CN112299856B - 一种基于3D打印成型的AlON陶瓷粉体制备方法 - Google Patents
一种基于3D打印成型的AlON陶瓷粉体制备方法 Download PDFInfo
- Publication number
- CN112299856B CN112299856B CN202011280267.2A CN202011280267A CN112299856B CN 112299856 B CN112299856 B CN 112299856B CN 202011280267 A CN202011280267 A CN 202011280267A CN 112299856 B CN112299856 B CN 112299856B
- Authority
- CN
- China
- Prior art keywords
- raw material
- ceramic powder
- printing
- powder
- alon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/322—Transition aluminas, e.g. delta or gamma aluminas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/424—Carbon black
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6026—Computer aided shaping, e.g. rapid prototyping
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种基于3D打印成型的AlON陶瓷粉体制备方法,包括如下步骤:(1)首先将原料粉体、溶剂和添加剂混合,制备成高固相含量的原料墨水;(2)然后采用3D打印成型工艺将原料墨水打印成具有规则三维通孔结构的原料坯体,并将原料坯体进行干燥;(3)再将原料坯体置于高温石墨烧结炉内具有气流控制和防污染功能的反应装置中,在受控的反应环境下进行高温合成;(4)最后经球磨工艺处理后,即可获得高纯度的AlON陶瓷粉体。本发明通过上述方法,可以把原料粉体打印成为具有规则三维通孔结构的坯体,有利于高温合成时气‑固合成反应的充分进行,再结合具有气流控制和防污染功能的陶瓷粉体合成反应装置,就能够获得高纯度的AlON陶瓷粉体。
Description
技术领域
本发明属于粉体制备领域,具体地讲,是涉及一种基于3D打印成型的AlON陶瓷粉体制备方法。
背景技术
γ-AlON(简称AlON)是一种各向同性的透明多晶陶瓷材料,在可见光至中红外具有高的光学透过性(在波长0.2~5.0μm范围内透光率80%以上),此外它还具有强度高、硬度大、耐腐蚀、抗划伤、热震性好等优点,因此,AlON陶瓷可以替代单晶蓝宝石,制备透红外窗口和导弹整流罩;也可以取代传统防弹玻璃作为透明防弹装甲材料,用于坦克装甲车的观察窗、汽车飞机的防弹窗,等等。高性能AlON透明陶瓷的广泛应用依赖于高纯度、低成本AlON粉体的宏量供给。目前美国已经掌握了AlON粉体的宏量合成技术,并将大尺寸的AlON透明陶瓷提供给军方使用,国内部分高校和科研机构开展了AlON材料相关的基础研究工作,但市场上还未见商用的AlON陶瓷产品,其最大的制约因素是高纯度、低成本的AlON粉体宏量合成技术尚未突破。
AlON陶瓷粉体的合成方法中,碳热还原氮化法是研究最多和最有工业化发展潜力的方法,该方法涉及到高温气-固反应(温度高达1700~1800℃)。目前已经有多家高校和科研机构实现了实验室量级的AlON陶瓷粉体的制备,但还未见这些粉体的商业化产品上市,其主要原因有二:一是粉体合成量放大以后容易出现物相不纯的现象,其原因是表面的粉体对气体向内扩散有屏蔽阻挡效应,导致内部粉体的气-固反应不完全;二是缺少适用于粉体宏量合成的设备,现有设备要么炉膛尺寸较小、单次装粉量非常有限,要么存在炉内气流不可控和陶瓷粉体被污染的问题。针对内部粉体气-固反应不完全的问题,科技人员想出了各种各样的解决方法,例如,专利CN103466668A通过旋转坩埚带动内部原料粉体的翻转,实现粉体与气体的充分接触,制备出了较高纯度的AlON粉体;专利CN103755350A通过在松装粉体中预置贯穿孔和使用带细密孔的石墨坩埚盖,促进气体在粉体中的流动扩散;专利CN105622104A通过采用冷冻干燥技术使料浆冷冻凝固形成的多孔微观形貌得以保持,获得了结构蓬松的原料粉体,有利于气-固合成反应的进行。虽然这些方法都在一定程度上解决了气体向粉体内部扩散不充分的难题,但还存在坩埚沾染粉体、气流控制较难、设备要求较高、单次合成量较少等问题,不适于宏量合成制备高纯度AlON陶瓷粉体。
发明内容
本发明的目的在于提供一种基于3D打印成型的AlON陶瓷粉体制备方法,以解决上述AlON陶瓷粉体宏量制备需要进行高温气-固反应所遇到的诸多难题。
本发明提供的基于3D打印成型的AlON陶瓷粉体制备方法,包括如下步骤:
(1)首先将原料粉体、溶剂和添加剂混合,制备成高固相含量的原料墨水;所述原料粉体由94~95wt%的氧化铝和5~6wt%的炭黑组成,其中氧化铝的物相为α相或γ相,粒径为微米级或者微米级与纳米级复配;
(2)然后采用3D打印成型工艺将原料墨水打印成具有规则三维通孔结构的原料坯体,并将原料坯体进行干燥;
(3)再将原料坯体置于高温石墨烧结炉内具有气流控制和防污染功能的反应装置中(见专利CN210718675U),在受控的反应环境下进行高温合成;
(4)最后经球磨工艺处理后,即可获得高纯度的AlON陶瓷粉体。
作为优选地,步骤(1)中,所述溶剂为水、乙醇、丙三醇、叔丁醇的两种或多种混合溶液;所述添加剂包括粘结剂和分散剂,添加剂的添加量为粉体重量的1~5%,其中粘结剂为聚乙烯醇、聚乙二醇、聚乙烯吡咯烷酮、羧甲基纤维素中的一种或几种,分散剂为尿素、柠檬酸铵、四甲基氢氧化铵、聚丙烯酸铵中的一种或几种;制成的原料墨水中原料粉体的固含量为75~85wt%,制备方式为球磨、均质、三辊研磨之一。
作为优选地,步骤(2)中,3D打印机的打印喷头直径为1~5mm,打印压力为100~400kPa,打印速度为6~20mm/s;原料坯体干燥方式为升温干燥或者冷冻干燥。
作为优选地,步骤(3)中,原料坯体放置于反应装置的AlON陶瓷垫块上,与反应装置内部四周壁板的距离不小于10mm;高温合成的温度范围为1750~1800℃,保温时间为1~3h;反应气氛为氮气、氨气中的一种,气体流量为1~5L/min。
作为优选地,步骤(4)中,所述球磨工艺转速为200~1000rpm,球磨时间为2~24h。
作为优选地,所述球磨工艺之后还包括除碳工艺,所述除碳工艺温度为500~700℃、保温时间为4~12h。通常在粉体中含碳量超过一定范围时添加除碳工艺,通过调整原料中炭黑的添加量将粉体中的含碳量降低,即使省略除碳工序亦可确保粉体纯度。
本发明设计思路如下:
3D打印成型是近年来发展起来一种新的陶瓷坯体成型技术,具有无模具成型、成型效率高、尺寸可控、近净成型等优点,是近年来的研究热点。与其它3D打印成型方法相比,料浆挤出3D打印所用墨水(料浆)中粘结剂用量少、固相含量高,可在常温下成型,无需紫外光和激光辐射,且所打印的坯体具有骨架结构可控、通孔率极高的特点,非常适用于本发明中原料坯体的成型。
因此,本发明通过采用3D打印成型,将原料粉体打印成为具有规则三维通孔结构的原料坯体,有利于气体通过三维通孔结构向坯体内部扩散,从而实现坯体内部的气-固反应完全进行;再采用适用于高温石墨烧结炉的陶瓷粉体合成反应装置(专利CN210718675U),可实现气流控制和防污染功能,有利于获得高纯度的陶瓷粉体。
相较于现有技术,本发明具有如下技术效果:
1、本发明所使用的方案使原料粉体3D打印成为原料坯体后,可在反应装置的腔室内放置多个原料坯体,再通过增加腔室数量,更好地实现了陶瓷粉体的宏量合成制备。
2、陶瓷原料粉体经3D打印成型后坯体具有一定的形状和强度,可便于搬运和提高装炉量。
3、3D打印成型获得的原料坯体内部具有规则三维通孔结构,非常有利于气体向坯体内部扩散渗透,从而实现坯体内部的气-固合成反应完全进行。
4、采用能够实现气流控制和防污染功能的特制反应装置(见专利CN210718675U),可进一步有利于气体参与合成反应和防止外来污染,进而获得高纯度的陶瓷粉体。
5、本发明提供的AlON陶瓷粉体制备方法,制备效率高,物相纯度高,工艺步骤简单,易实现产业化,具有良好的应用前景和推广价值。
附图说明
图1为实施例1中高温合成反应后的AlON坯体实例图;
图2为实施例1中坯体内部的微观结构图;
图3为实施例1、2中高温合成AlON粉体的XRD图谱。
具体实施方式
下面结合附图和实施例对本发明作进一步说明,本发明的实施方式包括但不限于下列实施例。
实施例1
使用基于3D打印成型的陶瓷粉体制备方法制备AlON粉体,包括以下步骤:
(1)称量微米级γ-A12O3粉89.4g、纳米级γ-A12O3粉5g、高纯炭黑粉5.6g、聚乙烯吡咯烷酮5g、尿素0.5g、氨水0.5g、复合溶剂32g(由水、乙醇、丙三醇组成的混合液体,重量占比分别为50%、25%、25%)和氧化铝磨球,装入聚氨酯球磨罐中,在转速为2000r/min的均质机上球磨2min,获得固相含量约76%的原料墨水;
(2)将上述原料墨水注入3D打印机的料筒中进行打印成型,打印喷头直径为2mm,打印压力为150kPa,打印速度为12mm/s,打印完后将原料坯体放入温度为100℃的鼓风烘箱中干燥12h,得到具有内部规则三维通孔结构的原料坯体;
(3)将上述原料坯体放在高温石墨烧结炉内的陶瓷粉体反应装置里进行高温合成,合成反应条件为在流动氮气气氛下1775℃保温1h,气体流量为3L/min,得到由AlON颗粒组成的坯体(实例图见图1、坯体内部的微观结构见图2);
(4)经高温合成的原料坯体经破碎后放入氧化铝球磨罐中,以酒精为球磨介质,氧化铝为磨球,在棒磨机转速为300r/min下球磨12h,经干燥后获得颜色纯白的粉体,经分析粉体为纯AlON物相(见图3)。
实施例2
使用基于3D打印成型的陶瓷粉体制备方法制备AlON粉体,具体包括以下步骤:
(1)称量微米级α-A12O3粉76.8g、高纯炭黑粉23.2g、聚乙烯醇4g、四甲基氢氧化铵0.4g、氨水0.4g、复合溶剂26g(由水、叔丁醇组成的混合液体,重量占比分别为75%、25%)和氧化铝磨球,装入塑料容器中搅拌,然后在转速为2000r/min的均质机上均质1min,获得固相含量约为79%的原料墨水;
(2)将上述原料墨水注入3D打印机的料筒中进行打印成型,打印喷头直径为3mm,打印压力为100kPa,打印速度为15mm/s,打印完后将原料坯体放入温度为-30℃的冷冻干燥机中干燥24h,得到具有内部规则三维通孔结构的原料坯体;
(3)将上述原料坯体放在高温石墨烧结炉内的陶瓷粉体反应装置里进行高温合成,合成反应条件为在流动氨气气氛下1800℃保温2h,气体流量为2L/min,得到由AlON颗粒组成的坯体;
(4)经高温合成的原料坯体经破碎后放入氧化铝球磨罐中,以酒精为球磨介质,氧化铝为磨球,在棒磨机转速为300r/min下球磨12h,经干燥后的粉体放入氧化炉中于680℃下除碳8h,最终获得纯白色的粉体,经分析粉体为纯AlON物相(见图3)。
上述实施例仅为本发明的优选实施例,并非对本发明保护范围的限制,但凡采用本发明的设计原理,以及在此基础上进行非创造性劳动而做出的变化,均应属于本发明的保护范围之内。
Claims (6)
1.一种基于3D打印成型的AlON陶瓷粉体制备方法,其特征在于,包括如下步骤:
(1)首先将原料粉体、溶剂和添加剂混合,制备成高固相含量的原料墨水;所述原料粉体由94~95wt%的氧化铝和5~6wt%的炭黑组成,其中氧化铝的物相为α相或γ相,粒径为微米级或者微米级与纳米级复配;
(2)然后采用3D打印成型工艺将原料墨水打印成具有规则三维通孔结构的原料坯体,并将原料坯体进行干燥;
(3)再将原料坯体置于高温石墨烧结炉内具有气流控制和防污染功能的反应装置中,在受控的反应环境下进行高温合成;
(4)最后经球磨工艺处理后,即可获得高纯度的AlON陶瓷粉体。
2.根据权利要求1所述的AlON陶瓷粉体制备方法,其特征在于,步骤(1)中,所述溶剂为水、乙醇、丙三醇、叔丁醇的两种或多种混合溶液;所述添加剂包括粘结剂和分散剂,添加剂的添加量为粉体重量的1~5%,其中粘结剂为聚乙烯醇、聚乙二醇、聚乙烯吡咯烷酮、羧甲基纤维素中的一种或几种,分散剂为尿素、柠檬酸铵、四甲基氢氧化铵、聚丙烯酸铵中的一种或几种;制成的原料墨水中原料粉体的固含量为75~85wt%,制备方式为球磨、均质、三辊研磨之一。
3.根据权利要求1所述的AlON陶瓷粉体制备方法,其特征在于,步骤(2)中,3D打印机的打印喷头直径为1~5mm,打印压力为100~400kPa,打印速度为6~20mm/s;原料坯体干燥方式为升温干燥或者冷冻干燥。
4.根据权利要求1所述的AlON陶瓷粉体制备方法,其特征在于,步骤(3)中,原料坯体放置于反应装置的AlON陶瓷垫块上,与反应装置内部四周壁板的距离不小于10mm;高温合成的温度范围为1750~1800℃,保温时间为1~3h;反应气氛为氮气、氨气中的一种,气体流量为1~5L/min。
5.根据权利要求1所述的AlON陶瓷粉体制备方法,其特征在于,步骤(4)中,所述球磨工艺转速为200~1000rpm,球磨时间为2~24h。
6.根据权利要求1或5所述的AlON陶瓷粉体制备方法,其特征在于,所述球磨工艺之后还包括除碳工艺,所述除碳工艺温度为500~700℃、保温时间为4~12h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011280267.2A CN112299856B (zh) | 2020-11-16 | 2020-11-16 | 一种基于3D打印成型的AlON陶瓷粉体制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011280267.2A CN112299856B (zh) | 2020-11-16 | 2020-11-16 | 一种基于3D打印成型的AlON陶瓷粉体制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112299856A CN112299856A (zh) | 2021-02-02 |
CN112299856B true CN112299856B (zh) | 2022-04-22 |
Family
ID=74334687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011280267.2A Active CN112299856B (zh) | 2020-11-16 | 2020-11-16 | 一种基于3D打印成型的AlON陶瓷粉体制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112299856B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114014668B (zh) * | 2021-11-25 | 2022-08-09 | 中国科学院上海硅酸盐研究所 | 一种3d打印用水基氮氧化铝透明陶瓷浆料及其制备方法 |
CN114956793A (zh) * | 2022-06-01 | 2022-08-30 | 东南大学 | 3d打印陶瓷电子电路的陶瓷浆料及其制备技术和混合增材制造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102639081A (zh) * | 2009-06-17 | 2012-08-15 | 纽约市哥伦比亚大学信托人 | 牙齿支架 |
CN103896601A (zh) * | 2014-03-06 | 2014-07-02 | 清华大学 | 一种高致密度复杂形状陶瓷制品的热压烧结方法 |
US20140364299A1 (en) * | 2013-03-13 | 2014-12-11 | Surmet Corporation | Transparent Polycrystalline Ceramic Material |
WO2015006697A1 (en) * | 2013-07-11 | 2015-01-15 | Heikkila Kurt E | Surface modified particulate and sintered extruded products |
WO2015061616A1 (en) * | 2013-10-24 | 2015-04-30 | Surmet Corporation | High purity polycrystalline aluminum oxynitride bodies |
US20160368244A1 (en) * | 2015-06-17 | 2016-12-22 | Deborah Duen Ling Chung | Thixotropic liquid-metal-based fluid and its use in making metal-based structures with or without a mold |
US20170050890A1 (en) * | 2012-03-02 | 2017-02-23 | Dynamic Material Systems, LLC | Advanced Mirrors Utilizing Polymer-Derived-Ceramic Mirror Substrates |
US20180148378A1 (en) * | 2015-05-28 | 2018-05-31 | 3M Innovative Properties Company | Additive manufacturing process for producing ceramic articles using a sol containing nano-sized particles |
EP3363561A1 (en) * | 2017-02-16 | 2018-08-22 | Höganäs AB | Particles having a sinterable core and a polymeric coating, use thereof, and additive manufacturing method using the same |
-
2020
- 2020-11-16 CN CN202011280267.2A patent/CN112299856B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102639081A (zh) * | 2009-06-17 | 2012-08-15 | 纽约市哥伦比亚大学信托人 | 牙齿支架 |
US20170050890A1 (en) * | 2012-03-02 | 2017-02-23 | Dynamic Material Systems, LLC | Advanced Mirrors Utilizing Polymer-Derived-Ceramic Mirror Substrates |
US20140364299A1 (en) * | 2013-03-13 | 2014-12-11 | Surmet Corporation | Transparent Polycrystalline Ceramic Material |
WO2015006697A1 (en) * | 2013-07-11 | 2015-01-15 | Heikkila Kurt E | Surface modified particulate and sintered extruded products |
WO2015061616A1 (en) * | 2013-10-24 | 2015-04-30 | Surmet Corporation | High purity polycrystalline aluminum oxynitride bodies |
CN103896601A (zh) * | 2014-03-06 | 2014-07-02 | 清华大学 | 一种高致密度复杂形状陶瓷制品的热压烧结方法 |
US20180148378A1 (en) * | 2015-05-28 | 2018-05-31 | 3M Innovative Properties Company | Additive manufacturing process for producing ceramic articles using a sol containing nano-sized particles |
US20160368244A1 (en) * | 2015-06-17 | 2016-12-22 | Deborah Duen Ling Chung | Thixotropic liquid-metal-based fluid and its use in making metal-based structures with or without a mold |
EP3363561A1 (en) * | 2017-02-16 | 2018-08-22 | Höganäs AB | Particles having a sinterable core and a polymeric coating, use thereof, and additive manufacturing method using the same |
Non-Patent Citations (2)
Title |
---|
3D打印技术研究概况;陈志茹等;《金属世界》;20180715(第04期);全文 * |
Fabrication of transparent gamma-AlON by direct 2-step pressureless sintering of Al2O3 and AlN using an AlN-deficient composition;Min, JH et al.;《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》;20191231;第39卷(第15期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112299856A (zh) | 2021-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112299856B (zh) | 一种基于3D打印成型的AlON陶瓷粉体制备方法 | |
CN106630985B (zh) | 一种氚增殖用纳米结构正硅酸锂陶瓷小球及其制备方法 | |
CN103553629B (zh) | 利用凝胶注模成型制备氮氧化铝透明陶瓷的方法 | |
CN112390653B (zh) | 一种基于冷冻浇注成型的陶瓷粉体制备方法 | |
CN103755350B (zh) | 一种γ-AlON透明陶瓷粉体的制备方法 | |
CN105622104A (zh) | 一种高纯AlON透明陶瓷粉体的制备方法 | |
CN112299861B (zh) | 一种AlON透明陶瓷伪烧结剂与应用及透明陶瓷的制备方法 | |
CN102924073A (zh) | 采用热压后处理制备掺杂钇铝石榴石透明激光陶瓷的方法 | |
CN102757223A (zh) | 一种稀土硼化物/碳化硼复合中子吸收材料及其制备方法 | |
Chen et al. | Systematic optimization of ball milling for highly transparent Yb: YAG ceramic using co-precipitated raw powders | |
Chen et al. | Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb: YAG nanopowders | |
CN103820859A (zh) | 掺杂钇铝石榴石陶瓷转变为单晶的制备方法 | |
CN112390651A (zh) | 一种基于3D打印成型的AlN陶瓷粉体制备方法 | |
CN114538931A (zh) | 一种高性能AlON透明陶瓷及其低温快速制备方法 | |
CN111786014A (zh) | 一种超细粒度的石榴石型固体电解质粉体及其制备方法 | |
CN114988863B (zh) | 非晶晶化制备镁铝尖晶石透明陶瓷的方法 | |
CN104387081A (zh) | 透明氮氧化铝(AlON)陶瓷的低温制备方法 | |
CN115745607A (zh) | 一种红外透明陶瓷材料及其制备方法 | |
CN114853462A (zh) | 一种直写成型制备yag基透明陶瓷的方法 | |
CN103482970B (zh) | 一种激光透明陶瓷及其制备方法 | |
CN112299855B (zh) | 一种基于3D打印成型的MgAlON陶瓷粉体制备方法 | |
CN108329036A (zh) | 一种超细高纯AlON粉体及其制备方法 | |
CN108889955B (zh) | 一种球形化高活性硼基预合金粉体及其制备方法 | |
CN113754436B (zh) | 一种纳米晶激光级倍半氧化物透明陶瓷的制备方法 | |
CN115745620A (zh) | 一种高致密度氮化钛陶瓷材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |