允许SSD1200正常终止。辅助电源1241可以包括大电容电容器。
取决于主机装置1100和SSD 1200之间的接口方案,信号连接器1250可以由各种类型的连接器配置。
取决于主机装置1100的供电方案,电源连接器1260可以由各种类型的连接器配置。
图13是示出根据实施方式的包括存储器系统4200的网络系统4000的图。参照图13,网络系统4000可以包括通过网络4500联接的服务器系统4300和多个客户端系统4410至4430。
服务器系统4300可以基于来自多个客户端系统4410至4430的请求来服务数据。例如,服务器系统4300可以存储从多个客户端系统4410至4430提供的数据。作为另一示例,服务器系统4300可以向多个客户端系统4410至4430提供数据。
服务器系统4300可以包括主机装置4100和存储器系统4200。存储器系统4200可以由图7中所示的存储器系统10或图12中所示的SSD 1200配置。
虽然上面已经描述了各种实施方式,但是本领域技术人员将理解,所描述的实施方式仅是示例。因此,这里描述的泄漏检测电路、非易失性存储器装置和存储器系统不应基于所描述的实施方式而受限制。
相关申请的交叉引用
本申请要求于2021年9月2日向韩国知识产权局提交的韩国申请第10-2021-0117179号的优先权,该申请的全部内容通过引用合并于此。

Claims (20)

1.一种泄漏检测电路,所述泄漏检测电路包括:
比较电路,所述比较电路将基于操作电压节点的电平而改变的输入电压与参考电压进行比较,并且输出检测信号;以及
状态判定电路,所述状态判定电路基于所述检测信号来确定与确定时段相对应的计数值,并且基于所述计数值来输出泄漏状态信息。
2.根据权利要求1所述的泄漏检测电路,其中,所述比较电路输出所述检测信号,所述检测信号在所述确定时段中具有第一值并且在其他时段中具有第二值,并且
其中,所述确定时段在对所述操作电压节点的操作电压供应被移除时开始,并且在所述输入电压变得低于所述参考电压时结束。
3.根据权利要求1所述的泄漏检测电路,其中,所述状态判定电路包括:
计数器,所述计数器基于所述检测信号和时钟信号输出所述计数值;以及
计数评估电路,所述计数评估电路将所述计数值与一个或更多个参考值进行比较并且输出所述泄漏状态信息。
4.根据权利要求3所述的泄漏检测电路,其中,基于所述检测信号,所述计数器对所述确定时段中的所述时钟信号的脉冲的数量进行计数,并输出所述计数值。
5.根据权利要求3所述的泄漏检测电路,其中,所述一个或更多个参考值分别限定对应于不同泄漏状态值的两个或更多个状态区域,并且
其中,所述计数评估电路确定所述计数值属于所述状态区域当中的哪个状态区域,并且输出所述泄漏状态值当中的与该状态区域相对应的泄漏状态值作为所述泄漏状态信息。
6.一种非易失性存储器装置,所述非易失性存储器装置包括:
电压供应电路,所述电压供应电路在内部操作正在执行的同时提供操作电压;
泄漏检测电路,所述泄漏检测电路执行泄漏检测操作,所述泄漏检测操作检测来自所述操作电压的电压传输路径的电流泄漏;以及
控制电路,所述控制电路控制所述泄漏检测操作。
7.根据权利要求6所述的非易失性存储器装置,其中,所述控制电路基于外部控制器确定所述操作电压的类型。
8.根据权利要求7所述的非易失性存储器装置,其中,所述操作电压的类型包括读取电压、编程电压、编程验证电压、擦除电压和擦除验证电压中的一个或更多个。
9.根据权利要求6所述的非易失性存储器装置,其中,所述泄漏检测电路包括:
比较电路,所述比较电路联接至操作电压节点,所述操作电压从所述电压供应电路供应至所述操作电压节点,所述比较电路将基于所述操作电压节点的电平而改变的输入电压与参考电压进行比较,并且输出检测信号;以及
状态判定电路,所述状态判定电路基于所述检测信号来确定与确定时段相对应的计数值,并且基于所述计数值来输出泄漏状态信息。
10.根据权利要求9所述的非易失性存储器装置,其中,所述控制电路根据所述操作电压的类型设置所述参考电压。
11.根据权利要求9所述的非易失性存储器装置,其中,所述比较电路输出所述检测信号,所述检测信号在所述确定时段中具有第一值并且在其他时段中具有第二值,并且
其中,所述确定时段在所述电压供应电路关断时开始,并且在所述输入电压变得低于所述参考电压时结束。
12.根据权利要求9所述的非易失性存储器装置,其中,所述状态判定电路包括:
计数器,所述计数器基于所述检测信号和时钟信号输出所述计数值;以及
计数评估电路,所述计数评估电路将所述计数值与一个或更多个参考值进行比较并且输出所述泄漏状态信息。
13.根据权利要求12所述的非易失性存储器装置,其中,所述控制电路根据所述操作电压的类型来设置所述一个或更多个参考值。
14.一种存储器系统,所述存储器系统包括:
非易失性存储器装置,所述非易失性存储器装置在对目标存储块执行内部操作的同时执行泄漏检测操作;以及
控制器,所述控制器基于所述泄漏检测操作的执行结果对所述目标存储块执行存储器管理操作。
15.根据权利要求14所述的存储器系统,其中,所述控制器基于对所述非易失性存储器装置的操作计数来确定是否要控制所述非易失性存储器装置执行所述泄漏检测操作。
16.根据权利要求14所述的存储器系统,其中,所述控制器基于所述执行结果来确定要对所述目标存储块执行所述存储器管理操作的时间点。
17.根据权利要求14所述的存储器系统,其中,当所述执行结果指示第一泄漏状态时,所述控制器对所述目标存储块执行前台垃圾收集操作,并将所述目标存储块指定为坏块。
18.根据权利要求14所述的存储器系统,其中,当所述执行结果指示第二泄漏状态时,所述控制器对所述目标存储块执行后台垃圾收集操作。
19.根据权利要求14所述的存储器系统,其中,所述控制器确定要对其执行所述泄漏检测操作的操作电压的类型。
20.根据权利要求14所述的存储器系统,其中,所述非易失性存储器装置包括泄漏检测电路,所述泄漏检测电路在所述内部操作正在执行的同时,通过将基于操作电压节点的电平而改变的输入电压与参考电压进行比较来生成检测信号,并且通过对所述检测信号的预定时段进行计数来执行所述泄漏检测操作。
CN202210971094.1A 2021-09-02 2022-08-11 泄漏检测电路、非易失性存储器装置以及存储器系统 Withdrawn CN115732023A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210117179A KR20230034054A (ko) 2021-09-02 2021-09-02 누설 감지 회로, 누설 감지 회로를 포함하는 비휘발성 메모리 장치, 및 비휘발성 메모리 장치를 포함하는 메모리 시스템
KR10-2021-0117179 2021-09-02

Publications (1)

Publication Number Publication Date
CN115732023A true CN115732023A (zh) 2023-03-03

Family

ID=85287570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210971094.1A Withdrawn CN115732023A (zh) 2021-09-02 2022-08-11 泄漏检测电路、非易失性存储器装置以及存储器系统

Country Status (3)

Country Link
US (1) US11791007B2 (zh)
KR (1) KR20230034054A (zh)
CN (1) CN115732023A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230036255A (ko) * 2021-09-07 2023-03-14 에스케이하이닉스 주식회사 누설 전류를 보상할 수 있는 반도체 집적 회로 및 그 구동 방법
US20240143499A1 (en) * 2022-10-27 2024-05-02 Dell Products L.P. Dynamic nand read/write access time for ssd reliability and performance enhancement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8514630B2 (en) 2010-07-09 2013-08-20 Sandisk Technologies Inc. Detection of word-line leakage in memory arrays: current based approach
US9697912B2 (en) * 2015-05-26 2017-07-04 Micron Technology, Inc. Leakage current detection
KR102267046B1 (ko) 2017-03-29 2021-06-22 삼성전자주식회사 스토리지 장치 및 배드 블록 지정 방법
KR102653843B1 (ko) 2018-04-19 2024-04-02 에스케이하이닉스 주식회사 데이터 저장 장치 및 이의 리드 디스터번스 방지 방법, 이를 이용한 스토리지 시스템
KR102468806B1 (ko) * 2018-06-27 2022-11-18 에스케이하이닉스 주식회사 반도체 메모리 장치, 그 동작 방법 및 메모리 시스템
KR20200067035A (ko) 2018-12-03 2020-06-11 에스케이하이닉스 주식회사 데이터 저장 장치 및 동작 방법, 이를 포함하는 스토리지 시스템
US10714205B1 (en) * 2019-06-25 2020-07-14 Sandisk Technologies Llc Multi-purposed leak detector

Also Published As

Publication number Publication date
US20230060971A1 (en) 2023-03-02
KR20230034054A (ko) 2023-03-09
US11791007B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
US20190179694A1 (en) Data storage device, operating method thereof and storage system including the same
US11157201B2 (en) Memory system and operating method thereof
US10902928B2 (en) Memory system, operation method thereof, and nonvolatile memory device
CN111813335A (zh) 数据存储装置及其操作方法
CN115732023A (zh) 泄漏检测电路、非易失性存储器装置以及存储器系统
US11675699B2 (en) Data storage device, operation method thereof, and storage system including the same
CN110010185B (zh) 存储器系统及其操作方法
US20200174921A1 (en) Data storage device, operation method thereof, and storage system including the same
CN109426627B (zh) 数据存储装置及其操作方法
US11803307B2 (en) Memory system and operating method thereof
US11036493B2 (en) Memory system and operating method thereof
CN110299181B (zh) 非易失性存储器装置、其操作方法及数据存储装置
US20230289059A1 (en) Memory system and operating method thereof
KR102475688B1 (ko) 불휘발성 메모리 장치, 이를 포함하는 데이터 저장 장치 및 그것의 동작 방법
US20200073701A1 (en) Data storage device, operation method thereof and storage system having the same
CN112698784B (zh) 存储器系统
CN110442302B (zh) 存储器系统及用于操作存储器系统的方法
US10564896B2 (en) Data storage device and operating method thereof
CN112084118A (zh) 数据存储装置及其操作方法
US20230214151A1 (en) Memory system and operating method thereof
US11544004B2 (en) Nonvolatile memory device and memory system including the same
CN110825654B (zh) 存储器系统及其操作方法
US20210223956A1 (en) Memory system and data processing system including the same
US20210294513A1 (en) Memory system
CN114840444A (zh) 存储器系统及其操作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20230303

WW01 Invention patent application withdrawn after publication