CN115621359A - 提高锌黄锡矿太阳能电池性能的方法 - Google Patents

提高锌黄锡矿太阳能电池性能的方法 Download PDF

Info

Publication number
CN115621359A
CN115621359A CN202210844240.4A CN202210844240A CN115621359A CN 115621359 A CN115621359 A CN 115621359A CN 202210844240 A CN202210844240 A CN 202210844240A CN 115621359 A CN115621359 A CN 115621359A
Authority
CN
China
Prior art keywords
substrate
cu2zn
kesterite
solar cell
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210844240.4A
Other languages
English (en)
Inventor
S·扎内蒂
A·罗密欧
E·阿蒂贾尼
P·普纳希尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isopan SpA
Original Assignee
Isopan SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isopan SpA filed Critical Isopan SpA
Publication of CN115621359A publication Critical patent/CN115621359A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • H01L31/0327Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells

Abstract

本发明涉及一种用于获得光伏CZTS薄膜太阳能电池的方法,所述方法包括:设置前体溶液,制备基材,并且使所述前体溶液沉积在所述基材上。

Description

提高锌黄锡矿太阳能电池性能的方法
本发明的技术领域
本发明涉及锌黄锡矿(kesterite)薄膜太阳能电池(例如,CZTS、CZTSSe或CZTSe薄膜太阳能电池)的技术领域。具体来说,本发明涉及用于改进锌黄锡矿薄膜太阳能电池(例如,CZTS、CZTSSe或CZTSe太阳能电池)效率的简单且快速的方法。
背景技术
薄膜太阳能电池(TFSC)是用于地面和空间光伏的有前途的方法,并且在设备设计和制造方面提供了多种选择。薄膜光伏设备具有使用少量活性材料和其本身有利于开发大型模块的基本优势。由于这些特点,它们保证了降低以€/Wp为单位的光伏模块成本的安全方法,并且一旦获得高效率,就能够占领大量市场份额。实现最高转换效率的无机薄膜技术是基于铜铟镓硒合金的技术:CIGS(效率记录超过23%),但目前的世界铟生产量可能会限制非常大规模的模块生产。因此,研究人员开始开发类似CIGS的材料,其中,铟和镓被一对化学成分为Cu2-X-Y-Z4的金属替代。研究最多的化合物是Cu2ZnSnS4(锌黄锡矿)和Cu2ZnSnSe4或它们的混合物:Cu2ZnSn(S,Se)4。本专利专注于这类材料,其在下文中称为CZTS。
虽然CZTS是一种已经由许多组研究过的材料,但仍然没有获得足够的了解。特别是,提高效率(仍然相对较低)的关键途径之一是掺杂吸收材料。这一方面需要解决正确元素能够包含于CZTSSe基质中,同时对材料进行掺杂。
从这个意义上讲,许多人试图找到这一加工步骤的解决方案。下文回顾了一些关于CZTSSe太阳能电池掺杂的出版物。
2016年IEEE第43届光伏专家会议(PVSC)的2016年第0534-0538页Zhenghua Su、Wenjie Li、Guchhait Asim、Tay Ying Fan和Lydia Helena Wong的“效率大于10%的CZTS太阳能电池的阳离子替代物”(Cation Substitution of CZTS Solar Cell with>10%Efficiency),doi:10.1109/PVSC.2016.7749651;
先进能量材料(Adv.Energy Mater)中Hadke,S.H.,Levcenko,S.,Lie,S.,Hages,C.J.,Márquez,J.A.,Unold,T.,Wong,L.H.的“效率超过10%的溶液加工CZTS太阳能电池中双阳离子取代的协同效应”(Synergistic Effects of Double Cation Substitution inSolution-Processed CZTS Solar Cells with over 10%Efficiency),2018,8,1802540,https://doi.org/10.1002/aenm.201802540;
合金与化合物学报(Journal of Alloys and Compounds)中Luan H、Yao B、Li Y、Liu R、Ding Z、Zhang Z、Zhao H、Zhang L的“通过镉表面扩散掺杂提高Cu2ZnSn(S,Se)4太阳能电池功率转换效率的机理”(Mechanism of enhanced power conversion efficiencyof Cu2ZnSn(S,Se)4solar cell by cadmium surface diffusion doping);876(2021)160160,https://doi.org/10.1016/j.jallcom.2021.160160。
已经有一项专利(CN110112062A),其使用IIIA族元素制备CZTS薄膜太阳能电池,但掺杂用作缓冲层的硫化镉薄膜。
锌黄锡矿类材料具有最佳带隙范围和高吸收系数。迄今为止,基于肼基纯溶液的方法已获得了12.6%的最高认证设备效率。然而,在该过程中溶解无机材料所用的肼的毒性对于大面积制造具有安全问题。与类似PV材料的性能相比,CZTSSe的记录效率仍然太低。
发明目的
本发明的主要目的是提供用于获得光伏锌黄锡矿薄膜太阳能电池(例如,光伏CZTS、CZTSSe或CZTSe薄膜太阳能电池)的新方法。
本发明的另一目的是提供一种通过使用快速表面处理来改进光伏锌黄锡矿薄膜太阳能电池(例如,光伏CZTS、CZTSSe或CZTSe薄膜太阳能电池)的光伏性能的简单方法,所述快速表面处理可以在工业规模生产过程中容易地实现。
根据本发明的方面,提供了如权利要求1所述的方法。
从属权利要求涉及本发明的优选且有利的实施方式。
附图简要说明
由下文描述并参照附图,本发明的其它特征和优势将更加明晰,其中:
-图1是CZTSSe太阳能电池制造的示意图,包括从前体溶液到最终设备的过程的所有步骤;
-图2显示了加速稳定性试验(AST)前后的参照物和CdCl2处理的CZTSSe太阳能电池的J-V特性(电流密度-电压特性);
-图3显示了AST前后的参照物和CdCl2处理的CZTSSe太阳能电池的J-V特性的统计箱线图;
-图4显示CdCl2处理之前(a)和之后(b)CZTSSe吸收材料的AFM图像;
-图5涉及CdCl2处理之前(a)和之后(b)CZTSSe吸收材料的XRD图案;
-图6显示CdCl2处理之前(a)和之后(b)CZTSSe吸收材料的XRD图案(在26.6°至28.2°之间放大);
-图7涉及CdCl2处理之前和之后CZTSSe吸收材料的拉曼光谱;
-图8显示CdCl2处理之前(a)和之后(b)CZTSSe吸收材料的拉曼光谱(在170cm-1至220cm-1之间放大);
本发明的优选实施方式
根据本发明的用于获得光伏锌黄锡矿薄膜太阳能电池(例如,光伏CZTS、CZTSSe或CZTSe薄膜太阳能电池)的包括以下步骤:
-设置锌黄锡矿膜,例如CZTS、CZTSSe或CZTSe膜,例如前体溶液,
-制备基材;以及
-使所述膜沉积在基材上。
根据本发明,锌黄锡矿薄膜太阳能电池有利地包括如下中的一种或多种或由如下中的一种或多种组成:Cu2ZnSnS4、Cu2ZnSnSe4、Cu2ZnSn(Se,S)4、Ag2ZnSnSe4、Ag2ZnSn(Se,S)4、Ag2ZnSn(Se,S)4、(Cu,Ag)2ZnSnSe4、(Cu,Ag)2ZnSnS4、(Cu,Ag)2ZnSn(Se,S)4、(Cu,Ag)2ZnSnSe4、(Cu,Ag)2ZnSnS4、(Cu,Ag)2ZnSn(Se,S)4、Cu2Zn(Sn,Ge)S4、Cu2Zn(Sn,Ge)Se4、Cu2Zn(Sn,Ge)(S,Se)4、(Cu,Ag)2Zn(Sn,Ge)S4、(Cu,Ag)2Zn(Sn,Ge)Se4、(Cu,Ag)2Zn(Sn,Ge)(S,Se)4、Cu2(Zn,Mg)(Sn,Ge)S4、Cu2(Zn,Mg)(Sn,Ge)Se4、Cu2(Zn,Mg)(Sn,Ge)(S,Se)4、(Cu,Ag)2(Zn,Mg)(Sn,Ge)(S,Se)4、(Cu,Ag)2(Zn,Mg)(Sn,Ge)S4、(Cu,Ag)2(Zn,Mg)(Sn,Ge)Se4、(Cu,Ag)2(Zn,Mg)Sn(S,Se)4、(Cu,Ag)2(Zn,Mg)SnS4、(Cu,Ag)2(Zn,Mg)SnSe4、Cu2(Zn,Cd)SnS4、Cu2(Zn,Cd)Sn(S,Se)4、Cu2(Zn,Cd)Sn(S,Se)4、(Li,Cu)2ZnSn(S,Se)4、(Li,Cu)2ZnSnS4、(Li,Cu)2ZnSnSe4、(Cu,Mg)ZnSnSe4、(Cu,Mg)ZnSn(S,Se)4、(Cu,Mg)ZnSnS4、Cu2ZnSiSe4、Cu2ZnSiS4、Cu2ZnSi(S,Se)4、Cu2Zn(Si,Sn)(S,Se)4、Cu2Zn(Si,Sn)S4、Cu2Zn(Si,Sn)Se4、Cu2(Zn,Fe)SnS4、Cu2(Zn,Fe)Sn(S,Se)4、Cu2(Zn,Fe)SnSe4、Cu2NiSnS4、Cu2NiSnSe4或Cu2NiSn(S,Se)4薄膜太阳能电池。
该方法还包括提高电池效率参数的步骤,根据该步骤,添加掺杂化合物,例如掺杂溶液包含至少一种镉化合物(即氯化镉化合物)或由至少一种镉化合物(即氯化镉化合物)组成的掺杂溶液,例如氯化镉溶液,其在膜沉积到基材上后添加至基材。
就术语掺杂而言,其是指在半导体中故意引入杂质以提高其电性能的技术。
例如,可以通过采用氯化镉来制备掺杂镉化合物溶液。
作为非限制性示例,这可以通过将镉化合物和/或氯化镉半(五水合物)(CdCl2·21/2H2O-例如79.5-81%-40mM,可从西格玛奥德里奇公司(Sigma-Aldrich)获得)溶解在甲醇中获得。
作为替代方案,可以使用乙酸镉水合物Cd(CH3COO)2·x H2O,尽管氯化镉具有更好的性能。
当然,可以使用其他掺杂镉化合物溶液,例如包含CdCl2的其他组合物。
作为一个有利且非限制性的示例,基材可以通过如下制备:设置钠钙玻璃(SLG)基材,例如尺寸为20-40mm x 20-40mm,例如30x 30mm,厚度约1-5mm,例如约3mm,对该基材进行清洗,然后在所述钠钙玻璃基材上沉积钼(Mo)双层。
例如,清洗步骤包括以下步骤中的一个或多个:
-10-30分钟、例如15分钟超声清洗,如果需要,在肥皂溶液中进行;
-在沸水中10-30分钟,例如20分钟;以及
-10-30分钟、例如15分钟超声清洗,如果需要,在异丙醇中进行。
在一个或多个该步骤之后,可以进行干燥步骤,例如,用氩气自由流进行。
特别是关于沉积步骤,其可以对准清洁的玻璃表面。
更有利地,钼(Mo)(例如双层)通过由钼靶材RF溅射,即钼溅射靶材(molybdenumsputtering targets)(例如99.95%纯度;圆形:直径<=3英寸,厚度>=3mm;可从Testbourne公司获得)沉积在钠钙玻璃基材上。
在这方面,作为非限制性实施方式,例如在1×10-2mbar的压力下,以30sccm的Ar通量和100W的溅射功率来沉积例如厚度为500-1000nm(如果需要700nm)的第一Mo层(更粘),而例如在3×10-3mbar的压力下以20sccm的Ar通量和150W的溅射功率来沉积例如300-800nm(如果需要500nm)厚的第二Mo层(更具导电性)。两层都可以优选在100℃到300℃(例如200℃)的基材温度下进行沉积。
就锌黄锡矿膜(例如CZTS、CZTSSe或CZTSe膜)的获得和沉积而言,可以采用许多物理和化学方法来制造相应的薄膜,例如热蒸发、原子束溅射、混合溅射、RF磁控溅射、电子束蒸发前体的硫化、脉冲激光沉积、溶胶-凝胶旋涂技术、喷雾热解技术、超声波喷雾热解、电沉积、连续离子层吸附反应(SILAR)技术、纳米颗粒路径等。
作为非限制性实施方式,锌黄锡矿,例如,CZTS、CZTSSe或CZTSe可以通过将相应前体溶液旋涂到基材上来制备。
就前体溶液而言,作为非限制性实施方式,其可通过在1000-5000rpm下旋涂5-60秒(例如2400rpm下15秒),然后在200℃-400℃下在空气中干燥1-10分钟(例如在300℃下在空气中干燥5分钟),沉积到Mo涂覆的SLG基材上。该步骤可以例如重复3至6次以获得1-2μm厚的膜,例如,可以重复5次以获得1.6μm厚的膜。
优选地,锌黄锡矿(例如CZTS、CZTSSe或CZTSe,例如前体溶液)的沉积以沉积为第一层的钼层的顶部为目标,其用作太阳能电池的背接触部。
根据非限制性实施方式,制备锌黄锡矿(例如CZTS、CZTSSe或CZTSe,例如前体溶液)的步骤通过使铜、锌、锡和硫衍生物或化合物溶解到乙醇中来进行。优选地,制备锌黄锡矿(例如CZTS、CZTSSe或CZTSe,例如前体溶液)的步骤通过使乙酸铜(II)一水合物(C4H8CuO5-例如≥99%-0.574M,可从默克化学公司(Merc Chemicals)获得)、乙酸锌(II)二水合物(C4H10O6Zn–例如≥99%-0.375M,可从西格玛奥德里奇公司获得)、二氯化锡(II)二水合物(SnCl2 2H2O-例如≥98%-0.3M,可从弗卢克化学公司(Fluke chemicals)获得)和硫脲(NH2CSNH2-例如99%-2.4M,可从西格玛奥德里奇公司获得)溶解到2-甲氧基乙醇(CH3OCH2CH2OH-例如≥99.8%,可从西格玛奥德里奇公司获得)中来进行。
在这方面中,可以在所述制备前体溶液的步骤期间添加稳定剂。对于该方面,二乙醇胺(HN(CH2CH2OH)2-例如≥98%,可从西格玛奥德里奇公司获得)可在制备前体溶液的步骤期间用作稳定剂。
如果需要,该方法可以包括CZTS膜的硒化步骤,例如提供CZTS前体膜。就此而言,CZTS前体膜可在300-500℃下在硒气氛中退火10-50分钟,例如在450℃下退火30分钟,以完成相形成并将硒掺入CZTS晶格中。作为反应器的非限制性示例,可以使用单区水平管式炉进行硒化。
更具体地,参考涉及添加掺杂氯化镉化合物的步骤,例如,将掺杂氯化镉溶液添加到具有CZTS、CZTSSe或CZTSe的基材,根据非限制性实施方式,该步骤可以逐滴进行,例如在CZTS、CZTSSe或CZTSe膜上添加CdCl2溶液液滴(例如5滴至30滴,如果需要约10滴),例如在任选的退火步骤后添加至具有前体溶液的Mo涂覆的SLG基材。根据非限制性实施方式,该处理可以在硒化过程之后进行,例如添加液滴,以基本上完全覆盖吸收层的表面。
CdCl2优选添加在CZTSSe膜的顶部上。
此外,根据本发明的方法还可以包括沉积缓冲/窗口层的步骤。作为非限制性实施方式,其可以是在添加掺杂镉化合物(例如,掺杂氯化镉溶液)的步骤后通过化学浴沉积得到的CdS缓冲层,并且厚度范围为例如40nm至100nm,例如约60nm。
在这方面,有利的是,将10至30ml(例如15ml)的乙酸镉二水合物(Cd(CH3COO)22H2O)溶液(例如98%-0.025M,可从默克化学公司获得)、5至20ml(例如10ml)硫脲(例如0.422M)和10至30ml(例如25ml)氨(NH4OH,20%)溶液添加至100至300ml(例如,200ml)蒸馏水,然后具有前体溶液的基材在40-80℃的温度下用此类溶液涂覆5-30分钟,例如在60℃下涂覆10分钟。
如果需要,作为前接触部的透明导电氧化物层(优选地,ZnO(氧化锌)和ITO(氧化铟锡)层)可以沉积在处理的基材上,即,CZTS、CZTSSe或CZTSe样品,例如沉积在其顶部。
在这方面,作为非限制性示例,80nm厚固有(intrinsic)ZnO和1μm厚ITO可以通过RF溅射沉积。沉积在150℃的连续氧通量(O2:0.5sccm)下以150℃的基材温度用60W功率(对于ZnO)和160W功率(对于ITO)进行。
本发明还涉及由于上述方法获得的光伏CZTS薄膜太阳能电池。
此外,本发明的主题还涉及掺杂镉化合物(例如,掺杂氯化镉溶液)的用途,用于获得具有提高的太阳能性质的光伏CZTS、CZTSSe或CZTSe薄膜太阳能电池。
在这方面,作为非限制性示例,掺杂氯化镉可以按如上所述进行制备,例如,将氯化镉溶解于溶剂(例如,甲醇)中,作为非限制性示例,将氯化镉半(五水合物)(CdCl2·21/2H2O-例如79.5-81%-40mM,可从西格玛奥德里奇公司获得)溶解在甲醇中。
就此而言,可将该溶液逐滴添加到CZTS、CZTSSe或CZTSe膜上,例如,用前体溶液处理的Mo涂覆的SLG基材上。
在如上所述获得的太阳能电池上进行了大量测试。
在这方面,根据非限制性实施方式,已通过热蒸发技术在太阳能电池上沉积30nm金收集网格,并且通过机械刻划来确定电池的活性面积(0.13cm2)。就收集网格而言,其是通过热蒸发技术沉积在太阳能电池顶部的金属接触部。该网格改进了太阳能电池中光产生的电子/空穴的收集。
此外,CZTSSe膜的结构性质通过X射线衍射(XRD)和拉曼光谱进行分析。
膜CZTSSe的表面形貌反而用原子力电子显微镜(AFM)进行分析。
最后,在1000W/m2光强的AM1.5太阳辐照下,测量了活性面积为0.13cm2的太阳能电池的J-V特性。
在这方面,图2显示了加速稳定性试验(AST)前后的参照物和CdCl2处理的CZTSSe太阳能电池的J-V特性(电流密度-电压特性),并且从图2提取的一些细节如下表所示:
Figure BDA0003751704770000081
事实上:
-J-V特性显示出CdCl2处理后效率提高1%;
-处理后,设备的Voc和Jsc均得到改进;
-进行分析装置AST的稳定性,并检测24小时后效率的提高;
-AST后获得了7.27%的最高转化效率。
现在参考图3,图3显示了AST前后参照物和CdCl2处理的CZTSSe太阳能电池的J-V特性的统计箱线图,统计箱线图中显示了平均性能因子和最高性能因子,并且除FF外,平均性能因子在用CdCl2进行表面处理后得到改进。
就图5(涉及在CdCl2处理之前(a)和(b)之后的CZTSSe吸收材料的XRD图案)而言,XRD图案与CZTSSe相的标准ICDD(ICDD-01-082-9159)图案匹配。此外,所有峰以ICDD参照物进行标记。
相反,当进行考虑时,图6显示了CdCl2处理之前(a)和之后(b)CZTSSe吸收材料的XRD图案(在26.6°至28.2°之间放大)。在CdCl2处理的情况下,观察到峰位置向较低角度略微偏移;
现在考虑图7(CdCl2处理前后的CZTSSe吸收材料的拉曼光谱),由于两个光谱在分别对应于CZTSSe相的E、A、A、B和A振动模式的56cm-1、81cm-1、175cm-1、197cm-1、235-250cm-1、329.5cm-1处显示出CZTSSe特征峰,因此通过拉曼光谱进一步证实了膜的相纯度。XRD和拉曼光谱证实了相纯CZTSSe材料的形成。
然后结合图8(在CdCl2处理之前(a)和(b)之后CZTSSe吸收材料的拉曼光谱),在处理的样品的拉曼光谱中观察到向更高波数的偏移。
因此,与现有技术方案相比,本发明提出了一种通过在制造过程中添加简单步骤能够改进设备效率的表面处理。
如应理解的,由于本发明获得了许多有益方面。
首先,用镉掺杂能帮助改进锌黄锡矿薄膜太阳能电池(例如,CZTS、CZTSSe或CZTSe薄膜太阳能电池)的性能。
此外,掺杂过程快且无侵入性,因为其并未涉及在锌黄锡矿沉积(例如CZTS、CZTSSe或CZTSe沉积)期间添加其他化学物质。
用于表面处理的氯化镉的量较低,因此不会影响电池制造的总成本。
该过程中所用的镉量对处理和环境都是安全的。
事实上,在锌黄锡矿(例如CZTS、CZTSSe或CZTSe)太阳能电池的工业生产中实施该掺杂工艺是容易的。
上述描述主要回顾了CZTS、CZTSSe或CZTSe,但所有上述锌黄锡矿都应被视为包括在本发明的范围内,因为所有锌黄锡矿都进行了测试并已经证明了良好的结果。
在权利要求所限定的范围内,本发明的变化和变体是可能的。

Claims (15)

1.一种用于获得光伏锌黄锡矿薄膜太阳能电池的方法,所述方法包括:
-设置锌黄锡矿膜;
-制备基材;以及
-使所述膜沉积在所述基材上,
其中,所述方法包括如下步骤:在所述膜沉积在所述基材上后,向所述基材添加包含至少一种氯化镉化合物的掺杂化合物来提高电池效率参数。
2.如权利要求1所述的方法,其中,所述基材通过设置钠钙玻璃或SLG基材,对其进行清洁,然后在所述钠钙玻璃基材上沉积至少一层钼(Mo)来制备。
3.如权利要求2所述的方法,其中,由Mo靶材通过RF溅射到所述钠钙玻璃基材上使钼(Mo)双层沉积在所述钠钙玻璃基材上。
4.如前述权利要求中任一项所述的方法,其中,所述制备前体溶液的步骤通过使铜、锌、锡和脲衍生物或化合物溶解于乙醇中来进行。
5.如权利要求4所述的方法,其中,所述制备前体溶液的步骤通过使乙酸铜(II)一水合物(C4H8CuO5)、乙酸锌(II)二水合物(C4H10O6Zn)、二氯化锡(II)二水合物(SnCl2·2H2O)和硫脲(NH2CSNH2)溶解于2-甲氧基乙醇(CH3OCH2CH2OH)中来进行。
6.如权利要求5所述的方法,所述方法包括在所述制备前体溶液的步骤期间添加稳定剂和/或二乙醇胺(HN(CH2CH2OH)2)的步骤。
7.如前述权利要求中任一项所述的方法,其中,将所述氯化镉化合物逐滴添加到所述基材上。
8.如前述权利要求中任一项所述的方法,当基于权利要求2时,其中,将CdCl2溶液液滴添加到具有前体溶液的Mo涂覆的SLG基材。
9.如前述权利要求中任一项所述的方法,其中,在所述添加所述掺杂镉化合物溶液的步骤之后,通过化学浴沉积来沉积CdS缓冲层。
10.如前述权利要求中任一项所述的方法,其中,将乙酸镉二水合物(Cd(CH3COO)22H2O)溶液、硫脲和氨(NH4OH)溶液添加到蒸馏水中,然后在40-80℃的温度下用该溶液涂覆具有前体溶液或锌黄锡矿层的基材5-30分钟。
11.如前述权利要求中任一项所述的方法,其中,所述锌黄锡矿薄膜太阳能电池包括如下中的一种或多种或由如下中的一种或多种组成:Cu2ZnSnS4、Cu2ZnSnSe4、Cu2ZnSn(Se,S)4、Ag2ZnSnSe4、Ag2ZnSn(Se,S)4、Ag2ZnSn(Se,S)4、(Cu,Ag)2ZnSnSe4、(Cu,Ag)2ZnSnS4、(Cu,Ag)2ZnSn(Se,S)4、(Cu,Ag)2ZnSnSe4、(Cu,Ag)2ZnSnS4、(Cu,Ag)2ZnSn(Se,S)4、Cu2Zn(Sn,Ge)S4、Cu2Zn(Sn,Ge)Se4、Cu2Zn(Sn,Ge)(S,Se)4、(Cu,Ag)2Zn(Sn,Ge)S4、(Cu,Ag)2Zn(Sn,Ge)Se4、(Cu,Ag)2Zn(Sn,Ge)(S,Se)4、Cu2(Zn,Mg)(Sn,Ge)S4、Cu2(Zn,Mg)(Sn,Ge)Se4、Cu2(Zn,Mg)(Sn,Ge)(S,Se)4、(Cu,Ag)2(Zn,Mg)(Sn,Ge)(S,Se)4、(Cu,Ag)2(Zn,Mg)(Sn,Ge)S4、(Cu,Ag)2(Zn,Mg)(Sn,Ge)Se4、(Cu,Ag)2(Zn,Mg)Sn(S,Se)4、(Cu,Ag)2(Zn,Mg)SnS4、(Cu,Ag)2(Zn,Mg)SnSe4、Cu2(Zn,Cd)SnS4、Cu2(Zn,Cd)Sn(S,Se)4、Cu2(Zn,Cd)Sn(S,Se)4、(Li,Cu)2ZnSn(S,Se)4、(Li,Cu)2ZnSnS4、(Li,Cu)2ZnSnSe4、(Cu,Mg)ZnSnSe4、(Cu,Mg)ZnSn(S,Se)4、(Cu,Mg)ZnSnS4、Cu2ZnSiSe4、Cu2ZnSiS4、Cu2ZnSi(S,Se)4、Cu2Zn(Si,Sn)(S,Se)4、Cu2Zn(Si,Sn)S4、Cu2Zn(Si,Sn)Se4、Cu2(Zn,Fe)SnS4、Cu2(Zn,Fe)Sn(S,Se)4、Cu2(Zn,Fe)SnSe4、Cu2NiSnS4、Cu2NiSnSe4或Cu2NiSn(S,Se)4薄膜太阳能电池。
12.由于如前述权利要求中任一项所述的方法获得的光伏锌黄锡矿薄膜太阳能电池。
13.掺杂氯化镉化合物的用途,用于获得效率参数得以提高的光伏锌黄锡矿薄膜太阳能电池。
14.如权利要求13所述的用途,CdCl2溶液液滴作为组分添加至锌黄锡矿基太阳能电池。
15.如权利要求13或14所述的用途,其中,所述锌黄锡矿薄膜太阳能电池包括如下中的一种或多种或由如下中的一种或多种组成:Cu2ZnSnS4、Cu2ZnSnSe4、Cu2ZnSn(Se,S)4、Ag2ZnSnSe4、Ag2ZnSn(Se,S)4、Ag2ZnSn(Se,S)4、(Cu,Ag)2ZnSnSe4、(Cu,Ag)2ZnSnS4、(Cu,Ag)2ZnSn(Se,S)4、(Cu,Ag)2ZnSnSe4、(Cu,Ag)2ZnSnS4、(Cu,Ag)2ZnSn(Se,S)4、Cu2Zn(Sn,Ge)S4、Cu2Zn(Sn,Ge)Se4、Cu2Zn(Sn,Ge)(S,Se)4、(Cu,Ag)2Zn(Sn,Ge)S4、(Cu,Ag)2Zn(Sn,Ge)Se4、(Cu,Ag)2Zn(Sn,Ge)(S,Se)4、Cu2(Zn,Mg)(Sn,Ge)S4、Cu2(Zn,Mg)(Sn,Ge)Se4、Cu2(Zn,Mg)(Sn,Ge)(S,Se)4、(Cu,Ag)2(Zn,Mg)(Sn,Ge)(S,Se)4、(Cu,Ag)2(Zn,Mg)(Sn,Ge)S4、(Cu,Ag)2(Zn,Mg)(Sn,Ge)Se4、(Cu,Ag)2(Zn,Mg)Sn(S,Se)4、(Cu,Ag)2(Zn,Mg)SnS4、(Cu,Ag)2(Zn,Mg)SnSe4、Cu2(Zn,Cd)SnS4、Cu2(Zn,Cd)Sn(S,Se)4、Cu2(Zn,Cd)Sn(S,Se)4、(Li,Cu)2ZnSn(S,Se)4、(Li,Cu)2ZnSnS4、(Li,Cu)2ZnSnSe4、(Cu,Mg)ZnSnSe4、(Cu,Mg)ZnSn(S,Se)4、(Cu,Mg)ZnSnS4、Cu2ZnSiSe4、Cu2ZnSiS4、Cu2ZnSi(S,Se)4、Cu2Zn(Si,Sn)(S,Se)4、Cu2Zn(Si,Sn)S4、Cu2Zn(Si,Sn)Se4、Cu2(Zn,Fe)SnS4、Cu2(Zn,Fe)Sn(S,Se)4、Cu2(Zn,Fe)SnSe4、Cu2NiSnS4、Cu2NiSnSe4或Cu2NiSn(S,Se)4薄膜太阳能电池。
CN202210844240.4A 2021-07-16 2022-07-18 提高锌黄锡矿太阳能电池性能的方法 Pending CN115621359A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT102021000018911A IT202100018911A1 (it) 2021-07-16 2021-07-16 Un metodo per migliorare le prestazioni di una cella solare cztsse
IT102021000018911 2021-07-16

Publications (1)

Publication Number Publication Date
CN115621359A true CN115621359A (zh) 2023-01-17

Family

ID=77989936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210844240.4A Pending CN115621359A (zh) 2021-07-16 2022-07-18 提高锌黄锡矿太阳能电池性能的方法

Country Status (4)

Country Link
US (1) US20230060927A1 (zh)
EP (1) EP4120367A1 (zh)
CN (1) CN115621359A (zh)
IT (1) IT202100018911A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117174593B (zh) * 2023-08-22 2024-04-09 中山大学 一种基于添加氨水制备铜锌锡硫硒薄膜前驱体溶液、铜锌锡硫硒薄膜及其光伏器件的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258620B1 (en) * 1997-10-15 2001-07-10 University Of South Florida Method of manufacturing CIGS photovoltaic devices
US20130240797A1 (en) * 2010-12-06 2013-09-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Compound semiconductor
US20130074914A1 (en) * 2011-09-26 2013-03-28 General Electric Company Photovoltaic devices
KR20130045516A (ko) * 2011-10-26 2013-05-06 한국과학기술연구원 박막태양전지 및 이의 제조방법
JP5928612B2 (ja) * 2012-02-28 2016-06-01 Tdk株式会社 化合物半導体太陽電池
CN110112062A (zh) 2019-05-22 2019-08-09 中南大学 IIIA族元素掺杂CdS的CZTS太阳电池制备方法

Also Published As

Publication number Publication date
EP4120367A1 (en) 2023-01-18
US20230060927A1 (en) 2023-03-02
IT202100018911A1 (it) 2023-01-16

Similar Documents

Publication Publication Date Title
Ravindiran et al. Status review and the future prospects of CZTS based solar cell–A novel approach on the device structure and material modeling for CZTS based photovoltaic device
Zhang et al. High efficiency solution-processed thin-film Cu (In, Ga)(Se, S) 2 solar cells
Jo et al. 8% Efficiency Cu2ZnSn (S, Se) 4 (CZTSSe) thin film solar cells on flexible and lightweight molybdenum foil substrates
JP2010512647A (ja) Ibiiiavia族化合物層のためのドーピング技術
KR20100125288A (ko) 박막 태양 전지의 개선된 후면 컨택
Prabeesh et al. CZTS solar cell with non-toxic buffer layer: A study on the sulphurization temperature and absorber layer thickness
CN104813482B (zh) 用于cigs光伏器件的钼基材
US20150333212A1 (en) Method for preparing a thin layer of an absorber made of copper, zinc and tin sulfide(s), annealed thin layer and photovoltaic device thus obtained
Zheng et al. Enhanced hydrothermal heterogeneous deposition with surfactant additives for efficient Sb2S3 solar cells
Zhao et al. Effect of sodium doping on crystal growth and band matching of the heterojunction in flexible CZTS solar cells
Pawar et al. Hydrothermal growth of Sb2S3 thin films on molybdenum for solar cell applications: Effect of post-deposition annealing
Yao et al. Electron transport layer driven to improve the open-circuit voltage of CH3NH3PbI3 planar perovskite solar cells
Chu et al. Semi-transparent thin film solar cells by a solution process
Sun et al. Effect of TiN diffusion barrier layer on residual stress and carrier transport in flexible CZTSSe solar cells
CN115621359A (zh) 提高锌黄锡矿太阳能电池性能的方法
Zi et al. Sputtering Al2O3 as an effective interface layer to improve open-circuit voltage and device performance of Sb2Se3 thin-film solar cells
Regmi et al. Aluminum-doped zinc oxide (AZO) ultra-thin films deposited by radio frequency sputtering for flexible Cu (In, Ga) Se2 solar cells
Kim et al. Low-temperature thermally evaporated SnO2 based electron transporting layer for perovskite solar cells with annealing process
Chalapathi et al. Two-stage-processed AgSbS2 films for thin-film solar cells
JP6035122B2 (ja) 光電変換素子および光電変換素子のバッファ層の製造方法
KR101807118B1 (ko) 등급 크기 및 S:Se 비율을 갖는 광전 소자
Kumar et al. Growth and characterization of spray-deposited Cu2ZnSnS4 thin films by using two different carrier gases
KR102212042B1 (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법
Punathil et al. Annealing Temperature and Post Sulphurizaton/Seleniation Effects on Solution-Based CZTS Devices
KR100996162B1 (ko) 박막형 태양전지와 이의 제조방법, 및 박막형 태양전지의 광흡수층 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication