CN1156044C - 用于锂蓄电池的正极活性材料及其制备方法 - Google Patents

用于锂蓄电池的正极活性材料及其制备方法 Download PDF

Info

Publication number
CN1156044C
CN1156044C CNB001222120A CN00122212A CN1156044C CN 1156044 C CN1156044 C CN 1156044C CN B001222120 A CNB001222120 A CN B001222120A CN 00122212 A CN00122212 A CN 00122212A CN 1156044 C CN1156044 C CN 1156044C
Authority
CN
China
Prior art keywords
positive electrode
electrode active
powder
active materials
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB001222120A
Other languages
English (en)
Other versions
CN1278112A (zh
Inventor
权镐真
郑贤淑
金根培
朴容彻
吴浣锡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN1278112A publication Critical patent/CN1278112A/zh
Application granted granted Critical
Publication of CN1156044C publication Critical patent/CN1156044C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种用于锂蓄电池的正极活性材料,其耐久性和放电容量特性高,尤其涉及一种粉末LiaNi1-X-YCoXMYO2-ZFZ和LiaNi1-X-YCoXMYO2-ZSZ(其中,M为一种选自Al,Mg,Sr,La,Ce,V和Ti的金属,0≤X<0.99,0.01≤Y≤0.1,0.01≤Z≤0.1,1.00≤a≤1.1),所述粉末是将LiaNi1-X-YCoXMYO2中的氧用F或S取代。因而,本发明的正极活性材料具有高的耐久性,放电容量和结构安全性。

Description

用于锂蓄电池的正极活性 材料及其制备方法
本专利申请基于1999年6月17日向韩国工业产权局提交的申请号为No.99-22764的专利申请,可参见该申请的技术内容。
                          技术领域
本发明涉及一种用于锂蓄电池的活性材料及其制备方法,尤其是一种用于锂蓄电池的活性材料,该材料是将LiaNi1-X-YCoXMYO2中的氧(O)用F或者S代替,还涉及制备该活性材料的方法。
                          背景技术
随着应用技术的发展,各种以电池供电的便携式电器用具,如摄像机,个人电话,个人电脑,它们的体积都变得越来越小,质量越来越轻,而功能却越来越强大,同时,使用这些电器用具所需的电能却不断增加。特别是,全球都在开发和研究可充电的锂蓄电池并取得进展,人们都希望电池具有高的能量密度。
一种锂蓄电池,其在正极和负极材料中嵌入和脱嵌锂离子,并且在负极和正极之间填充有机物的或者聚合物的电解质以运载锂离子。当锂离子在负极和正极上嵌入和脱嵌时,由于氧化还原反应而使电池产生电能。
锂蓄电池使用碳材料或锂金属作为正极,使用可嵌入/可脱嵌的含硫化合物作为负极。用碳材料代替锂金属作正极,因为后者具有一些缺陷,如,会离析出树枝晶并伴随爆炸和降低充电效率。
另一方面,人们正在研究使用诸如LiCoO2、LiMn2O4、LiNi-XCoXO2、(0<X<1)和LiMnO2这样的复合金属氧化物作为负极,因为先前使用的铬氧化物,MnO2等,都具有充电效率和安全性低的问题。
人们已经开发出如LiMn2O4、LiMnO2等含锰的正极活性材料,或者,如LiCoO2等含钴的正极活性材料。但是,当充电电压为4.3V时,它们的放电容量分别局限在120mAh/g和160mAh/g。同时,由于在外界温度下具有高的电压,良好的电极特性和10-2至1S/cm的导电系数,LiCoO2已经被广泛使用,但是,当在高电流比的情况下充放电时,其稳定性却较低。
人们在正极镍活性材料方面的研究取得了很大进展,镍正极活性材料比钴正极活性材料的放电容量高20%。
使用镍正极活性材料的锂蓄电池成为高能电池是很具有潜力的,因为它们具有高的放电容量。现在,人们正进一步研制镍活性材料,以便克服LiNi1-XCoXO2(0<X<1)的耐久性低和结构不稳定的缺陷。
一种在整个工序中都使用固态的合成方法,共沉淀方法,聚合物螯合剂,等等,这些都已经被人们研究和开发出来,将LiNi1-XMXO2(0<X<1)粉末中的一些Ni用Co,Mn等来代替,以改进基于碱性镍的负极化合物LiNiO2的结构安全性能,放电容量,以及使用寿命等特性。
LiNiO2的缺陷表现在,它难于合成,又因耐久性低而未被应用于电池,而且,在反复的充放电循环中,因其结构不断从单晶变为六方晶又变回单晶,导致其稳定性降低,因而使其放电容量减少,尽管在1.0℃时,它的放电容量能达到200mAh/g。
为了解决上述问题,将Co加入LiNiO2之中以改善其结构,然而,这又导致LiNiO2的放电容量因Co的加入量而降低,而Co的加入量又必须超过30mol%。
为改善其结构的稳定性,人们正在研制LiNi1-XMXO2(其中M为一种金属,如Co或Mn等,0<X<1)和LiNi1-XCoXMYO2(其中M为一种金属,如Al,Mg,Sr,La,或Ce等,0<X<1,0.01<Y<0.1)。然而,这些镍正极活性材料又具有结构不稳定的缺陷,这一缺陷导致锂蓄电池的稳定性降低。
                          发明内容
本发明的目的在于提供一种用于锂蓄电池的正极活性材料,其中合成LiaNi1-X-YCoXMYO2-ZFZ和LiaNi1-X-YCoXMYO2-ZSZ(其中,M为一种选自Al,Mg,Sr,La,Ce,V和Ti的金属,0≤X<0.99,0.01≤Y≤0.1,0.01≤Z≤0.1,1.00≤a≤1.1)的粉末合成,以改善电池的耐久性,放电容量和结构稳定性,上述粉末是将LiaNi1-X-YCoXMYO2中的氧(O)用F或者S取代了。
本发明的另一目的在于提供一种上述用于锂蓄电池的正极活性材料的制备方法。
为实现这些其它目的,本发明提供一种用于锂蓄电池的活性材料,其中将LiaNi1-X-YCoXMYO2(其中,M为一种选自Al,Mg,Sr,La,Ce,V和Ti的金属,0≤X<0.99,0.01≤Y≤0.1,0.01≤Z≤0.1,1.00≤a≤1.1)中的氧用F或者S取代了,也就是说,所述正极活性材料选自下列通式1和2:
LiaNi1-X-YCoXMYO2-ZFZ    (通式1)
LiaNi1-X-YCoXMYO2-ZSZ    (通式2)
其中,M为一种选自Al,Mg,Sr,La,Ce,V和Ti的金属,其中0≤X<0.99,0.01≤Y≤0.1,0.01≤Z≤0.1,1.00≤a≤1.1。
本发明还提供一种选自上述通式1和2的正极活性材料的制备方法。
所述方法包括下列步骤:
(a)将Ni1-X-YCoXMY(OH)2,LiOH与LiF或NaS粉末按照相等的比率在一个研钵搅拌器中混合10-30分钟;
(b)在一个气体气氛控制的加热炉中热处理上述粉末,并用干燥空气循环吹,以制取LiaNi1-X-YCoXMYO2-ZFZ或者LiaNi1-X-YCoXMYO2-ZSZ粉末,其中,M为一种选自Al,Mg,Sr,Lap,Ce,V和Ti的金属,和其中0≤X<0.99,0.01≤Y≤0.1,0.01≤Z≤0.1,1.00≤a≤1.1。其中Ni1-X-YCoXMY(OH)2是通过共沉淀法合成的。
                          附图说明
根据下面的详细描述,并参考说明书附图,将有助于加深对本发明的全面理解,同时也有助于理解本发明所带来的诸多优点。
图1所示是用a)Li1.02Ni0.89Co0.1La0.01O1.95F0.05和b)Li1.02Ni0.89Co0.1La0.01O2制成的扣式电池经过1次循环时的再充电特性图。
图2所示是用a)Li1.02Ni0.89Co0.1La0.01O1.95F0.05和b)Li1.02Ni0.89Co0.1La0.01O2制成的扣式电池经过50次循环时的再充电特性图。
                          具体实施方式
下面将参照附图介绍本发明的优选实施方案。
本发明涉及一种选自下列通式1和2的化合物:
LiaNi1-X-YCoXMYO2-ZFZ    (通式1)
LiaNi1-X-YCoXMYO2-ZSZ    (通式2)
其中,M为一种选自Al,Mg,Sr,La,Ce,V和Ti的金属,其中0≤X<0.99,0.01≤Y≤0.1,0.01≤Z≤0.1,1.00≤a≤1.1。
优选通过将选自Al,Mg,Sr,La,Ce,V和Ti中的金属共沉淀,制得的球形或者类似球形Ni1-X-YCoXMY(OH)2粉末,用于制取上述通式1或2的化合物。
Ni1-X-YCoXMY(OH)2是通过共沉淀的方法合成的。制备包括选自Al-盐,Mg-盐,Sr-盐,La-盐,Ce-盐,V-盐,Ti-盐,Ni-盐和Co-盐的金属盐溶液。金属盐的浓度优选接近2.5M,并用水作为溶剂。
NH4OH作为粘合剂,NaOH作为沉淀剂,两者被不断加入到装有上述金属盐溶液的可溢流的反应器中。
这时,反应器中的温度优选保持在50℃左右,pH值优选保持在11至12。加入到NH4OH中的金属的摩尔比范围优选在1∶0.4至1∶1之间,将反应器中的各组分在以900rpm的速度搅拌下反应。
用水或者稀释的酸性溶液漂洗上述溢流-反应的反应沉淀剂,直到使其中和,然后烘干,便得到了球形的或类球形的Ni1-X-YCoXMY(OH)2粉末。
通过在一个研钵搅拌器中,将等比例的Ni1-X-YCoXMY(OH)2粉末与LiF或NaS粉末,搅拌10-30分钟,制得均匀混合物。
接着,在一个气体气氛控制的加热炉中将上述粉末混合物在600至1000℃之间进行加热处理10-30小时,并用干燥空气吹,这样便制得上述通式1和通式2的正极活性粉末。
上述热处理步骤中,温度以1至5℃/min的速度升高,在热处理温度保持一段规定的时间之后,让粉末自然冷却。
优选在室温条件下,再混合上述通式1和2的化合物粉末,使锂盐均匀分布。
结合下列实施例,本发明将被更详细地介绍。
实施例1
首先,通过共沉淀方法合成Ni0.89Co0.1La0.01(OH)2以制取Li1.02Ni0.89Co0.1La0.01O1.95F0.05
为制备Ni0.89Co0.1La0.01(OH)2,要制备包括选自La-盐,Ni-盐,Co-盐的金属盐溶液。这里,金属的总浓度接近2.5M,用水作为溶剂。
NH4OH作为粘合剂,NaOH作为沉淀剂,两者被不断加入到装有上述金属盐溶液的可溢流的反应器中。
反应器中的温度保持在50℃左右,pH值保持在11至12之间。NH4OH与所加入的金属的摩尔比范围在1∶0.4至1∶1之间,将反应器中的各组分在以900rpm的速度搅拌下反应。
用水或者稀释的酸性溶液漂洗上述溢流-反应的反应沉淀剂,直到使其中和,然后烘干,便得到了球形的或类球形的Ni0.89Co0.1La0.01(OH)2粉末。
按照相等的比率称取LiOH和LiF粉末,放在一个研钵搅拌器中搅拌10-30分钟,制得均匀混合物
在一个气体气氛控制的加热炉中,在700℃温度下,将上述粉末混合物热处理20小时,循环使用干燥空气吹,可制得Li1.02Ni0.89Co0.1La0.01O1.95F0.05
实施例2
用与实施例1所述的制取正极活性材料相同的方法和条件,可以制得Li1.02Ni0.88Co0.1La0.02O1.95F0.05,只是正极活性材料中La的比例从实施例1中的0.01变为0.02。
实施例3
用与实施例1所述的制取正极活性材料相同的方法和条件,可以制得Li1.02Ni0.89Co0.1Mg0.01O1.95F0.05,只是本实施例使用的是Ni0.89Co0.1Mg0.01(OH)2粉末。
实施例4
用与实施例3所述的制取正极活性材料相同的方法和条件,可以制得Li1.02Ni0.88Co0.1Mg0.02O1.95F0.05,只是正极活性材料中Mg的摩尔比从实施例3中的0.01变为0.02。
比较实施例1
与实施例1所制取的材料相比较,用与实施例1相同的方法和条件,制取Li1.02Ni0.89Co0.1La0.01O2正极活性材料,只是混合Ni0.89Co0.1La0.01(OH)2粉末时只用LiOH粉末而不用LiF粉末。
比较实施例2
用与比较实施例1相同的方法和条件制取Li1.02Ni0.89Co0.1La0.02O2正极活性材料,只是La的摩尔比从0.01变为0.02。
比较实施例3
用与实施例3相同的方法和条件制取Li1.02Ni0.89Co0.1Mg0.01O2正极活性材料,只是混合Ni0.89Co0.1Mg0.01(OH)2粉末时只用LiOH粉末而不用LiF粉末。
比较实施例4
用与比较实施例3相同的方法和条件制取Li1.02Ni0.88Co0.1Mg0.02O2正极活性材料,只是Mg的摩尔比从0.01变为0.02。
按照实施例1、2、3、4和比较实施例1、2、3、4的方法制取的粉末,经过X-线衍射(XRD)对其进行结构分析,用扫描电子显微镜(SEM)观测其粉末微粒,通过次级离子质谱法和透射显微镜术证实了所述粉末的特性。
放电性能的评价
用按照实施例1、2、3、4和比较实施例1、2、3、4的方法制取的正极活性材料制成的扣式半电池,对其放电性能进行了评估。
为了制作半电池,用重量比为3%的碳(产品名称:Super P)作导体,用重量比为3%的聚偏二氟乙烯(产品名称:KF-1300)作粘合剂。
扣式半电池由通过用N-甲基吡咯烷(NMP)将活性材料、导体、粘合剂带式流延于Al-箔上制成的极板以及作为另一极板的锂金属组成。
按照本发明所述的方法制成的活性材料,对其容量特性和耐久性特性进行了测试。
为了测试其放电容量特性,对半电池进行测试的条件是,在2.75V和4.3V之间按照0.1C,0.2C,0.5C和1C的恒量放电1至100次。
图1和图2示出了对放电特性的测试结果。
图1示出了用a)Li1.02Ni0.89Co0.1La0.01O1.95F0.05和b)Li1.02Ni0.89Co0.1La0.01O2制成的扣式半电池经过1次循环的放电特性测试结果。而图2所示是用图1的化合物(a)和(b)制成的扣式半电池经过50次循环的放电特性测试结果。
如图1所示,LiaNi1-X-YCoXMYO2中的氧(O)被F取代而制成的LiaNi1-X-YCoXMYO2-ZFZ,对扣式半电池的第一次放电容量进行测试,发现其容量减少约1-3%。然而,如图2所示,当在1C的高电流强度条件下充放电循环50次以后,LiaNi1-X-YCoXMYO2的耐久性为约60%,而LiaNi1-X-YCoXMYO2-ZFZ的耐久性为约74%。因而,LiaNi1-X-YCoXMYO2-ZFZ的耐久性提高了近14%。
将LiaNi1-X-YCoXMYO2中的氧(O)用F取代而制成的LiaNi1-X-YCoXMYO2-ZFZ,尽管其首次放电特性比LiaNi1-X-YCoXMYO2的稍低,但是,经过一段长时间(如50次的循环)的测试后,发现LiaNi1-X-YCoXMYO2-ZFZ的耐久性提高了14%。由于LiaNi1-X-YCoXMYO2-ZFZ比LiaNi1-X-YCoXMYO2具有更高的耐久性和放电容量。因此,LiaNi1-X-YCoXMYO2-ZFZ将被广泛应用于锂蓄电池。

Claims (2)

1.一种用于锂蓄电池的正极活性材料,其特征在于,所述正极活性材料选自:
LiaNi1-X-YCoXMYO2-ZFZ
LiaNi1-X-YCoXMYO2-ZSZ
其中,M为一种选自Al,Mg,Sr,La,Ce,V和Ti的金属,和其中0≤X<0.99,0.01≤Y≤0.1,0.01≤Z≤0.1,1.00≤a≤1.1。
2.一种制备用于锂蓄电池的正极活性材料的方法,包括下列步骤:
(a)将包含Ni-盐、Co-盐和M-盐的金属溶液作为起始物质与水混匀,通过共沉淀法制备Ni1-X-YCoXMY(OH)2,式中M为一种选自Al,Mg,Sr,La,Ce,V和Ti的金属,和其中0≤X<0.99,0.01≤Y≤0.1;
(b)将Ni1-X-YCoXMY(OH)2,LiOH与LiF或NaS粉末按照相等的比率在一个研钵搅拌器中混合10-30分钟,得到一种混合物;及
(c)在一个气体气氛控制的加热炉中将上述混合物在600-1000℃下热处理10-30小时,并用干燥空气循环吹,以制取LiaNi1-X-YCoXMYO2-ZFZ或者LiaNi1-X-YCoXMYO2-ZSZ粉末,式中M为一种选自Al,Mg,Sr,La,Ce,V和Ti的金属,和其中0≤X<0.99,0.01≤Y≤0.1,0.01≤Z≤0.1,1.00≤a≤1.1。
CNB001222120A 1999-06-17 2000-06-17 用于锂蓄电池的正极活性材料及其制备方法 Expired - Lifetime CN1156044C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019990022764A KR100300334B1 (ko) 1999-06-17 1999-06-17 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
KR22764/1999 1999-06-17

Publications (2)

Publication Number Publication Date
CN1278112A CN1278112A (zh) 2000-12-27
CN1156044C true CN1156044C (zh) 2004-06-30

Family

ID=19593128

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001222120A Expired - Lifetime CN1156044C (zh) 1999-06-17 2000-06-17 用于锂蓄电池的正极活性材料及其制备方法

Country Status (4)

Country Link
US (1) US6569569B1 (zh)
JP (1) JP4785230B2 (zh)
KR (1) KR100300334B1 (zh)
CN (1) CN1156044C (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100464746B1 (ko) * 2001-01-23 2005-01-06 가부시끼가이샤 도시바 양극 활성 물질 및 리튬 이온 이차 전지
JP5036100B2 (ja) * 2001-03-30 2012-09-26 三洋電機株式会社 非水電解質二次電池およびその製造方法
CA2388936C (en) * 2001-06-07 2006-07-18 Kawatetsu Mining Co., Ltd. Cathode material for use in lithium secondary battery and manufacturing method thereof
AU2003212009A1 (en) * 2002-02-15 2003-09-04 Seimi Chemical Co., Ltd. Particulate positive electrode active material for lithium secondary cell
CN100459243C (zh) * 2002-02-15 2009-02-04 清美化学股份有限公司 锂二次电池用粒状正极活性物质
JP4274801B2 (ja) * 2003-01-09 2009-06-10 パナソニック株式会社 非水電解質二次電池用正極活物質の製造法
US8153295B2 (en) * 2003-07-17 2012-04-10 Gs Yuasa International Ltd. Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
ATE355629T1 (de) * 2003-08-20 2006-03-15 Samsung Sdi Co Ltd Elektrolyt für wiederaufladbare lithium-batterie und wiederaufladbare lithium-batterie enthaltend denselben
US20050130042A1 (en) * 2003-12-11 2005-06-16 Byd America Corporation Materials for positive electrodes of lithium ion batteries and their methods of fabrication
KR100824247B1 (ko) * 2004-04-02 2008-04-24 에이지씨 세이미 케미칼 가부시키가이샤 리튬 2 차 전지 정극용 리튬 함유 복합 산화물의 제조 방법
CN101320803A (zh) * 2004-04-30 2008-12-10 清美化学股份有限公司 锂二次电池正极用含锂复合氧化物的制造方法
WO2005124898A1 (ja) * 2004-06-16 2005-12-29 Seimi Chemical Co., Ltd. リチウム二次電池用正極活物質粉末
JP5389170B2 (ja) * 2008-08-04 2014-01-15 ユミコア ソシエテ アノニム 高結晶性リチウム遷移金属酸化物
CN109860563B (zh) * 2018-12-17 2021-12-03 廊坊绿色工业技术服务中心 一种氧位掺杂镍钴铝正极材料及其制备方法和用途
CN114982008A (zh) * 2019-12-26 2022-08-30 汉阳大学校产学协力团 用于锂二次电池的含氟正电极活性材料和包含其的锂二次电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037095A (en) * 1997-03-28 2000-03-14 Fuji Photo Film Co., Ltd. Non-aqueous lithium ion secondary battery
JP4022937B2 (ja) * 1997-04-24 2007-12-19 宇部興産株式会社 リチウムイオン非水電解質二次電池

Also Published As

Publication number Publication date
KR20010002783A (ko) 2001-01-15
US6569569B1 (en) 2003-05-27
KR100300334B1 (ko) 2001-11-01
JP2001023641A (ja) 2001-01-26
CN1278112A (zh) 2000-12-27
JP4785230B2 (ja) 2011-10-05

Similar Documents

Publication Publication Date Title
CN1171335C (zh) 用于锂二次电池的正极活性材料及其制备方法
TWI630750B (zh) 正極活性材料及其製備方法
CN1240150C (zh) 可再充电锂电池的正极及其制备方法
CN1213495C (zh) 一种用于锂蓄电池的正极活性材料及其制备方法
CN1163991C (zh) 锂电池用正极活性物质、含有该物质的锂电池及其生产方法
CN1208866C (zh) 以纳米表面包覆复合材料为正极活性物质的锂二次电池
CN1156044C (zh) 用于锂蓄电池的正极活性材料及其制备方法
KR101409191B1 (ko) 리튬이차전지용 양극 활물질의 제조방법
CN1237632C (zh) 二次电池
CN1458704A (zh) 电池活性物质的制备方法及由此制备的电池活性物质
CN1144305C (zh) 用于可充电锂电池的正极活性物质
CN1293655C (zh) 阴极材料及使用它的电池
CN1366363A (zh) 可再充电锂电池的正极活性材料及其制备方法
JP2006253140A (ja) 非水電解質リチウム二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
CN1228620A (zh) 用于锂二次电池的正极活性材料及其制造方法
CN1434527A (zh) 可再充电锂电池的正极活性物质
CN1191993C (zh) 制备具有改进的电化学性能的锂锰尖晶石氧化物的方法
CN100342568C (zh) 含锂锰复合氧化物的正极多元活性材料的制备方法
JP2014502245A (ja) リチウムマンガン複合酸化物及びその製造方法
CN1305237A (zh) 锂锰复合氧化物及使用它的非水电解液二次电池
CN1159783C (zh) 镍酸锂正极物质、其生产方法以及装有该活性物质的锂电池
CN108511697A (zh) 铜镍酸锂正极材料及其制备方法和锂离子电池
CN1173887C (zh) 尖晶石型锰酸锂的制备方法
CN1346158A (zh) 制备可充电锂电池的正极活性材料的方法
KR100644915B1 (ko) 리튬이차전지용 양극활 물질 및 이를 포함한 리튬이차전지

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20040630

CX01 Expiry of patent term