CN115536400A - 一种陶瓷吸波材料及其制备方法与应用 - Google Patents

一种陶瓷吸波材料及其制备方法与应用 Download PDF

Info

Publication number
CN115536400A
CN115536400A CN202211102616.0A CN202211102616A CN115536400A CN 115536400 A CN115536400 A CN 115536400A CN 202211102616 A CN202211102616 A CN 202211102616A CN 115536400 A CN115536400 A CN 115536400A
Authority
CN
China
Prior art keywords
ceramic
powder
metal
wave
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211102616.0A
Other languages
English (en)
Inventor
曾涛
杨易鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shantou University
Original Assignee
Shantou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shantou University filed Critical Shantou University
Priority to CN202211102616.0A priority Critical patent/CN115536400A/zh
Publication of CN115536400A publication Critical patent/CN115536400A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5122Pd or Pt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明涉及吸波陶瓷材料技术领域,具体涉及一种陶瓷吸波材料及其制备方法与应用。该陶瓷吸波材料包括相连接的陶瓷基底层和谐振单元层,谐振单元层为具有阵列排布的孔隙的金属层或阵列排布的金属贴片;陶瓷基底层的原料为陶瓷浆料,陶瓷浆料包括陶瓷粉体、分散剂、粘结剂、助烧剂和溶剂;金属层和所述金属贴片的原料为金属浆料,金属浆料包括金属粉体、分散剂、粘结剂和溶剂;陶瓷粉体包括氧化铝、氮化铝、氮化硅中的至少一种;金属粉体包括铜粉、铝粉、金粉、银粉和铂粉中的至少一种。陶瓷吸波材料在7.5‑11.5GHz的频率范围内反射损耗低于‑10dB,最小反射损耗低于‑30dB,同时具备耐高温性能。

Description

一种陶瓷吸波材料及其制备方法与应用
技术领域
本发明涉及吸波陶瓷材料技术领域,具体涉及一种陶瓷吸波材料及其制备方法与应用。
背景技术
飞行武器除了具备超音速巡航、超视距作战、超机动性能之外还应具备超级隐身能力。隐身性能作为军事斗争的重要研究内容,属于衡量飞行武器战术性能的重要指标。然而简单的半波壁结构很难实现多波段响应、同时也不能特定频段隐身。现时,将具有滤波功能的频率选择表面技术应用于飞行武器前端,采用频率选择表面陶瓷吸波材料制备“带内透明”、“带外隐身”的隐身雷达罩成为一种新的选择。
然而传统的选择频率表面制备技术,如柔性膜转移工艺、激光刻蚀、直接加工等,其成型精度相对较低,难以保持吸波性能的稳定性,且制备周期较长、成本较高,金属贴片植入工艺复杂、过程繁琐。直写式3D成型技术具有成型精度高、材料适用性广、可同时进行多种材料成型及制备复杂结构等特点,在复合材料吸波领域具有广泛的应用潜力。同时,传统的氮化硅、氮化铝、氧化铝基底的吸波陶瓷反射损耗较大且难以选择特定波长、特别是7.5-11.5GHz的频率的吸收。
因此,亟需提出一种陶瓷吸波材料及其制备方法与应用,去降低吸波陶瓷的反射损耗(RL<-30dB),同时使得该吸波材料具有良好的耐高温性能。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,一种陶瓷吸波材料及其制备方法与应用。该陶瓷吸波材料在7.5-11.5GHz的频率范围内反射损耗低于-10dB,最小反射损耗低于-30dB;同时,该吸波材料具有良好的耐高温性能,该吸波材料能够耐受600℃以上(包括800℃)的高温时性能不改变。
本发明的发明构思为:优化3D打印制备陶瓷吸波材料中的原料配方,通过调整金属浆料中金属粉体、分散剂、粘结剂的搭配,使得制备出的陶瓷吸波材料在7.5-11.5GHz的频率范围内反射损耗低于-10dB,最小反射损耗低于-30dB,同时使得该吸波材料能够耐受600℃以上的高温时性能不改变。
本发明的吸波原理是通过金属贴片形成周期性谐振单元的方式实现吸收损耗电磁波。
本发明中对频率选择功能主要是指:在具有阵列排布的孔隙的金属层或介质上阵列排布的金属贴片结构,其本质是一种空间电磁波滤波器,通过设计周期性谐振单元结构,利用频率选择表面的谐振特性,能够对电磁波的通带进行调整,使电磁波在一定波段范围内可以透过,在其他波段内则不能通过,被吸收或反射。
本发明的第一方面提供一种3D打印制备的陶瓷吸波材料,所述陶瓷吸波材料包括相连接的陶瓷基底层和谐振单元层,所述谐振单元层为具有阵列排布的孔隙的金属层、或阵列排布的金属贴片;
所述陶瓷基底层的原料为陶瓷浆料,所述陶瓷浆料包括陶瓷粉体、分散剂(表面活性剂)、粘结剂、助烧剂和溶剂;
所述金属层和所述金属贴片的原料为金属浆料,所述金属浆料包括金属粉体、分散剂(表面活性剂)、粘结剂和溶剂;
所述金属粉体包括铜粉、铝粉、金粉、银粉和铂粉中的至少一种;
所述分散剂包括柠檬酸盐、改性聚羧酸盐中的至少一种;
所述粘结剂包括羧甲基纤维素钠、羟丙基甲基纤维素钠、聚乙烯醇中的至少一种。
相对于现有技术,本发明第一方面提供的一种陶瓷吸波材料的有益效果如下:通过限定陶瓷吸波材料的工艺原料配比以及限定金属粉体的阻值使得制备出的陶瓷吸波材料最小反射损耗低于-30dB,且反射损耗低于-10dB的范围小于4GHz,同时使得该吸波材料能够耐受600℃以上(包括800℃)的高温时性能不改变。
优选的,所述金属贴片和/或所述孔隙的形状包括周期单元为中心连接单元(N极单元)、环状单元、实心单元、组合单元以中的至少一种;进一步优选的所述金属贴片和/或所述孔隙的形状包括正十字形、正方形、圆形或圆环形中的至少一种。
优选的,所述金属贴片为正十字形,所述阵列排布为所述金属贴片排列成矩阵式结构,所述矩阵式结构的单元周期为9-12mm(单元周期为=远端长度+两金属贴片的最短距离),所述金属贴片的远端长度为7-9mm,宽度为2-3mm。
优选的,所述陶瓷基底层的厚度为3-8mm。
优选的,所述谐振单元层的厚度为0.2-0.3mm。
优选的,所述金属粉体的电阻率为1.65×10-8Ω·m-2.22×10-7Ω·m。
优选的,所述柠檬酸盐包括柠檬酸纳、柠檬酸钾、柠檬酸铵中的至少一种,所述改性聚羧酸盐包括丙烯酸-丙烯酸酯-磺酸盐共聚物。
优选的,所述陶瓷粉体包括氧化铝、氮化铝、氮化硅中的至少一种。
优选的,所述助烧剂包括氧化铝、氧化钇、氧化镁、氮化铝、碳化硼中的至少一种。
优选的,所述溶剂为水、乙醇、甲醇、丙醇中的至少一种。
优选的,所述陶瓷粉体的粒径为0.05-5μm。
优选的,所述金属粉体的粒径为0.05-5μm。
优选的,所述金属浆料的原料中,所述金属粉体:所述分散剂:所述粘结剂的质量比为100:(0.1-5):(0.1-5);进一步优选的,所述金属粉体:所述分散剂:所述粘结剂的质量比为100:(1-5):(1-5)。
优选的,所述金属浆料的原料中,所述金属粉体:所述分散剂:所述粘结剂:所述溶剂:所述溶剂的质量比为100:(0.1-5):(0.1-5):(5-20);进一步优选的,所述金属粉体:所述分散剂:所述粘结剂:所述溶剂的质量比为100:(1-5):(1-5):(5-15)。
优选的,所述陶瓷浆料的原料中,所述陶瓷粉体:所述分散剂:所述粘结剂:所述助烧剂:所述溶剂的质量比为100:(0.1-5):(0.1-5):(1-10):(5-20);进一步优选的,所述陶瓷粉体:所述分散剂:所述粘结剂:所述助烧剂的质量比为100:(0.1-0.5):(0.1-0.5):(1-10):(5-15)。
本发明的第二方面提供一种所述的陶瓷吸波材料的制备方法,所述制备方法包括以下步骤:
(1)分别混合配置金属浆料以及陶瓷浆料,所述金属浆料包括金属粉体、分散剂(表面活性剂)、粘结剂和溶剂,所述陶瓷浆料包括陶瓷粉体、分散剂(表面活性剂)、粘结剂、助烧剂和溶剂;
所述金属粉体的电阻率为1.65×10-8Ω·m-2.22×10-7Ω·m;
所述陶瓷粉体包括氧化铝、氮化铝、氮化硅中的至少一种;
(2)制备坯体:使用所述金属浆料和所述陶瓷浆料进行3D打印,制得陶瓷坯体;
(3)干燥固化:将所述陶瓷坯体进行干燥固化,制得待烧结陶瓷基坯体;
(4)烧结:将所述待烧结陶瓷基坯体置于保护气体的氛围下进行烧结,制得所述陶瓷吸波材料。
优选的,所述制备方法的步骤(1)中,所述混合配置的过程为使用高速均质机真空脱泡搅拌;进一步优选的,所述高速均质机的转速为1000-5000r/min、搅拌时间为0.5-30min。
优选的,所述制备方法的步骤(2)中,所述3D打印的过程中采用直写式3D打印,所述直写式3D打印的打印参数为:线条直径为0.1-0.4mm,分层高度为0.08-0.36mm,填充气压为30-100psi,移动速率为5-25mm/min。
优选的,所述制备方法的步骤(3)中,所述干燥固化的过程为:将所述陶瓷坯体置于高温加热炉中,25-35℃干燥2h,之后以3-10℃/h的升温速率升温至100℃,并保持1-2h。
优选的,所述制备方法的步骤(4)中,所述烧结的过程包括以下步骤:
(a)将所述待烧结陶瓷基坯体置于烧结炉中,设置真空度为0Mpa至-0.2Mpa,以3-7℃/min速率升温至400-500℃,保持20-40min;进一步优选的,所述真空度为-0.05Mpa至-0.15Mpa,以4-6℃/min速率升温至425-475℃,保持25-35min;
(b)充入保护性气体,使得所述烧结炉中的气压为8-10kPa;进一步优选的,所述保护性气体包括氮气或氩气中的至少一种;
(c)所述烧结炉中以7-13℃/min速率升温至850-950℃;进一步优选的,以9-11℃/min速率升温至875-925℃;
(d)所述烧结炉中以1-3℃/min速率升温至1200℃-1700℃,保持1.5-2.5h;
(e)所述烧结炉中以1-3℃/min速率降温至850-950℃,然后自然冷却。
本发明的第三方面提供一种飞行器,所述飞行器包括所述的陶瓷吸波材料。
相对于现有技术,本发明的有益效果如下:
(1)优化3D打印制备陶瓷吸波材料中的原料配方,通过调整金属浆料中金属粉体、分散剂、粘结剂的搭配,使得制备出的陶瓷吸波材料在7.5-11.5GHz的频率范围内反射损耗低于-10dB,最小反射损耗低于-30dB,具有频率选择功能;同时使得该吸波材料能够耐受600℃以上(包括800℃)的高温时性能不改变。
(2)进一步调整制备方法,通过特定程序的分部梯度升温煅烧,能够进一步降低陶瓷吸波材料最小反射损耗,使得该陶瓷吸波材料在7.5-11GHz范围内的最小反射损耗降低至-33.67dB、-36.77dB。
附图说明
图1为实施例1中陶瓷吸波材料Ⅰ的结构示意图;
图2为实施例1中陶瓷吸波材料Ⅰ的反射损耗-电磁波频率关系曲线;
图3为实施例2中陶瓷吸波材料Ⅱ的反射损耗-电磁波频率关系曲线。
具体实施方式
为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。
实施例1
3D打印制备的陶瓷吸波材料Ⅰ及其制备方法。
图1为实施例1中陶瓷吸波材料Ⅰ的结构示意图,陶瓷吸波材料Ⅰ由相连接的陶瓷基底层和谐振单元层组成,谐振单元层为矩阵式结构排列的正十字形的金属贴片。
矩阵式结构的单元周期为10mm,正十字形的远端长度为8mm,宽度为2mm。陶瓷基底层的厚度为5mm;谐振单元层的厚度为0.25mm。
陶瓷基底层的原料为陶瓷浆料,陶瓷浆料的原料为20g的1μm氮化硅陶瓷粉体、0.2g柠檬酸钠分散剂、0.2g羧甲基纤维素钠粘结剂、1.5g的氧化钇纳米粉体助烧剂和10mL去离子水。
金属贴片的原料为金属浆料,金属浆料包括30g的银粉金属粉体、1.2g柠檬酸钠分散剂、1.2g羧甲基纤维素钠粘结剂和溶剂8mL去离子水。
该陶瓷吸波材料Ⅰ的其制备方法为:
(1)配置打印所需浆料:将1.2g柠檬酸钠与1.2g羧甲基纤维素钠溶解在8mL去离子水中配置成混合溶液,称取质量为30g的银粉分散在混合溶液中形成金属浆料,将金属浆料采用高速均质机真空脱泡搅拌,设置其转速为2000r/min,搅拌时间为5min,使其充分搅拌均匀,得到待用金属浆料;
将0.2g柠檬酸钠与0.2g羧甲基纤维素钠溶解在10mL去离子水中配置成混合溶液,称取质量为1.5g的氧化钇纳米粉体与质量为20g的1μm氮化硅陶瓷粉体混合均匀,然后将复合粉末分散在混合溶液中形成陶瓷浆料,将陶瓷浆料采用高速均质机真空脱泡搅拌,设置其转速为2000r/min,搅拌时间为5.min,使其充分搅拌均匀,得到待用陶瓷浆料。
(2)将步骤(1)中配置的金属浆料和陶瓷浆料装入多喷头直写式3D打印设备中,将打印模型导入与打印机配套的软件中,设定打印参数如下:线条直径为0.26mm,分层高度为0.20mm,填充气压为30psi,移动速率为15mm/min,全部参数设置完成以后对模型进行打印制备,其中采用两个喷头交替进行金属浆料和陶瓷浆料打印,最终得到陶瓷坯体。
(3)将步骤(2)中制备的陶瓷坯体进行干燥固化,首先将打印制备得到的坯体置于高温加热炉中,30℃干燥2h,然后以5℃/h的升温速率升温至100℃,并保持1h,干燥固化过程完成。
(4)将步骤(3)中干燥固化完成后的待烧结陶瓷基坯体进行烧结,烧结过程包括以下步骤:
(a)将真空气氛烧结炉中真空度保持为-0.1Mpa,按照3℃/min速率升温至450℃,保持30min;
(b)充入保护性气体N2,保持炉内气压为8-10kPa;
(c)300℃至900℃以10℃/min速率升温;
(d)然后以2℃/min速率升温至1650℃,保持2h;
(e)以2℃/min速率降温至900℃后,随炉冷却至室温,制得成品陶瓷吸波材料Ⅰ。
图2为实施例1中陶瓷吸波材料Ⅰ的反射损耗-电磁波频率关系曲线,其中纵坐标为反射损耗(Reflection Loss,单位为dB),横坐标为频率(Frequency,单位为GHz);实施例1的测试结果表明,该吸波材料在7.44-11.12GHz频段具有-10dB以下的反射损耗,最小反射损耗为-33.67dB;实施例1中陶瓷吸波材料Ⅰ经过800℃、30min空气环境热考核后,经测试,其吸波性能以及频率选择性能维持不变,说明本发明频率选择吸波材料具有优异的耐高温性能。
实施例2
3D打印制备的陶瓷吸波材料Ⅱ及其制备方法。
陶瓷吸波材料Ⅱ的结构与陶瓷吸波材料Ⅰ类似,陶瓷吸波材料Ⅱ由相连接的陶瓷基底层和谐振单元层组成,谐振单元层为矩阵式结构排列的正十字形的金属贴片。
矩阵式结构的单元周期为10mm,正十字形的远端长度为8mm,宽度为2mm。陶瓷基底层的厚度为5mm;谐振单元层的厚度为0.25mm。
陶瓷基底层的原料为陶瓷浆料,陶瓷浆料的原料为20g的1μm氮化铝陶瓷粉体、0.16g柠檬酸钠分散剂、0.16g羧甲基纤维素钠粘结剂、1g的氧化铝纳米粉体助烧剂和10mL去离子水。
金属贴片的原料为金属浆料包括20g的铂粉金属粉体、1g柠檬酸钠分散剂、1g羧甲基纤维素钠粘结剂和溶剂5mL去离子水。
该陶瓷吸波材料Ⅱ的其制备方法为:
(1)配置打印所需浆料:将1g柠檬酸钠与1g羧甲基纤维素钠溶解在5mL去离子水中配置成混合溶液,称取质量为20g的铂粉分散在混合溶液中形成金属浆料,将金属浆料采用高速均质机真空脱泡搅拌,设置其转速为2000r/min,搅拌时间为5.min,使其充分搅拌均匀,得到待用金属浆料;
将0.16g柠檬酸钠与0.16g羧甲基纤维素钠溶解在10mL去离子水中配置成混合溶液,称取质量为1g的氧化铝纳米粉体与质量为20g的1μm氮化铝陶瓷粉体混合均匀,然后将复合粉末分散在混合溶液中形成陶瓷浆料,将陶瓷浆料采用高速均质机真空脱泡搅拌,设置其转速为2000r/min,搅拌时间为5min,使其充分搅拌均匀,得到待用陶瓷浆料。
(2)将步骤(1)中配置的金属浆料和陶瓷浆料装入多喷头直写式3D打印设备中,将打印模型导入与打印机配套的软件中,设定打印参数如下:线条直径为0.26mm,分层高度为0.20mm,填充气压为30psi,移动速率为15mm/min,全部参数设置完成以后对模型进行打印制备,其中采用两个喷头交替进行金属浆料和陶瓷浆料打印,最终得到陶瓷坯体。
(3)将步骤(2)中制备的陶瓷坯体进行干燥固化,首先将打印制备得到的坯体置于高温加热炉中,30℃干燥2h,然后以5℃/h的升温速率升温至100℃,并保持1h,干燥固化过程完成。
(4)将步骤(3)中干燥固化完成后的待烧结陶瓷基坯体进行烧结,烧结过程包括以下步骤:
(a)将真空气氛烧结炉中真空度保持为-0.1Mpa,按照3℃/min速率升温至450℃,保持30min;
(b)充入保护性气体N2,保持炉内气压为8-10kPa;
(c)300℃至900℃以10℃/min速率升温;
(d)然后以2℃/min速率升温至1700℃,保持2h;
(e)以2℃/min速率降温至900℃后,随炉冷却至室温,制得成品陶瓷吸波材料Ⅱ。
图3为实施例2中陶瓷吸波材料Ⅱ的反射损耗-电磁波频率关系曲线,其中纵坐标为反射损耗(Reflection Loss,单位为dB),横坐标为频率(Frequency,单位为GHz);测试结果表明,该吸波材料在7.68-11.28GHz频段具有-10dB以下的反射损耗,最小反射损耗为-36.77dB;实施例2中陶瓷吸波材料Ⅱ经过800℃、30min空气环境热考核后,经测试,其吸波性能以及频率选择性能维持不变,说明本发明频率选择吸波材料具有优异的耐高温性能。实施例1和实施例2的结构类似,金属贴片和陶瓷基底层的成分有所不同,但其有效吸收带宽基本一致,最小反射损耗基本相同,表明吸波性能具有良好的稳定性。
实施例3
3D打印制备的陶瓷吸波材料Ⅲ及其制备方法。
陶瓷吸波材料Ⅲ的结构与陶瓷吸波材料Ⅰ类似,陶瓷吸波材料Ⅲ由相连接的陶瓷基底层和谐振单元层组成,谐振单元层为矩阵式结构排列的正十字形的金属贴片。
矩阵式结构的单元周期为10mm,正十字形的远端长度为8mm,宽度为2mm。陶瓷基底层的厚度为5mm;谐振单元层的厚度为0.25mm。
陶瓷基底层的原料为陶瓷浆料,陶瓷浆料的原料为20g的1μm氧化铝陶瓷粉体、0.24g柠檬酸钠分散剂、0.24g羧甲基纤维素钠粘结剂、2g的氧化镁纳米粉体助烧剂和10mL去离子水。
金属贴片的原料为金属浆料,金属浆料包括40g的铜粉金属粉体、1.5g柠檬酸钠分散剂、1.5g羧甲基纤维素钠粘结剂和溶剂12mL去离子水。
该陶瓷吸波材料Ⅲ的其制备方法为:
(1)配置打印所需浆料:将1.5g柠檬酸钠与1.5g羧甲基纤维素钠溶解在12mL去离子水中配置成混合溶液,称取质量为40g的铜粉分散在混合溶液中形成金属浆料,将金属浆料采用高速均质机真空脱泡搅拌,设置其转速为2000r/min,搅拌时间为5min,使其充分搅拌均匀,得到待用金属浆料;
将0.24g柠檬酸钠与0.24g羧甲基纤维素钠溶解在10mL去离子水中配置成混合溶液,称取质量为2g的氧化镁纳米粉体与质量为20g的1μm氧化铝陶瓷粉体混合均匀,然后将复合粉末分散在混合溶液中形成陶瓷浆料,将陶瓷浆料采用高速均质机真空脱泡搅拌,设置其转速为2000r/min,搅拌时间为5.min,使其充分搅拌均匀,得到待用陶瓷浆料。
(2)将步骤(1)中配置的金属浆料和陶瓷浆料装入多喷头直写式3D打印设备中,将打印模型导入与打印机配套的软件中,设定打印参数如下:线条直径为0.26mm,分层高度为0.20mm,填充气压为30psi,移动速率为15mm/min,全部参数设置完成以后对模型进行打印制备,其中采用两个喷头交替进行金属浆料和陶瓷浆料打印,最终得到陶瓷坯体。
(3)将步骤(2)中制备的陶瓷坯体进行干燥固化,首先将打印制备得到的坯体置于高温加热炉中,30℃干燥2h,然后以5℃/h的升温速率升温至100℃,并保持1h,干燥固化过程完成。
(4)将步骤(3)中干燥固化完成后的待烧结陶瓷基坯体进行烧结,烧结过程包括以下步骤:
(a)将真空气氛烧结炉中真空度保持为-0.1Mpa,按照3℃/min速率升温至450℃,保持30min;
(b)充入保护性气体N2,保持炉内气压为8-10kPa;
(c)300℃至900℃以10℃/min速率升温;
(d)然后以2℃/min速率升温至1550℃,保持2h;
(e)以2℃/min速率降温至900℃后,随炉冷却至室温,制得成品陶瓷吸波材料Ⅲ。
3D打印成型技术制备的频率选择表面陶瓷材料,在结构方面采用陶瓷浆料形成基体材料,满足了承载性能的力学要求,同时该结构通过谐振损耗实现了电磁波的吸收,满足了吸波功能方面的需求,实现了结构和功能的一体化。本发明所述的制备方法材料适用性广、可同时进行多种材料成型及制备复杂结构等优点,所制得频率选择表面陶瓷吸波材料具有良好的吸波性能,且可以耐受600℃以上高温;具有较好的耐高温性能,能够满足实际使用的需求。本发明所述的制备方法成型精度高,解决了传统工艺由于成型精度低导致的吸波性能不稳定的问题,避免了金属贴片植入工艺复杂、过程繁琐的技术问题,可根据实际应用需求灵活变更,零件加工周期短,成本低。本发明中所述的频率选择表面陶瓷吸波材料,是吸波材料长期以来所追求的结构-功能一体化的集中体现和成功实践,在多功能吸波、隐身构件领域具有广阔的应用前景。

Claims (10)

1.一种陶瓷吸波材料,其特征在于,所述陶瓷吸波材料包括相连接的陶瓷基底层和谐振单元层,所述谐振单元层为具有阵列排布的孔隙的金属层或阵列排布的金属贴片;
所述陶瓷基底层的原料为陶瓷浆料,所述陶瓷浆料包括陶瓷粉体、分散剂、粘结剂、助烧剂和溶剂;
所述金属层和所述金属贴片的原料为金属浆料,所述金属浆料包括金属粉体、分散剂、粘结剂和溶剂;
所述金属粉体包括铜粉、铝粉、金粉、银粉和铂粉中的至少一种;
所述分散剂包括柠檬酸盐、改性聚羧酸盐中的至少一种;
所述粘结剂包括羧甲基纤维素钠、羟丙基甲基纤维素钠、聚乙烯醇中的至少一种。
2.根据权利要求1所述的陶瓷吸波材料,其特征在于,所述金属贴片和所述孔隙的形状包括正十字形、正方形、圆形或圆环形中的至少一种。
3.根据权利要求1所述的陶瓷吸波材料,其特征在于,所述金属粉体的电阻率为1.65×10-8Ω·m-2.22×10-7Ω·m。
4.根据权利要求1所述的陶瓷吸波材料,其特征在于,所述陶瓷基底层的厚度为3-8mm,所述谐振单元层的厚度为0.2-0.3mm。
5.根据权利要求1所述的陶瓷吸波材料,其特征在于,所述陶瓷粉体包括氧化铝、氮化铝、氮化硅中的至少一种。
6.根据权利要求1所述的陶瓷吸波材料,其特征在于,所述助烧剂包括氧化铝、氧化钇、氧化镁、氮化铝、碳化硼中的至少一种。
7.根据权利要求1所述的陶瓷吸波材料,其特征在于,所述金属浆料的原料中,所述金属粉体:所述分散剂:所述粘结剂的质量比为100:(0.1-5):(0.1-5);
所述陶瓷浆料的原料中,所述陶瓷粉体:所述分散剂:所述粘结剂:所述助烧剂的质量比为100:(0.1-5):(0.1-5):(1-10)。
8.权利要求1-7任一项所述的陶瓷吸波材料的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)根据原料配方分别混合配置金属浆料以及陶瓷浆料,所述金属浆料包括金属粉体、分散剂、粘结剂和溶剂,所述陶瓷浆料包括陶瓷粉体、分散剂、粘结剂、助烧剂和溶剂;
(2)制备坯体:使用所述金属浆料和所述陶瓷浆料进行3D打印,制得陶瓷坯体;
(3)干燥固化:将所述陶瓷坯体进行干燥固化,制得待烧结陶瓷基坯体;
(4)烧结:将所述待烧结陶瓷基坯体置于保护气体的氛围下进行烧结,制得所述陶瓷吸波材料。
9.根据权利要求8所述的制备方法,其特征在于,所述制备方法的步骤(4)中,所述烧结的过程包括以下步骤:
(a)将所述待烧结陶瓷基坯体置于烧结炉中,设置真空度为0Mpa至-0.2Mpa,以3-7℃/min速率升温至400-500℃,保持20-40min;
(b)充入保护性气体,使得所述烧结炉中的气压为8-10kPa;
(c)所述烧结炉中以7-13℃/min速率升温至850-950℃;
(d)所述烧结炉中以1-3℃/min速率升温至1200℃-1700℃,保持1.5-2.5h;
(e)所述烧结炉中以1-3℃/min速率降温至850-950℃后自然冷却。
10.一种飞行器,其特征在于,所述飞行器包括权利要求1-7任一项所述的陶瓷吸波材料。
CN202211102616.0A 2022-09-09 2022-09-09 一种陶瓷吸波材料及其制备方法与应用 Pending CN115536400A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211102616.0A CN115536400A (zh) 2022-09-09 2022-09-09 一种陶瓷吸波材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211102616.0A CN115536400A (zh) 2022-09-09 2022-09-09 一种陶瓷吸波材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN115536400A true CN115536400A (zh) 2022-12-30

Family

ID=84725277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211102616.0A Pending CN115536400A (zh) 2022-09-09 2022-09-09 一种陶瓷吸波材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115536400A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718576A (zh) * 2012-06-28 2012-10-10 中国人民解放军国防科学技术大学 具有容性周期结构的雷达吸波陶瓷及其制备方法
CN102856663A (zh) * 2012-08-24 2013-01-02 电子科技大学 一种超材料宽带红外吸波结构材料
CN104193345A (zh) * 2014-08-20 2014-12-10 中南大学 基于3d打印技术制备吸波陶瓷部件的方法
CN107645064A (zh) * 2017-08-18 2018-01-30 东南大学 基于磁性材料内部加载周期金属层的低频超宽带吸波器
CN110085996A (zh) * 2019-04-26 2019-08-02 内蒙古大学 一种基于钛酸锶介质层的超材料吸波器及其制造方法
CN111755833A (zh) * 2020-08-10 2020-10-09 陈名松 一种多频带有源超材料吸波器
CN112582802A (zh) * 2020-10-12 2021-03-30 中国计量大学 一种基于3d打印的全介质超材料多频段完美吸波器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718576A (zh) * 2012-06-28 2012-10-10 中国人民解放军国防科学技术大学 具有容性周期结构的雷达吸波陶瓷及其制备方法
CN102856663A (zh) * 2012-08-24 2013-01-02 电子科技大学 一种超材料宽带红外吸波结构材料
CN104193345A (zh) * 2014-08-20 2014-12-10 中南大学 基于3d打印技术制备吸波陶瓷部件的方法
CN107645064A (zh) * 2017-08-18 2018-01-30 东南大学 基于磁性材料内部加载周期金属层的低频超宽带吸波器
CN110085996A (zh) * 2019-04-26 2019-08-02 内蒙古大学 一种基于钛酸锶介质层的超材料吸波器及其制造方法
CN111755833A (zh) * 2020-08-10 2020-10-09 陈名松 一种多频带有源超材料吸波器
CN112582802A (zh) * 2020-10-12 2021-03-30 中国计量大学 一种基于3d打印的全介质超材料多频段完美吸波器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
范跃农等: "陶瓷吸波材料的研究进展", 《陶瓷学报》 *

Similar Documents

Publication Publication Date Title
Kenion et al. Dielectric and mechanical properties of hypersonic radome materials and metamaterial design: A review
CN107698271B (zh) 耐高温高强韧性氮化硅基透波复合材料及制备方法
CN110128117B (zh) 高纯氧化铝陶瓷材料及其制备方法
CN110683769A (zh) 一种增强的钙硼硅微晶玻璃复合材料及其制备方法
CN106630979B (zh) 一种耐高温频率选择透波结构及其制备方法
CN110937892B (zh) 一种高温吸收剂、超薄高温吸波材料及其制备方法
CN104725052A (zh) 一种多层复合结构透明陶瓷的制备方法
CN102628136A (zh) 一种铼钨基阴极材料及其制备方法
CN113135775B (zh) 超高温电磁散射与红外辐射兼容抑制的隐身材料及制备方法
CN109095919B (zh) 一种具有多级微结构分布的钛酸钡/四氧化三钴复相毫米波吸波粉体及制备方法
CN114715897A (zh) 一种尺寸可调的SiC@C介孔空心球及其制备方法和应用
CN114853462A (zh) 一种直写成型制备yag基透明陶瓷的方法
JP2018002556A (ja) セラミック複合体、飛翔体用レドーム、セラミック複合体の製造方法及び飛翔体用レドームの製造方法
CN115536400A (zh) 一种陶瓷吸波材料及其制备方法与应用
CN111235695B (zh) 一种多孔碳纤维电磁吸波剂的制备方法
CN107141021A (zh) 一种x波段电阻膜型高温超材料吸波体
CN116283251B (zh) 一种氧化铝陶瓷及其制备方法与应用
CN115196951B (zh) 一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备方法
CN101591196B (zh) 宽频陶瓷基复合材料用釉层材料及其制备方法
CN106699192A (zh) 一种功能陶瓷凝胶流延浆料及其制备方法
CN114603937B (zh) 一种耐高温雷达红外兼容隐身材料及其制备方法
CN112010307A (zh) 一种Cr2AlC材料的使用方法
CN115745620B (zh) 一种高致密度氮化钛陶瓷材料及其制备方法
CN115745627A (zh) 一种SiCN陶瓷吸波剂及其制备方法
CN113645824B (zh) 一种纳米多孔碳镶嵌惰性金属粒子复合物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221230