CN114853462A - 一种直写成型制备yag基透明陶瓷的方法 - Google Patents

一种直写成型制备yag基透明陶瓷的方法 Download PDF

Info

Publication number
CN114853462A
CN114853462A CN202210526515.XA CN202210526515A CN114853462A CN 114853462 A CN114853462 A CN 114853462A CN 202210526515 A CN202210526515 A CN 202210526515A CN 114853462 A CN114853462 A CN 114853462A
Authority
CN
China
Prior art keywords
ball milling
slurry
yag
transparent ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210526515.XA
Other languages
English (en)
Inventor
张乐
邵岑
邱凡
陈士卫
周天元
王忠英
黄国灿
魏帅
李延彬
李明洲
康健
刘鑫
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Original Assignee
Jiangsu Normal University
Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University, Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd filed Critical Jiangsu Normal University
Priority to CN202210526515.XA priority Critical patent/CN114853462A/zh
Publication of CN114853462A publication Critical patent/CN114853462A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)

Abstract

本发明公开了一种直写成型制备YAG基透明陶瓷的方法,它包括以下步骤:将有机溶剂、分散剂A、烧结助剂、陶瓷粉体进行球磨混合,干燥、过100目、200目、500目筛、煅烧得到原料粉;将500目煅烧后粉体、聚电解质分散剂、去离子水进行球磨混合,得到浆料B;将100目煅烧后粉体、3~8wt%的PVP水溶液、分散剂B进行球磨混合,再加入200目煅烧后粉体继续球磨,得到浆料C;浆料C与浆料B按照质量比3.5~5.5进行球磨混合;真空除泡,直写成型,排胶;将排胶后的素坯真空烧结,退火,加工处理后即得YAG透明陶瓷。本发明制备的YAG基陶瓷素坯无需冷等静压、温等静压,同时实现了复合结构与复杂形状透明陶瓷材料的可控制备,产品制备速率快,良品率高,应用前景好。

Description

一种直写成型制备YAG基透明陶瓷的方法
技术领域
本发明属于先进光功能透明陶瓷制备技术领域,具体涉及一种直写成型制备YAG基透明陶瓷的方法。
背景技术
钇铝石榴石(简称:Y3Al5O12,YAG)具有优异的光学、热学和力学性能,被广泛用于高温结构材料和发光基质材料。在YAG的晶格中,Y3+独特的电子结构,使其能够被与Y3+离子具有相近的离子半径异种离子(阳离子)以固溶的方式轻易的取代。因此,YAG通常作为基质材料,通过掺杂其他发光离子,实现自身的发光。
随着高端装备产业的发展,异形结构件的应用需求逐步增长,这直接对YAG基质材料的提出了新的要求。传统YAG单晶形式伴随着人工成本、加工成本的增长,难以满足产业对与材料形状的应用需求。因此,YAG透明陶瓷在取代单晶方面已经表现出前所未有的优势,成为了近年来材料领域研究的热点。围绕复合结构、复杂形状的YAG透明陶瓷制备的技术,研究人员先后开发了流延、凝胶注模、注浆等相关成型技术。但是,采用单一制备工艺实现复杂形状和复合结构透明陶瓷的制备依旧是行业难题。
聚焦复杂形状与复合结构YAG透明陶瓷的制备,本发明公开一种直写成型技术实现YAG基透明陶瓷的制备。与其他陶瓷材料直写成型技术相比,CN110395979A公开的一种氧化锆陶瓷的直写成型方法,是采用醇锆盐水解后得到可用于成型的陶瓷浆料,但是该方案无法直接借鉴用于YAG透明陶瓷陶瓷制备,这是由于YAG透明陶瓷是完全致密、无气孔、无杂质、无二次相的陶瓷材料,且Y2O3制备过程中存在水解反应与不完全致密、有气孔、不透明的氧化锆存在本质区别。CN104325538A公开的一种改进制备三维立体结构的直写成型方式,使用的有机物含量偏高,在排胶过程中存在结构的塌陷现象,并且所制备出的陶瓷为低密度、有气孔、不透明的材料。CN113001706A公开的基于直写成型的多元陶瓷功能梯度材料的制备方法,依旧是适用于低密度、不透明、有气孔的材料体系。CN109761608A公开的一种基于直写成型3D打印技术制备棒状复合透明陶瓷的方法,需要使用冷等静压设备才能实现透明陶瓷的制备,这与结合模具设计的干压成型技术制备YAG透明陶瓷无本质区别。
发明内容
为了解决复合结构与复杂形状无法同时制备的关键技术难题,提升透明陶瓷制备技术,本发明提供一种直写成型制备YAG基透明陶瓷的方法。
为实现上述目的,本发明采用的技术方案如下:一种直写成型制备YAG基透明陶瓷的方法,包括以下步骤:
(1)按照xRe:Y3Al5O12分子式的化学计量比分别称量纳米Y2O3粉体、纳米Al2O3粉体、纳米Re2O3粉体,Re为稀土金属,x为部分Re原子取代Y原子或Al原子的物质摩尔量,x=0~0.1;将称量好的纳米氧化物粉体与有机溶剂、分散剂A、烧结助剂放入球磨罐中,进行行星式球磨混合后得混合浆料A;
(2)取出所述混合浆料A进行干燥处理,分别过100目、200目、500目筛,将过筛后的粉体置于马弗炉中,空气气氛下煅烧,得到直写成型的原料粉;
(3)在球磨罐中加入步骤(2)所得500目煅烧后粉体、聚电解质分散剂、去离子水,调整浆料固含量46~55vol.%,聚电解质分散剂加入量为纳米氧化物粉体总质量的0.01~1.5wt.%,继续球磨2~6h;再依次加入纳米氧化物粉体总质量0.01~0.2wt.%的异丙醇,加入纳米氧化物粉体总质量0.01~0.1wt.%的二硫代氨基甲酸铵,加入纳米氧化物粉体总质量0.1~0.5wt.%的硫代乙醇酸乙酯,继续球磨4~8h,得混合浆料B;
(4)在球磨罐中加入步骤(2)所得100目煅烧后粉体、聚乙烯吡咯烷酮(PVP)水溶液、分散剂B,进行球磨混合,调整浆料固含量为35~45vol.%;
(5)将步骤(2)所得200目煅烧后粉体加入步骤(4)所得浆料中,继续球磨混合,调整浆料固含量为50~65vol.%,得混合浆料C;
(6)将步骤(5)所得混合浆料C与步骤(3)所得混合浆料B按照质量比3.5~5.5进行球磨混合;
(7)将步骤(6)所得浆料进行除泡处理,然后将浆料加入直写成型机的储液器里进行直写成型;
(8)将步骤(7)所得素坯在空气下进行排胶;
(9)将步骤(8)排胶后的素坯进行真空烧结,然后在空气下进行退火,最后经加工处理后得到YAG透明陶瓷。
作为优选,步骤(1)中,所述有机溶剂为无水乙醇;
所述分散剂A为聚乙烯亚胺溶液,所述分散剂A的加入量占纳米氧化物粉体总质量的0.1~0.5%;
所述烧结助剂包括MgO、TEOS、CaO、MgF2中的一种或几种,所述烧结助剂的加入量为纳米氧化物粉体总质量的0.1~0.8%;
所述球磨罐的材质为尼龙、氧化铝陶瓷、聚氨酯中的一种。
作为优选,步骤(2)中,煅烧温度为600~900℃,保温时长3~8h。
作为优选,步骤(2)中,所述聚电解质是采用异氰酸酯基化合物与醇羟基化合物为原料,经亲核加成和交联反应制成的聚合物。
作为优选,步骤(4)中,所述聚乙烯吡咯烷酮加入量为纳米氧化物粉体总质量的3~8%;所述分散剂B为聚丙烯酸(PAA)或者柠檬酸铵,分散剂B加入量为纳米氧化物粉体总质量的0.03~0.2%。
作为优选,步骤(4)中,球磨方式为滚筒球磨,球磨转速为220~280r/min,球磨时长为4~8h。
作为优选,步骤(5)-步骤(6)中,球磨方式为滚筒球磨,球磨转速为160~220r/min,球磨时长为0.5~3h。
作为优选,步骤(7)所述的储液器设置有多个,浆料进出喷嘴腔体的速率为0.5~8mL/min,喷嘴尺寸为100~600μm,干燥成型温度为50~80℃。
作为优选,步骤(8)中,所述排胶温度为600~900℃,升温速率为0.5~3℃/min,保温时长为6~15h。
作为优选,步骤(9)中,所述烧结温度为1680~1800℃,退火温度1250~1500℃。
与现有技术相比,本发明具有如下有益效果:
(1)本发明制备的YAG基陶瓷素坯无需冷等静压、温等静压,有效避免Y2O3水解对透明陶瓷光学性能的影响,直接实现高光学质量YAG透明陶瓷的制备,同时有效解决了直写成型存在低孔隙率造成透明陶瓷材料无法直接制备的关键技术难题。
(2)本发明水基绿色成型技术直接实现了复合结构与复杂形状透明陶瓷材料的可控制备,解决了传统复合结构陶瓷制备过程中存在的开裂分层、异形形状难实现的关键技术难题,拓宽了透明陶瓷的应用领域。
(3)本发明涉及的制备过程节能环保,产品制备速率快,良品率高,脱脂排胶过程无杂质残留。
附图说明
图1是实施例1制备的复杂形状YAG透明陶瓷素坯实物图;
图2是实施例1制备的复杂形状YAG透明陶瓷的光学透过率;
图3是实施例4制备的不同结构YAG基透明陶瓷示意图;
图4是实施例2-4制备的YAG基透明陶瓷正面抛光与端面抛光图;
图5是实施例4制备的YAG基透明陶瓷的光学显微镜测试结果图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
以下实施例中所使用的的陶瓷粉体均为市售商品,纯度大于等于99.99%,所述方法如无特别说明均为常规方法。
以下实施例中所述聚电解质是采用异氰酸酯基化合物与醇羟基化合物为原料,经亲核加成和交联反应制成的聚合物。
实施例1:制备YAG透明陶瓷
(1)按照制备500g Y3Al5O12的各元素的化学计量比,分别称量Y2O3 285.297g和Al2O3 214.703g,加入0.5g的PEI作为分散剂,加入2.5g的烧结助剂TEOS和0.5g的烧结助剂MgO;
(2)将步骤(1)所得粉体,进行行星式球磨,球磨时长为15h,溶剂为无水乙醇,球磨罐材质为尼龙;将所得浆料进行干燥筛分,筛分目数分别为100、200、500目;
(3)将步骤(2)所得粉体进行煅烧,煅烧温度为600℃,保温时长10h,煅烧环境为空气气氛,煅烧容器为氧化铝坩埚;
(4)将步骤(3)所得500目煅烧后粉体与聚电解质分散剂配制成浆料,调整浆料固含量52vol.%,配制浆料使用溶剂为去离子水,聚电解质分散剂加入量为0.5g;继续球磨4h,加入0.25g异丙醇,加入0.25g二硫代氨基甲酸铵,加入1.25g硫代乙醇酸乙酯;继续球磨6h。
(5)将步骤(3)所得100目煅烧后粉体与PVP水溶液(其中含PVP 40g)进行球磨混合,球磨方式为滚筒球磨,球磨转速为240r/min,球磨时长为6h,加入0.5g分散剂PAA,调整浆料固含量为43vol.%;
(6)将步骤(3)所得200目煅烧后粉体加入步骤(5)所得浆料中,调整浆料固含量为50vol.%,球磨方式为滚筒球磨,球磨转速为190r/min,时长为4h;
(7)经步骤(6)所得浆料与步骤(4)所得浆料按照质量比为3.5的比例进行球磨混合,球磨方式为滚筒球磨,转速为160r/min,时长为3h;
(8)将步骤(7)所得浆料进行除泡处理,然后将浆料加入直写成型机的储液器里,在计算机设置建立成型模型,设置浆料进出喷嘴腔体的速率为5mL/min,喷嘴尺寸为300μm,干燥成型温度为50℃,然后进行直写成型;
(9)将步骤(8)所得素坯在空气下进行排胶,排胶温度为900℃,升温速率为1.0℃/min,保温时长为15h;
(10)将步骤(9)所得排胶后素坯进行真空烧结,烧结温度为1780℃,然后在空气下进行退火,退火温度1450℃,最后经加工处理后即可得到直写成型的YAG透明陶瓷。
图1实施例1制备的复杂形状YAG透明陶瓷素坯的实物图。
图2实施例1制备的复杂形状YAG透明陶瓷的光学透过率在1064nm处超达到80%以上,表明所制备的样品光学质量优异。
实施例2:制备0.1at%Ce:YAG透明陶瓷
(1)按照制备500g(Y0.999Ce0.001)3Al5O12的各元素的化学计量比,分别称量商用0.435g的CeO2、284.938g的Y2O3和214.647g的Al2O3,加入0.75g的PEI作为分散剂,加入0.5g的烧结助剂TEOS和0.5g的烧结助剂MgO;
(2)将步骤(1)所得粉体,进行行星式球磨,球磨时长为15h,溶剂为无水乙醇,球磨罐材质为尼龙;将所得浆料进行干燥筛分,筛分目数分别为100、200、500目;
(3)将步骤(2)所得粉体进行煅烧,煅烧温度为800℃,保温时长6h,煅烧环境为空气气氛,煅烧容器为氧化铝坩埚;
(4)将步骤(3)所得500目煅烧后粉体与聚电解质分散剂配制成浆料,调整浆料固含量52vol.%,配制浆料使用溶剂为去离子水,聚电解质分散剂加入量为0.1g;继续球磨3h,加入0.25g的异丙醇,加入0.25g二硫代氨基甲酸铵,加入1.25g硫代乙醇酸乙酯;继续球磨6h。
(5)将步骤(3)所得100目煅烧后粉体与PVP水溶液(其中含PVP 30g)进行球磨混合,球磨方式为滚筒球磨,球磨转速为220r/min,球磨时长为4h,加入0.25g分散剂PAA,调整浆料固含量为40vol.%;
(6)将步骤(3)所得200目煅烧后粉体加入步骤(5)所得浆料中,调整浆料固含量为55vol.%,球磨方式为滚筒球磨,球磨转速为180r/min,时长为2h;
(7)经步骤(6)所得浆料与步骤(4)所得浆料按照质量比为4的比例进行球磨混合,球磨方式为滚筒球磨,转速为180r/min,时长为2h,得到(Y0.999Ce0.001)3Al5O12的浆料;
(8)将步骤(7)所得两种浆料分别进行除泡处理,然后将浆料加入直写成型机两支不同的储液器里,在计算机设置建立成型模型,设置浆料进出喷嘴腔体的速率为5mL/min,喷嘴尺寸为300μm,干燥成型温度为60℃,然后进行直写成型;
(9)将步骤(8)所得素坯在空气下进行排胶,排胶温度为800℃,升温速率为1.0℃/min,保温时长为8h;
(10)将步骤(9)所得排胶后素坯进行真空烧结,烧结温度为1780℃,然后在空气下进行退火,退火温度1450℃,最后经加工处理后即可得到直写成型的Ce:YAG复合结构透明陶瓷。
实施例3:制备0.6at%Cr:YAG透明陶瓷
(1)按照制备500g Y3(Al0.994Cr0.006)5O12的各元素的化学计量比,分别称量商用1.919g的Cr2O3、284.937g的Y2O3和214.145g的Al2O3,加入1.0g的PEI作为分散剂,加入0.5g的烧结助剂TEOS和0.5g的烧结助剂MgO;
(2)将步骤(1)所得粉体,进行行星式球磨,球磨时长为15h,溶剂为无水乙醇,球磨罐材质为尼龙;将所得浆料进行干燥筛分,筛分目数分别为100、200、500目;
(3)将步骤(2)所得粉体进行煅烧,煅烧温度为900℃,保温时长3h,煅烧环境为空气气氛,煅烧容器为氧化铝坩埚;
(4)将步骤(3)所得500目煅烧后粉体与聚电解质分散剂配制成浆料,调整浆料固含量50vol.%,配制浆料使用溶剂为去离子水,聚电解质分散剂加入量为0.2g;继续球磨3h,加入0.4g异丙醇,加入0.3g二硫代氨基甲酸铵,加入量为2.25g硫代乙醇酸乙酯;继续球磨4h。
(5)将步骤(3)所得100目煅烧后粉体与PVP水溶液(其中含PVP 40g)进行球磨混合,球磨方式为滚筒球磨,球磨转速为220r/min,球磨时长为4h,加入0.4g分散剂PAA,调整浆料固含量为45vol.%;
(6)将步骤(3)所得200目煅烧后粉体加入步骤(5)所得浆料中,调整浆料固含量为55vol.%,球磨方式为滚筒球磨,球磨转速为180r/min,时长为3h;
(7)经步骤(6)所得浆料与步骤(4)所得浆料按照质量比为3.8的比例进行球磨混合,球磨方式为滚筒球磨,转速为180r/min,时长为3h,得到Y3(Al0.994Cr0.006)5O12的浆料;
(8)将步骤(7)所得浆料分别进行除泡处理,然后将浆料加入直写成型机的储液器里,在计算机设置建立成型模型,设置浆料进出喷嘴腔体的速率为8mL/min,喷嘴尺寸为260μm,干燥成型温度为60℃,然后进行直写成型;
(9)将步骤(8)所得素坯在空气下进行排胶,排胶温度为900℃,升温速率为1.0℃/min,保温时长为6h;
(10)将步骤(9)所得排胶后素坯进行真空烧结,烧结温度为1780℃,然后在空气下进行退火,退火温度1450℃,最后经加工处理后即可得到直写成型的Cr:YAG透明陶瓷。
实施例4:制备Ce:YAG/Cr:YAG复合结构透明陶瓷
(1)采用实施例2、实施例3中的工艺,分别得到(Y0.999Ce0.001)3Al5O12的浆料和Y3(Al0.994Cr0.006)5O12的浆料;
(2)将步骤(1)所得两种浆料分别进行除泡处理,然后将浆料加入直写成型机两支不同的储液器里,在计算机设置建立成型模型,设置浆料进出喷嘴腔体的速率为5mL/min,喷嘴尺寸为300μm,干燥成型温度为80℃,然后进行直写成型;
(3)将步骤(2)设置好的直写成型机按照结构设计进行成型,设计结构分别为Ce:YAG/Cr:YAG的循环结构、Ce:YAG/Cr:YAG的双层结构、Cr:YAG/Ce:YAG/Cr:YAG的三明治结构以及Ce:YAG/Cr:YAG/Ce:YAG的三明治结构;直写阶段按照一层一层进行成型,根据结构设计需求,调用带有喷嘴的不同储液器,待按照结构设计完成直写成型后,即可得到复合结构的陶瓷素坯;
(4)将步骤(3)所得素坯在空气下进行排胶,排胶温度为800℃,升温速率为1.0℃/min,保温时长为8h;
(5)将步骤(4)所得排胶后素坯进行真空烧结,烧结温度为1780℃,然后在空气下进行退火,退火温度1450℃,最后经加工处理后即可得到直写成型不同结构的Ce:YAG/Cr:YAG复合结构透明陶瓷。
图3是实施例4设计的不同结构YAG基透明陶瓷,表明直写成型复合结构材料的制备优势。
图4实施例2-4设计的YAG基透明陶瓷正面抛光与端面抛光图,样品光学质量优异,样品下面文字清晰可见。
图5实施例4设计的YAG基透明陶瓷的光学显微镜测试结果图,样品结构清晰明显,表明直写成型技术满足复杂形状与复合结构透明陶瓷材料的制备需求。
采用本发明的直写成型工艺还可以制备多种透明陶瓷材料如镁铝尖晶石、氮氧化铝、氧化铝等。

Claims (10)

1.一种直写成型制备YAG基透明陶瓷的方法,其特征在于,包括以下步骤:
(1)按照xRe:Y3Al5O12分子式的化学计量比分别称量纳米Y2O3粉体、纳米Al2O3粉体、纳米Re2O3粉体,Re为稀土金属,x为部分Re原子取代Y原子或Al原子的物质摩尔量,x=0~0.1;将称量好的纳米氧化物粉体与有机溶剂、分散剂A、烧结助剂放入球磨罐中,进行行星式球磨混合后得混合浆料A;
(2)取出所述混合浆料A进行干燥处理,分别过100目、200目、500目筛,将过筛后的粉体置于马弗炉中,空气气氛下煅烧,得到直写成型的原料粉;
(3)在球磨罐中加入步骤(2)所得500目煅烧后粉体、聚电解质分散剂、去离子水,调整浆料固含量46~55vol.%,聚电解质分散剂加入量为纳米氧化物粉体总质量的0.01~1.5wt.%;继续球磨2~6h,再依次加入纳米氧化物粉体总质量0.01~0.2wt.%的异丙醇,加入使用粉体质量0.01~0.1wt.%的二硫代氨基甲酸铵,加入纳米氧化物粉体总质量0.1~0.5wt.%的硫代乙醇酸乙酯,继续球磨4~8h,得混合浆料B;
(4)在球磨罐中加入步骤(2)所得100目煅烧后粉体、聚乙烯吡咯烷酮水溶液、分散剂B,进行球磨混合,调整浆料固含量为35~45vol.%;
(5)将步骤(2)所得200目煅烧后粉体加入步骤(4)所得浆料中,继续球磨混合,调整浆料固含量为50~65vol.%,得混合浆料C;
(6)将步骤(5)所得混合浆料C与步骤(3)所得混合浆料B按照质量比3.5~5.5进行球磨混合;
(7)将步骤(6)所得浆料进行除泡处理,然后将浆料加入直写成型机的储液器里进行直写成型;
(8)将步骤(7)所得素坯在空气下进行排胶;
(9)将步骤(8)排胶后的素坯进行真空烧结,然后在空气下进行退火,最后经加工处理后得到YAG透明陶瓷。
2.根据权利要求1所述的一种直写成型制备YAG基透明陶瓷的方法,其特征在于,步骤(1)中,所述有机溶剂为无水乙醇;
所述分散剂A为聚乙烯亚胺溶液,所述分散剂A的加入量占纳米氧化物粉体总质量的0.1~0.5%;
所述烧结助剂包括MgO、TEOS、CaO、MgF2中的一种或几种,所述烧结助剂的加入量为纳米氧化物粉体总质量的0.1~0.8%;
所述球磨罐的材质为尼龙、氧化铝陶瓷、聚氨酯中的一种。
3.根据权利要求1所述的一种直写成型制备YAG基透明陶瓷的方法,其特征在于,步骤(2)中,煅烧温度为600~900℃,保温时长3~8h。
4.根据权利要求1所述的一种直写成型制备YAG基透明陶瓷的方法,其特征在于,步骤(2)中,所述聚电解质是采用异氰酸酯基化合物与醇羟基化合物为原料,经亲核加成和交联反应制成的聚合物。
5.根据权利要求1所述的一种直写成型制备YAG基透明陶瓷的方法,其特征在于,步骤(4)中,所述聚乙烯吡咯烷酮加入量为纳米氧化物粉体总质量的3~8%;
所述分散剂B为聚丙烯酸或者柠檬酸铵,分散剂B加入量为纳米氧化物粉体总质量的0.03~0.2%。
6.根据权利要求1所述的一种直写成型制备YAG基透明陶瓷的方法,其特征在于,步骤(4)中,球磨方式为滚筒球磨,球磨转速为220~280r/min,球磨时长为4~8h。
7.根据权利要求1所述的一种直写成型制备YAG基透明陶瓷的方法,其特征在于,步骤(5)-步骤(6)中,球磨方式为滚筒球磨,球磨转速为160~220r/min,球磨时长为0.5~3h。
8.根据权利要求1所述的一种直写成型制备YAG基透明陶瓷的方法,其特征在于,步骤(7)所述的储液器设置有多个,浆料进出喷嘴腔体的速率为0.5~8mL/min,喷嘴尺寸为100~600μm,干燥成型温度为50~80℃。
9.根据权利要求1所述的一种直写成型制备YAG基透明陶瓷的方法,其特征在于,步骤(8)中,所述排胶温度为600~900℃,升温速率为0.5~3℃/min,保温时长为6~15h。
10.根据权利要求1所述的一种直写成型制备YAG基透明陶瓷的方法,其特征在于,步骤(9)中,所述烧结温度为1680~1800℃,退火温度1250~1500℃。
CN202210526515.XA 2022-05-16 2022-05-16 一种直写成型制备yag基透明陶瓷的方法 Pending CN114853462A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210526515.XA CN114853462A (zh) 2022-05-16 2022-05-16 一种直写成型制备yag基透明陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210526515.XA CN114853462A (zh) 2022-05-16 2022-05-16 一种直写成型制备yag基透明陶瓷的方法

Publications (1)

Publication Number Publication Date
CN114853462A true CN114853462A (zh) 2022-08-05

Family

ID=82638045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210526515.XA Pending CN114853462A (zh) 2022-05-16 2022-05-16 一种直写成型制备yag基透明陶瓷的方法

Country Status (1)

Country Link
CN (1) CN114853462A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116178004A (zh) * 2022-12-13 2023-05-30 中国科学院上海硅酸盐研究所 一种稀土渐变掺杂透明陶瓷及其制备方法
CN116177995A (zh) * 2022-09-07 2023-05-30 中国科学院上海硅酸盐研究所 一种基于3d打印复合结构荧光陶瓷的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108309475A (zh) * 2018-02-05 2018-07-24 上海御齿台医疗科技有限公司 安全种植牙方法
CN108516818A (zh) * 2018-05-25 2018-09-11 江苏师范大学 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN109761608A (zh) * 2019-03-07 2019-05-17 江苏师范大学 一种基于直写成型3d打印技术制备棒状复合透明陶瓷的方法
US20190348809A1 (en) * 2016-06-17 2019-11-14 Lawrence Livermore National Security, Llc Laser gain media fabricated via direct ink writing (diw) and ceramic processing
CN111825453A (zh) * 2020-07-24 2020-10-27 江苏师范大学 一种具有包芯结构的透明陶瓷光纤的制备方法
CN111848141A (zh) * 2020-07-24 2020-10-30 江苏师范大学 一种浆料直写成型3d打印用陶瓷膏体的制备方法
CN113754411A (zh) * 2021-08-17 2021-12-07 南通大学 一种基于3D打印红色釉上彩Ce:YAG荧光陶瓷的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190348809A1 (en) * 2016-06-17 2019-11-14 Lawrence Livermore National Security, Llc Laser gain media fabricated via direct ink writing (diw) and ceramic processing
CN108309475A (zh) * 2018-02-05 2018-07-24 上海御齿台医疗科技有限公司 安全种植牙方法
CN108516818A (zh) * 2018-05-25 2018-09-11 江苏师范大学 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN109761608A (zh) * 2019-03-07 2019-05-17 江苏师范大学 一种基于直写成型3d打印技术制备棒状复合透明陶瓷的方法
CN111825453A (zh) * 2020-07-24 2020-10-27 江苏师范大学 一种具有包芯结构的透明陶瓷光纤的制备方法
CN111848141A (zh) * 2020-07-24 2020-10-30 江苏师范大学 一种浆料直写成型3d打印用陶瓷膏体的制备方法
CN113754411A (zh) * 2021-08-17 2021-12-07 南通大学 一种基于3D打印红色釉上彩Ce:YAG荧光陶瓷的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116177995A (zh) * 2022-09-07 2023-05-30 中国科学院上海硅酸盐研究所 一种基于3d打印复合结构荧光陶瓷的制备方法
CN116177995B (zh) * 2022-09-07 2024-03-12 中国科学院上海硅酸盐研究所 一种基于3d打印复合结构荧光陶瓷的制备方法
CN116178004A (zh) * 2022-12-13 2023-05-30 中国科学院上海硅酸盐研究所 一种稀土渐变掺杂透明陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN114853462A (zh) 一种直写成型制备yag基透明陶瓷的方法
CN108516818B (zh) 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN110683769B (zh) 一种增强的钙硼硅微晶玻璃复合材料及其制备方法
CN102060539B (zh) 利用注浆成型制备钇铝石榴石基透明陶瓷的方法
CN105732050A (zh) 一种净尺寸复杂形状透明陶瓷件的制备工艺
CN107721424B (zh) 一种凝胶注模成型制备yag透明陶瓷的方法
CN108516820B (zh) 一种氧化铟锡靶材的短流程烧结工艺
CN113563103B (zh) 一种采用流延成型法制备梯度氧化铝多孔陶瓷的方法
WO2003004437A1 (fr) Article translucide fritte en oxyde de terre rare et procede de production
CN112939582B (zh) 一种掺杂氧化锆的氧化铝陶瓷及其制备方法
CN108640672A (zh) 一种镁铝尖晶石透明陶瓷的制备方法
CN112919904A (zh) 氧化锆陶瓷基板及其制备方法
CN113716951B (zh) 一种大尺寸薄片复合结构yag基透明陶瓷的制备方法
CN111499371A (zh) 一种镁铝尖晶石透明陶瓷的制备方法
CN111825453A (zh) 一种具有包芯结构的透明陶瓷光纤的制备方法
CN111087235B (zh) 一种采用钇/助剂/铝三重核壳结构粉体制备yag透明陶瓷的方法
CN1299850C (zh) 钇稀土陶瓷型壳钛合金熔模精密铸造方法
NL2030121A (en) Method for preparing large-size high-quality potassium tantalum niobate ceramic target material
CN113354407A (zh) 一种掺铝氧化锌靶材的变温快烧工艺
CN114524669A (zh) 一种棒状同心圆结构石榴石基激光透明陶瓷及其制备方法
CN112299856B (zh) 一种基于3D打印成型的AlON陶瓷粉体制备方法
CN112851331A (zh) 一种yag基透明陶瓷的工业化生产方法
CN110590353B (zh) 一种提升yag基透明陶瓷掺杂离子固溶度的方法
CN117105650A (zh) 一种高发射率耐高温硅酸盐高熵气凝胶的制备方法
CN113045310B (zh) 一种am凝胶注模成型工艺制备锆酸镧钆透明陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220805

RJ01 Rejection of invention patent application after publication