CN115196951B - 一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备方法 - Google Patents

一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备方法 Download PDF

Info

Publication number
CN115196951B
CN115196951B CN202210855054.0A CN202210855054A CN115196951B CN 115196951 B CN115196951 B CN 115196951B CN 202210855054 A CN202210855054 A CN 202210855054A CN 115196951 B CN115196951 B CN 115196951B
Authority
CN
China
Prior art keywords
carbon fiber
modified carbon
mullite
powder
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210855054.0A
Other languages
English (en)
Other versions
CN115196951A (zh
Inventor
龙兰
周伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Technology
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN202210855054.0A priority Critical patent/CN115196951B/zh
Publication of CN115196951A publication Critical patent/CN115196951A/zh
Application granted granted Critical
Publication of CN115196951B publication Critical patent/CN115196951B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种多层结构的改性碳纤维‑莫来石陶瓷吸波材料及其制备方法,先在碳纤维表面制备SiC涂层,然后采用熔盐法使得SiC与稀土金属粉末R反应,在碳纤维表面原位制备三元R3Si2C2涂层,从而改善碳纤维吸波性能,同时提高了纤维与基体的结合性能,并为碳纤维提供了高温抗氧化屏障;最后采用多次凝胶注模‑R3Si2C2改性碳纤维铺层‑固化成型工艺在莫来石陶瓷基体夹层中引入R3Si2C2改性碳纤维,且R3Si2C2改性碳纤维铺层的质量从下到上依次梯度递减,构建了类似“夹心饼干”的多层结构的改性碳纤维‑莫来石陶瓷吸波材料,具有优异的耐高温吸波性能。

Description

一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备 方法
技术领域
本发明属于吸波材料技术领域,具体涉及一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备方法。
背景技术
随着电子设备的高速发展和广泛应用,产生的电磁干扰和辐射污染会影响电子设备的正常运行乃至危害人体健康。目前,使用吸波材料是消除电磁污染重要的手段之一,因此,高性能的电磁波吸收材料受到高度关注。文献报导的电磁吸波材料主要有金属基复合材料、聚合物基复合材料和陶瓷基复合材料。然而,金属和聚合物基复合材料在高温下将导致材料强度降低、被氧化或被腐蚀。陶瓷基轻质、热化学性能稳定,具有优异的高温强度,被认为是最有希望的高温电磁波吸收候选材料。
基体的高温稳定性、透波性,吸波功能相的电磁损耗特性以及高温性能,是耐高温吸波材料需要考虑的两大决定性因素。莫来石陶瓷属于氧化物陶瓷,具有优异的耐高温抗氧化性能,同时具有低的介电特性,介电常数的实部范围5.5~6.3,虚部范围0~0.5,通常表现出与自由空间良好的阻抗匹配,即透波性良好,在莫来石陶瓷中掺加吸波剂,能实现电磁波尽可能多的入射从而被吸收。
近年来,碳纤维、碳化硅纤维等纤维吸波材料由于密度低、力学性能优异、电阻可调等优点,被广泛应用于轻质、高强度的高性能电磁波吸收材料中。特别是具有高导电和高电磁损耗特性的碳纤维,在电磁波吸收材料中的应用越来越受到关注。然而,碳纤维电阻率较低,是雷达波的强反射体,且易被氧化,限制了其在吸波材料中的应用范围。
发明内容
为了解决现有技术中存在的问题,本发明的目的在于提供了一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备方法,通过在碳纤维表面原位制备三元R3Si2C2陶瓷层(其中R为稀土元素),从而显著改善碳纤维吸波性能,提高了纤维与莫来石陶瓷基体的结合性能,为碳纤维提供了高温抗氧化屏障,具有优异的耐高温吸波性能。
为了实现上述技术目的,本发明采用如下技术方案:
一种多层结构的改性碳纤维-莫来石陶瓷吸波材料,包括莫来石基体层和 R3Si2C2改性碳纤维夹层,莫来石基体层的层数至少为两层,在相邻莫来石基体层之间均设置有R3Si2C2改性碳纤维夹层,其中R为稀土元素。
优选的,所述莫来石基体层的层数为3-5层,单层的莫来石基体层的质量均相同,单层的R3Si2C2改性碳纤维夹层的质量从下到上依次梯度递减,递减的质量梯度为40-60wt.%,单层的R3Si2C2改性碳纤维夹层的质量占单层的莫来石基体层的质量的0.5-5wt.%。
优选的,R为Sc、Y、Pr、Sm、Gd、Tb、Er、Tm和Yb中的至少一种。
本发明还提供了上述多层结构的改性碳纤维-莫来石陶瓷吸波材料的制备方法,包括如下步骤:
(1)将R粉、NaCl、KCl干磨混合均匀得混合粉末,再加入SiC改性短碳纤维混合均匀,保护性气氛下于1100~1150℃煅烧即得R3Si2C2改性碳纤维;
(2)将Al2O3、SiO2、烧结助剂Y2O3和去离子水球磨混合均匀得浆料,干燥后于750-850℃煅烧得到预混粉;
(3)将丙烯酰胺(AM)、N,N’-亚甲基双丙烯酰胺(MBA)、四甲基氢氧化铵 (TMAH)和去离子水混合搅拌均匀,再加入氨水调节其pH至9-10,得到预混液;
(4)将预混液和预混粉球磨混合均匀,得到凝胶注模浆料;
在充有氮气的手套箱中,往凝胶注模浆料中加入过硫酸铵(APS)和四甲基乙二胺(TMEDA)混合搅拌均匀后注入模具,再将R3Si2C2改性碳纤维均匀铺层于表面固化成型,重复注入模具-铺层-固化成型,得到坯体;
(5)保护性气氛下,将坯体用莫来石粉包埋,于1400-1600℃排胶烧结制得多层结构的改性碳纤维-莫来石陶瓷吸波材料。
本发明中,SiC改性短碳纤维可采用现有常规方法制得,例如先以摩尔比为 1:1的C3H6和N2作为碳源,采用CVD工艺,控制沉积炉温度为1100℃,压力为 150-250Pa,沉积1-2h,在碳纤维表面沉积一层热解炭保护层;然后以摩尔比为 10:1的CH3SiCl3和H2为反应气体,采用CVD工艺,控制沉积炉温度为1100℃,压力为150-250Pa,沉积1-2h,即制得SiC改性短碳纤维,其长度为2-4mm。
优选的,步骤(1)中,R粉为Sc、Y、Pr、Sm、Gd、Tb、Er、Tm和Yb粉中的至少一种;R粉、NaCl和KCl的质量比为(3~7):(2.5~6):(2.5~6),SiC改性短碳纤维与混合粉末的质量比为1:(7-10)。
优选的,步骤(2)中,Al2O3和SiO2的摩尔比为(2.5~3.2):(1.8~2.2),烧结助剂Y2O3的添加量为Al2O3和SiO2总质量的1.5~6.0wt.%。
优选的,步骤(3)中,丙烯酰胺(AM)、N,N’-亚甲基双丙烯酰胺(MBA)、四甲基氢氧化铵(TMAH)和去离子水的质量比为(15~30):(1.5~2):(4~8):(70~100)。
优选的,步骤(4)中,凝胶注模浆料的固含量为45~55wt.%,硫酸铵(APS) 的添加量为凝胶注模浆料质量的0.4~0.6wt.%,四甲基乙二胺(TMEDA)的添加量为凝胶注模浆料质量的0.2~0.4wt.%。
优选的,步骤(4)中,重复注入模具-铺层-固化成型的过程中,每次注入模具的质量保持不变,铺层的质量从下到上依次梯度递减,递减的质量梯度为40-60 wt.%。
在碳纤维表面引入金属、高分子聚合物以及陶瓷相等物质均可有效改善碳纤维的电磁性能,但金属涂层的居里温度大多低于800℃,高分子聚合物在高温下易分解,从而限制了其高温环境中的应用。本发明引入三元R3Si2C2涂层,具有良好的耐温性(≤1560℃不分解),且高温下不与碳纤维发生化学反应。同时, R3Si2C2可通过熔盐法在较低温度下由稀土金属与SiC原位反应获得,从而使碳纤维和莫来石基体的热物理性能匹配良好。
本发明的多层结构设计能实现阻抗梯度变化设计,使材料与自由空间实现更好的阻抗匹配;并且多层结构显著增加了材料对电磁波的多重散射和反射,以及干涉相消,从而能更有效地拓宽吸波材料的吸收带宽。
本发明进一步将R3Si2C2改性碳纤维夹层设置为从下到上梯度变化,R3Si2C2改性碳纤维的梯度变换即为一种阻抗变换层,能使尽可能多的电磁波进入吸波材料内部,而在微观上设计成阻抗沿电磁波传播方向成连续梯度分布的结构,就可以最大限度地减少对电磁波的反射,又可以通过调节吸收剂的层数和梯度变化量实现对电磁波的良好吸收。
综上所述,本发明先在碳纤维表面制备SiC涂层,然后采用熔盐法使得SiC与稀土金属粉末R反应,在碳纤维表面原位制备三元R3Si2C2涂层,从而改善碳纤维吸波性能,提高了纤维与基体的结合性能,为碳纤维提供了高温抗氧化屏障;最后采用多次凝胶注模-R3Si2C2改性碳纤维铺层-表面固化成型工艺在莫来石陶瓷基体夹层中引入R3Si2C2改性碳纤维,且R3Si2C2改性碳纤维铺层的质量从下到上依次梯度递减,构建了类似“夹心饼干”的多层结构的改性碳纤维-莫来石陶瓷吸波材料,具有优异的耐高温吸波性能。
附图说明
图1为实施例1制得的SiC改性短碳纤维的XRD图;
图2为实施例1制得的Yb3Si2C2改性碳纤维的SEM图;
图3为实施例1制得的多层结构的改性碳纤维-莫来石陶瓷吸波材料基体与改性碳纤维接触面的SEM图;
图4为实施例1制得的多层结构的改性碳纤维-莫来石陶瓷吸波材料的结构示意图;
图5为实施例1制得的多层结构的改性碳纤维-莫来石陶瓷吸波材料的吸波反射率谱图。
具体实施方式
为了更好地理解本发明的实质,下面结合实施例对本发明的内容作进一步说明,但不能视为对本发明的限制,以下所述仅用于解释本发明,对于不偏离本发明精神和原则所做的修改、替换或改进,均属于本发明要求保护的范围。
实施例1
1、SiC改性短碳纤维
先以摩尔比为1:1的C3H6和N2作为碳源,采用CVD工艺,控制沉积炉温度为 1100℃,压力为150-250Pa,沉积1-2h,在碳纤维表面沉积一层热解炭保护层;然后以摩尔比为10:1的CH3SiCl3和H2为反应气体,采用CVD工艺,控制沉积炉温度为1100℃,压力为150-250Pa,沉积1-2h,即制得SiC改性短碳纤维,其长度为 2-4mm。
2、Yb3Si2C2改性碳纤维
将质量比为6:5:5的稀土金属Yb粉(镱粉)、NaCl、KCl在玛瑙研钵中干磨混合均匀得混合粉末,再加入粉体质量10%的SiC改性短碳纤维,混合搅拌后放入氧化铝坩埚中,在氩气气氛下以5℃/min的加热速率升温至1100℃保温2h,冷却至室温,再用去离子水清洗后在100℃下干燥8h,得到Yb3Si2C2改性碳纤维;
3、多层结构的改性碳纤维-莫来石陶瓷吸波材料
(1)按摩尔比3:2配比,分别称取Al2O3和SiO2粉置于氧化锆球磨罐中,加入3wt.%烧结助剂Y2O3和去离子水,以250r/min转速下混合球磨得浆料,干燥后置于马弗炉中800℃煅烧2h得到预混粉;
(2)将丙烯酰胺、N,N’-亚甲基双丙烯酰胺、四甲基氢氧化铵和去离子水按照15:1.5:0.6:55的质量比混合搅拌均匀,逐滴加入氨水调节溶液pH值至9~10,配置成预混液;
(3)将预混液和预混粉倒入球磨罐中球磨混合均匀,得到固含量为50wt.%的凝胶注模浆料。在充有氮气的手套箱中,往凝胶注模浆料中加入占其0.5wt.%的过硫酸铵(APS)和0.3wt.%的四甲基乙二胺(TMEDA),混合搅拌均匀后注入模具,再按照Yb3Si2C2改性碳纤维占莫来石基体的5wt.%均匀铺层于浆料表面固化成型,重复注入模具-铺层-固化成型,得到3层Yb3Si2C2改性碳纤维夹层的坯体,其中Yb3Si2C2改性碳纤维夹层的质量比从下到上依次为1:0.5:0.25;
(4)氩气气氛下,将坯体用莫来石粉包埋,于1500℃排胶烧结3h制得多层结构的改性碳纤维-莫来石陶瓷吸波材料。其结构如图4所示,其中莫来石基体层的层数为4层,Yb3Si2C2改性碳纤维夹层的层数为3层。
如图5所示,所得多层结构的改性碳纤维-莫来石陶瓷吸波材料在 8.2~12.4GHz波段范围,RL<-10dB带宽达到4.2GHz,最大RL值可达-38.3dB。
实施例2
1、SiC改性短碳纤维同实施例1。
2、Sm3Si2C2改性碳纤维
将质量比为3:5:5的稀土金属Sm粉(钐粉)、NaCl、KCl在玛瑙研钵中干磨混合均匀得混合粉末,再加入混合粉质量10%的SiC改性短碳纤维,混合搅拌后放入氧化铝坩埚中,在氩气气氛下以5℃/min的加热速率升温至1100℃保温2h,冷却至室温,再用去离子水清洗后在100℃下干燥8h,得到Sm3Si2C2改性碳纤维;
3、多层结构的改性碳纤维-莫来石陶瓷吸波材料
(1)按摩尔比3:2配比,分别称取Al2O3和SiO2粉置于氧化锆球磨罐中,加入3wt.%烧结助剂Y2O3和去离子水,以250r/min转速下混合球磨得浆料,干燥后置于马弗炉中800℃煅烧2h得到预混粉;
(2)将丙烯酰胺、N,N’-亚甲基双丙烯酰胺、四甲基氢氧化铵和去离子水按照15:1.5:0.6:55的质量比混合搅拌均匀,逐滴加入氨水调节溶液pH值至9~10,配置成预混液;
(3)将预混液和预混粉倒入球磨罐中球磨混合均匀,得到固含量为50wt.%的凝胶注模浆料,在充有氮气的手套箱中,往凝胶注模浆料中加入占其0.5wt.%的过硫酸铵(APS)和0.3wt.%的四甲基乙二胺(TMEDA),混合搅拌均匀后注入模具,再按照Sm3Si2C2改性碳纤维占莫来石基体的3wt.%均匀铺层于浆料表面固化成型,重复注入模具-铺层-固化成型,得到2层Sm3Si2C2改性碳纤维夹层的坯体,其中Sm3Si2C2改性碳纤维夹层的质量比从下到上依次为1:0.5;
(4)氩气气氛下,将坯体用莫来石粉包埋,于1500℃排胶烧结3h制得多层结构的改性碳纤维-莫来石陶瓷吸波材料。其中莫来石基体层的层数为3层, Sm3Si2C2改性碳纤维夹层的层数为2层,吸波性能参见表1。
实施例3
1、SiC改性短碳纤维同实施例1。
2、Yb3Si2C2改性碳纤维
将质量比为6:5:5的稀土金属Yb粉(镱粉)、NaCl、KCl在玛瑙研钵中干磨混合均匀得混合粉末,再加入混合粉质量10%的SiC改性短碳纤维,混合搅拌后放入氧化铝坩埚中,在氩气气氛下以5℃/min的加热速率升温至1100℃保温2h,冷却至室温,再用去离子水清洗后在100℃下干燥8h,得到Yb3Si2C2改性碳纤维;
3、多层结构的改性碳纤维-莫来石陶瓷吸波材料
(1)按摩尔比3:2配比,分别称取Al2O3和SiO2粉置于氧化锆球磨罐中,加入3wt.%烧结助剂Y2O3和去离子水,以250r/min转速下混合球磨得浆料,干燥后置于马弗炉中800℃煅烧2h得到预混粉;
(2)将丙烯酰胺、N,N’-亚甲基双丙烯酰胺、四甲基氢氧化铵和去离子水按照15:1.5:0.6:55的质量比混合搅拌均匀,逐滴加入氨水调节溶液pH值至9~10,配置成预混液;
(3)将预混液和预混粉倒入球磨罐中球磨混合均匀,得到固含量为50wt.%的凝胶注模浆料,在充有氮气的手套箱中,往凝胶注模浆料中加入占其0.5wt.%的过硫酸铵(APS)和0.3wt.%的四甲基乙二胺(TMEDA),混合搅拌均匀后注入模具,再按照Yb3Si2C2改性碳纤维占莫来石基体的3wt.%均匀铺层于浆料表面固化成型,重复注入模具-铺层-固化成型,得到2层Sm3Si2C2改性碳纤维夹层的坯体,其中Yb3Si2C2改性碳纤维夹层的质量比从下到上依次为1:1;
(4)氩气气氛下,将坯体用莫来石粉包埋,于1500℃排胶烧结3h制得多层结构的改性碳纤维-莫来石陶瓷吸波材料。其中莫来石基体层的层数为3层, Yb3Si2C2改性碳纤维夹层的层数为2层,吸波性能参见表1。
实施例4
1、SiC改性短碳纤维同实施例1。
2、Yb3Si2C2改性碳纤维
将质量比为6:5:5的稀土金属Yb粉(镱粉)、NaCl、KCl在玛瑙研钵中干磨混合均匀得混合粉末,再加入混合粉质量10%的SiC改性短碳纤维,混合搅拌后放入氧化铝坩埚中,在氩气气氛下以5℃/min的加热速率升温至1100℃保温2h,冷却至室温,再用去离子水清洗后在100℃下干燥8h,得到Yb3Si2C2改性碳纤维;
3、多层结构的改性碳纤维-莫来石陶瓷吸波材料
(1)按摩尔比3:2配比,分别称取Al2O3和SiO2粉置于氧化锆球磨罐中,加入3wt.%烧结助剂Y2O3和去离子水,以250r/min转速下混合球磨得浆料,干燥后置于马弗炉中800℃煅烧2h得到预混粉;
(2)将丙烯酰胺、N,N’-亚甲基双丙烯酰胺、四甲基氢氧化铵和去离子水按照15:1.5:0.6:55的质量比混合搅拌均匀,逐滴加入氨水调节溶液pH值至9~10,配置成预混液;
(3)将预混液和预混粉倒入球磨罐中球磨混合均匀,得到固含量为50wt.%的凝胶注模浆料,在充有氮气的手套箱中,往凝胶注模浆料中加入占其0.5wt.%的过硫酸铵(APS)和0.3wt.%的四甲基乙二胺(TMEDA),混合搅拌均匀后注入模具,再按照Y3Si2C2改性碳纤维占莫来石基体的3wt.%均匀铺层于浆料表面固化成型,重复注入模具-铺层-固化成型,得到1层Yb3Si2C2改性碳纤维夹层的坯体;
(4)氩气气氛下,将坯体用莫来石粉包埋,于1500℃排胶烧结3h制得多层结构的改性碳纤维-莫来石陶瓷吸波材料。其中莫来石基体层的层数为2层, Yb3Si2C2改性碳纤维夹层的层数为1层,吸波性能参见表1。
对比例1
1、SiC改性短碳纤维同实施例1
2、Yb3Si2C2改性碳纤维
将质量比为6:5:5的稀土金属Yb粉(镱粉)、NaCl、KCl在玛瑙研钵中干磨混合均匀得混合粉末,再加入混合粉质量10%的SiC改性短碳纤维,混合搅拌后放入氧化铝坩埚中,在氩气气氛下以5℃/min的加热速率升温至1100℃保温2h,冷却至室温,再用去离子水清洗后在100℃下干燥8h,得到Yb3Si2C2改性碳纤维;
3、多层结构的改性碳纤维-莫来石陶瓷吸波材料
(1)按摩尔比3:2配比,分别称取Al2O3和SiO2粉置于氧化锆球磨罐中,加入3wt.%烧结助剂Y2O3和去离子水,以250r/min转速下混合球磨得浆料,干燥后置于马弗炉中800℃煅烧2h得到预混粉;
(2)将丙烯酰胺、N,N’-亚甲基双丙烯酰胺、四甲基氢氧化铵和去离子水按照15:1.5:0.6:55的质量比混合搅拌均匀,逐滴加入氨水调节溶液pH值至9~10,配置成预混液;
(3)将预混液和预混粉倒入球磨罐中球磨混合均匀,得到固含量为50wt.%的凝胶注模浆料,在充有氮气的手套箱中,往凝胶注模浆料中加入占其0.5wt.%的过硫酸铵(APS)和0.3wt.%的四甲基乙二胺(TMEDA),混合搅拌均匀后注入模具,再按照Yb3Si2C2改性碳纤维占莫来石基体的3wt.%均匀铺层于浆料表面固化成型得到坯体;
(4)氩气气氛下,将坯体用莫来石粉包埋,于1500℃排胶烧结3h制得层状结构的改性碳纤维-莫来石陶瓷吸波材料。其中莫来石基体层的层数为1层, Yb3Si2C2改性碳纤维夹层的层数为1层,吸波性能参见表1。
对比例2
1、SiC改性短碳纤维同实施例1
2、多层结构的改性碳纤维-莫来石陶瓷吸波材料
(1)按摩尔比3:2配比,分别称取Al2O3和SiO2粉置于氧化锆球磨罐中,加入3wt.%烧结助剂Y2O3和去离子水,以250r/min转速下混合球磨得浆料,干燥后置于马弗炉中800℃煅烧2h得到预混粉;
(2)将丙烯酰胺、N,N’-亚甲基双丙烯酰胺、四甲基氢氧化铵和去离子水按照15:1.5:0.6:55的质量比混合搅拌均匀,逐滴加入氨水调节溶液pH值至9~10,配置成预混液;
(3)将预混液和预混粉倒入球磨罐中球磨混合均匀,得到固含量为50wt.%的凝胶注模浆料,在充有氮气的手套箱中,往凝胶注模浆料中加入占其0.5wt.%的过硫酸铵(APS)和0.3wt.%的四甲基乙二胺(TMEDA),混合搅拌均匀后注入模具,再按照SiC改性短碳纤维占莫来石基体的3wt.%均匀铺层于浆料表面固化成型,重复注入模具-铺层-固化成型,得到1层SiC改性短碳纤维夹层的坯体;
(4)氩气气氛下,将坯体用莫来石粉包埋,于1500℃排胶烧结3h制得多层结构的改性碳纤维-莫来石陶瓷吸波材料。其中莫来石基体层的层数为2层,SiC 改性短碳纤维夹层的层数为1层,吸波性能参见表1。
表1实施例1-4和对比例1-2制得的样品的吸波性能表
样品 RL<-10dB带宽(GHz) 最大RL值(dB)
实施例1 4.2 -38.3
实施例2 4.0 -34.5
实施例3 3.6 -29.9
实施例4 3.1 -26.5
对比例1 1.6 -20.9
对比例2 2.7 -15.2

Claims (8)

1.一种多层结构的改性碳纤维-莫来石陶瓷吸波材料,其特征在于:所述改性碳纤维-莫来石陶瓷吸波材料包括莫来石基体层和R3Si2C2改性碳纤维夹层,莫来石基体层的层数为3-5层,在相邻莫来石基体层之间均设置有R3Si2C2改性碳纤维夹层,其中R为稀土元素;
单层的莫来石基体层的质量均相同,单层的R3Si2C2改性碳纤维夹层的质量从下到上依次梯度递减,递减的质量梯度为40-60 wt.%,单层的R3Si2C2改性碳纤维夹层的质量占单层的莫来石基体层的质量的0.5-5 wt.%。
2.根据权利要求1所述的多层结构的改性碳纤维-莫来石陶瓷吸波材料,其特征在于:R为Sc、Y、Pr、Sm、Gd、Tb、Er、Tm和Yb中的至少一种。
3.权利要求1-2任一项所述的多层结构的改性碳纤维-莫来石陶瓷吸波材料的制备方法,其特征在于,包括如下步骤:
(1)将R粉、NaCl、KCl干磨混合均匀得混合粉末,再加入SiC改性短碳纤维混合均匀,保护性气氛下于1100~1150℃煅烧即得R3Si2C2改性碳纤维;
(2)将Al2O3、SiO2、烧结助剂Y2O3和去离子水球磨混合均匀得浆料,干燥后于750-850℃煅烧得到预混粉;
(3)将丙烯酰胺、N,N’-亚甲基双丙烯酰胺、四甲基氢氧化铵和去离子水混合搅拌均匀,再加入氨水调节其pH至9-10,得到预混液;
(4)将预混液和预混粉球磨混合均匀,得到凝胶注模浆料;在充有氮气的手套箱中,往凝胶注模浆料中加入过硫酸铵和四甲基乙二胺混合搅拌均匀后注入模具,再将R3Si2C2改性碳纤维均匀铺层于表面固化成型,重复注入模具-铺层-固化成型,得到坯体;
(5)保护性气氛下,将坯体用莫来石粉包埋,于1400-1600℃排胶烧结制得多层结构的改性碳纤维-莫来石陶瓷吸波材料。
4.根据权利要求3所述的制备方法,其特征在于:步骤(1)中,R粉为Sc、Y、Pr、Sm、Gd、Tb、Er、Tm和Yb粉中的至少一种;R粉、NaCl和KCl的质量比为(3~7):(2.5~6):(2.5~6),SiC改性短碳纤维与混合粉末的质量比为1:(7-10)。
5.根据权利要求3所述的制备方法,其特征在于:步骤(2)中,Al2O3和SiO2的摩尔比为(2.5~3.2):(1.8~2.2),烧结助剂Y2O3的添加量为Al2O3和SiO2总质量的1.5~6.0 wt.%。
6.根据权利要求3所述的制备方法,其特征在于:步骤(3)中,丙烯酰胺、N,N’-亚甲基双丙烯酰胺、四甲基氢氧化铵和去离子水的质量比为(15~30):(1.5~2):(4~8):(70~100)。
7.根据权利要求3所述的制备方法,其特征在于:步骤(4)中,凝胶注模浆料的固含量为45~55 wt.%,过硫酸铵的添加量为凝胶注模浆料质量的0.4~0.6 wt.%,四甲基乙二胺的添加量为凝胶注模浆料质量的0.2~0.4 wt.%。
8.根据权利要求3所述的制备方法,其特征在于:步骤(4)中,重复注入模具-铺层-固化成型的过程中,每次注入模具的质量保持不变,铺层的质量从下到上依次梯度递减,递减的质量梯度为40-60 wt.%。
CN202210855054.0A 2022-07-19 2022-07-19 一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备方法 Active CN115196951B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210855054.0A CN115196951B (zh) 2022-07-19 2022-07-19 一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210855054.0A CN115196951B (zh) 2022-07-19 2022-07-19 一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115196951A CN115196951A (zh) 2022-10-18
CN115196951B true CN115196951B (zh) 2023-02-24

Family

ID=83581926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210855054.0A Active CN115196951B (zh) 2022-07-19 2022-07-19 一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115196951B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115872763B (zh) * 2022-12-09 2023-11-10 西北工业大学 一种陶瓷电磁波吸收剂及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186130A (zh) * 2007-12-07 2008-05-28 中国科学院上海硅酸盐研究所 一种高吸波效率的陶瓷基层状材料及制备方法
CN104876616A (zh) * 2015-04-20 2015-09-02 中国人民解放军国防科学技术大学 一种耐高温吸波材料及其制备方法
CN106495702A (zh) * 2016-10-14 2017-03-15 湖南工业大学 一种制备碳纤维/氮化硅结构吸波材料的工艺方法
CN112876273A (zh) * 2021-03-17 2021-06-01 中南大学 一种耐高温吸波结构一体化陶瓷基复合材料及其制备方法
CN113233909A (zh) * 2021-05-18 2021-08-10 中国科学院宁波材料技术与工程研究所 新型纤维增韧陶瓷基复合材料、其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10927046B2 (en) * 2018-12-21 2021-02-23 General Electric Company EBC with mullite bondcoat having a non-oxide silicon ceramic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186130A (zh) * 2007-12-07 2008-05-28 中国科学院上海硅酸盐研究所 一种高吸波效率的陶瓷基层状材料及制备方法
CN104876616A (zh) * 2015-04-20 2015-09-02 中国人民解放军国防科学技术大学 一种耐高温吸波材料及其制备方法
CN106495702A (zh) * 2016-10-14 2017-03-15 湖南工业大学 一种制备碳纤维/氮化硅结构吸波材料的工艺方法
CN112876273A (zh) * 2021-03-17 2021-06-01 中南大学 一种耐高温吸波结构一体化陶瓷基复合材料及其制备方法
CN113233909A (zh) * 2021-05-18 2021-08-10 中国科学院宁波材料技术与工程研究所 新型纤维增韧陶瓷基复合材料、其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
碳纤维增强莫来石陶瓷的介电性能和吸波性能研究;皮伟强;《包装学报》;20201130;第34-42页 *

Also Published As

Publication number Publication date
CN115196951A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
CN107698271B (zh) 耐高温高强韧性氮化硅基透波复合材料及制备方法
CN109320276B (zh) 氮化硅晶须与氮化硅纳米线增强氮化硅基透波陶瓷制备方法
CN115196951B (zh) 一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备方法
CN108329037B (zh) 一种SiC/Si3N4复合吸波陶瓷的制备方法
Luo et al. Dielectric properties of Cf–Si3N4 sandwich composites prepared by gelcasting
CN105503254A (zh) 一种钛酸钡泡沫陶瓷及其制备方法
CN113896543B (zh) 一种具有层状结构吸波硅碳氮陶瓷及制备方法
CN108751969A (zh) 一种耐高温、隔热、透波陶瓷基复合材料及其制备方法
CN113773098B (zh) 一种高电磁波屏蔽碳化硅陶瓷基复合材料及其制备方法
CN110937892B (zh) 一种高温吸收剂、超薄高温吸波材料及其制备方法
WO2019061484A1 (zh) 一种浸渍法制备SiCN/Si3N4复合陶瓷的方法
CN114466580A (zh) 一种碳化硅/碳化铪纳米线改性碳化硅涂层增强石墨烯蜂窝基纳米气凝胶隔热吸波复合材料
CN109095919B (zh) 一种具有多级微结构分布的钛酸钡/四氧化三钴复相毫米波吸波粉体及制备方法
CN108395240B (zh) 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用
He et al. Ceramsite containing iron oxide and its use as functional aggregate in microwave absorbing cement-based materials
CN114573347B (zh) 一种以Y2Si2O7为基体的SiO2/SiC基微波吸收陶瓷的制备方法
CN115925426A (zh) 一种气凝胶复合材料及其制备方法
CN113735590B (zh) 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品
CN102049514A (zh) 氧化铝陶瓷纳米金属化膏剂用粉料及其制备方法
JP4878255B2 (ja) フェライト含有セラミック体及びその製造方法
CN111217342B (zh) 一种多孔氮化铌粉体微波吸收材料的制备方法
CN103864423B (zh) 一种微波介质陶瓷材料的制备方法
CN111825380A (zh) 一种复掺纳米功能材料的三层结构水泥基吸波板及其制备方法
CN108998689B (zh) 一种耐高温金属陶瓷吸波材料及其制备方法
CN1810719A (zh) 高强度、低介电常数的二氧化硅结合的氮化硅多孔陶瓷及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant