CN114014668B - 一种3d打印用水基氮氧化铝透明陶瓷浆料及其制备方法 - Google Patents

一种3d打印用水基氮氧化铝透明陶瓷浆料及其制备方法 Download PDF

Info

Publication number
CN114014668B
CN114014668B CN202111412195.7A CN202111412195A CN114014668B CN 114014668 B CN114014668 B CN 114014668B CN 202111412195 A CN202111412195 A CN 202111412195A CN 114014668 B CN114014668 B CN 114014668B
Authority
CN
China
Prior art keywords
aluminum oxynitride
water
powder
transparent ceramic
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111412195.7A
Other languages
English (en)
Other versions
CN114014668A (zh
Inventor
陈鹤拓
吉浩浩
周国红
章健
毛小建
刘娟
王士维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202111412195.7A priority Critical patent/CN114014668B/zh
Publication of CN114014668A publication Critical patent/CN114014668A/zh
Application granted granted Critical
Publication of CN114014668B publication Critical patent/CN114014668B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种3D打印用水基氮氧化铝透明陶瓷浆料及其制备方法。所述3D打印用水基氮氧化铝透明陶瓷浆料包括:Al2O3粉体、AlN粉体、二价金属氧化物/盐、稀土氧化物、弱酸、分散剂、增稠剂和水。

Description

一种3D打印用水基氮氧化铝透明陶瓷浆料及其制备方法
技术领域
本发明涉及一种3D打印用水基氮氧化铝透明陶瓷浆料及其制备方法,属于透明陶瓷领域。
背景技术
氮氧化铝透明陶瓷(AlON)是Al2O3和AlN按照一定组分比例范围,经高温固溶生成的单一立方相光学各向同性透明陶瓷。AlON透明陶瓷不仅光学透过率高,透波波段宽,而且综合力学性能优于其他透明陶瓷材料,可广泛应用于红外窗口、头罩、透明装甲等领域。
自1976年McCauly制备出世界上第一块半透明氮氧化铝陶瓷以来,多种制备方法和成型工艺日趋成熟。一般而言,通过干压成型,经冷等静压和烧结制度优化,即可制得光学质量优异的AlON透明陶瓷。而当有复杂形状产品要求时,干压成型法则常面临成型形状有限和素坯密度分布不均匀的缺点,导致加工工艺复杂、耗时长、成本高等一系列问题。湿法成型以浆料固含量高、流动性好、素坯致密度均匀、近净尺寸成型的优势,成为制备复杂形状AlON透明陶瓷材料的重要方法。而对于部分特殊的应用场景,改进湿法成型的陶瓷浆料,结合3D打印技术,经高温烧结,可以更高效、低成本地完成小尺寸、高精度、高质量透明陶瓷产品的制备工作。
对用于3D打印的陶瓷浆料而言,不仅需要严格控制制备过程中原料纯度以保证陶瓷材料的配比符合设计,而且需要在维持较高固含量以确保陶瓷透明化的基础上,确保拥有较好的粘度可以用于3D打印成型。相较于醇基陶瓷浆料中的有机物含量通常较高,浆料固含量过低,脱粘后素坯孔洞较多的问题,水基陶瓷浆料中有机物添加量较少,素坯致密,成品率高,有望应用于制备3D打印陶瓷浆料,以制备高光/力学性能陶瓷。
然而,一方面,未见用于3D打印AlON透明陶瓷浆料及其制备方法的相关文献报道;另一方面,无论是碳热还原氮化法合成的纯AlON相粉体,或者Al2O3和AlN的混合物粉体,由于存在易与水反应的Al-N键,会生成氨气和Al(OH)3,不仅会导致组分比例偏离预期设计,而且会影响陶瓷浆料的固含量和粘度,降低氮氧化铝透明陶瓷浆料的可打印性。
发明内容
针对上述问题,本发明提供了一种防水化、固含量高、粘度适中的水基氮氧化铝浆料及其制备方法以及采用3D打印技术制备的AlON透明陶瓷。
第一方面,本发明提供了一种3D打印用水基氮氧化铝透明陶瓷浆料,包括:Al2O3粉体、AlN粉体、二价金属氧化物/盐、稀土氧化物、弱酸、分散剂、增稠剂和水。
在本发明中,水基氮氧化铝透明陶瓷浆料采用Al2O3和AlN为主要原料,添加少量二价金属氧化物/盐、稀土氧化物和弱酸烧结助剂辅助实现陶瓷烧结透明化,添加适量分散剂和水调节浆料的固含量,浆料固含量≥75wt%,添加适量增稠剂以调节浆料的粘度,粘度在5~10Pa·s。在前述过程中,弱酸和增稠剂分别通过修饰包裹颗粒表面和吸取浆料中水分的方式,实现减缓氮氧化铝陶瓷粉体水化过程,20小时内浆料pH值≤9,干燥后的浆料和素坯中无Al(OH)3等水化产物,且素坯相对密度不低于55%。
在本发明中,针对Al2O3/AlN混合粉体易水化的问题,采用易溶于酒精的弱酸,在球磨过程中完成对陶瓷颗粒的包覆过程,可以在一定程度上延缓陶瓷浆料的水化过程,在素坯的整个制备流程中,未检测出水化产物物相,最大程度上确保透明陶瓷的组分比例符合预期设计;弱酸含量较少,不会对陶瓷的光学性能产生明显影响。
在本发明中,通过分散剂和水含量优化,调节氮氧化铝陶瓷浆料的固含量;通过增稠剂含量优化,调节氮氧化铝陶瓷浆料的粘度;同时,增稠剂通过吸收浆料中的水分,实现减缓氮氧化铝粉体水化的效果。
较佳的,所述二价金属氧化物/盐选自MgO、MgAl2O4、MgCO3、CaCO3、SrCO3、BaCO3中的至少一种;
所述稀土氧化物选自La2O3、Y2O3、Gd2O3、Yb2O3和Sc2O3中的至少一种;
所述弱酸选自H3BO3、H3PO4、柠檬酸中的中的至少一种;
所述分散剂选自聚丙烯酸、聚丙烯酸铵、聚甲基丙烯酸铵中的至少一种;
所述增稠剂选自羟乙基纤维素、羟丙基纤维素、2-羟乙基甲基纤维素中的至少一种。
较佳的,所述Al2O3粉体和AlN粉体的质量比为(90~80):(10~20);
所述二价金属氧化物/盐添加量为Al2O3粉体和AlN粉体总质量的0.1~0.3wt%;
所述稀土氧化物的添加量为Al2O3粉体和AlN粉体总质量的0.05~0.2wt%;
所述弱酸的添加量为Al2O3粉体和AlN粉体总质量的0.05~0.15wt%;
所述分散剂的添加量为Al2O3粉体、AlN粉体、二价金属氧化物/盐、稀土氧化物和弱酸总质量的0.3~0.6wt%;
所述增稠剂的添加量为为Al2O3粉体、AlN粉体、二价金属氧化物/盐、稀土氧化物和弱酸总质量的0.40~0.80wt%。
较佳的,所述Al2O3粉体的纯度≥99.9%,粒径为0.1~10μm;
所述AlN粉体的纯度≥99.9%,粒径为0.6~2μm;
所述二价金属氧化物/盐的纯度≥99.99%,粒径为0.5~1.5μm;
所述稀土氧化物的纯度≥99.99%;
所述弱酸的纯度为分析纯;
所述分散剂的纯度不低于99.9%;所述增稠剂的纯度不低于99.9%。
较佳的,所述水基氮氧化铝透明陶瓷浆料的固含量(Al2O3粉体和AlN粉体的含量)为≥75wt%,优选75~81wt%(对应43vol~53vol%)。其中固含量为浆料中陶瓷粉体的质量百分比,该陶瓷粉体包括Al2O3、AlN、二价金属氧化物/盐、稀土氧化物、弱酸的质量之和。若固含量低于此范围,打印所得坯体气孔率较高,素坯在干燥过程中易开裂,且不利于陶瓷透明化。若固含量过高,难以搅拌混合,无法制成可打印的浆料。
较佳的,所述水基氮氧化铝透明陶瓷浆料的粘度为5~10Pa·s。若粘度过低,打印所得坯体容易发生坍塌。若粘度过高,浆料流动性差,无法实现打印。
较佳的,所述水基氮氧化铝透明陶瓷浆料在20小时内的pH值≤9,在该时间窗口内,浆料打印性好,可以保证氮氧化铝透明陶瓷的浆料、素坯打印和干燥流程所需时长。
第二方面,本发明提供了一种3D打印用水基氮氧化铝透明陶瓷浆料的制备方法,包括:(1)制备抗水化陶瓷粉体;(2)利用抗水化陶瓷粉体制备3D打印用水基氮氧化铝透明陶瓷浆料。具体包括:按照所述氮氧化铝陶瓷粉体组分比例称取Al2O3、AlN、二价金属氧化物/盐、稀土氧化物和弱酸,与酒精和高纯氧化铝球混合后球磨,烘干过筛后得到抗水化氮氧化铝陶瓷粉体;将抗水化处理的陶瓷粉体、分散剂、水和高纯氧化铝球混合后球磨调节浆料固含量后,再加入增稠剂,离心混合调节浆料粘度,制备出氮氧化铝陶瓷浆料。
较佳的,将Al2O3粉体、AlN粉体、二价金属氧化物/盐、稀土氧化物、弱酸、乙醇和高纯氧化铝球进行球磨混合,再经干燥和过筛处理,得到抗水化陶瓷粉体;
优选地,所述球磨混合的转速为220~360转/分钟,时间为24~48小时;更优选地,所述球磨混合的转速为270转/分钟,时间为36小时;
优选地,所述干燥的温度为50~100℃,时间为20~48小时;更优选地,所述干燥的温度为60℃,时间为24小时;
所述过筛的筛子目数在80~160目,过筛次数为至少1次;更优选地,所述过筛的目数为100目,过筛次数为1次。
较佳的,先将抗水化陶瓷粉体、分散剂、水和高纯氧化铝球进行球磨混合,再加入增稠剂进行离心混合,得到所述3D打印用水基氮氧化铝透明陶瓷浆料;
优选地,球磨混合后陶瓷浆料的固含量≥75wt%,所述球磨混合的转速为200~300转/分钟,时间为0.5~2小时;更优选地,所述球磨混合的转速为240转/分钟,时间为1小时;
优选地,离心混合后陶瓷浆料的粘度为5~10Pa·s,所述离心混合的转速为1000~2000转/分钟,时间为5~10分钟;更优选地,所述球磨混合的转速为1500转/分钟,时间为5分钟。
第三方面,本发明提供了一种3D打印制备氮氧化铝透明陶瓷的方法,包括3D打印、成型和烧结透明化。具体地,将水基氮氧化铝透明陶瓷浆料装入打印注射器并密封,先经过真空条件下离心除气,然后按照设定的打印程序,打印出陶瓷素坯(实现陶瓷的3D打印成型);将所得陶瓷素坯经烘干、脱粘和烧结后,得到光学质量优异的的单相的氮氧化铝透明陶瓷。同时,干燥后的陶瓷素坯中无Al(OH)3等水化产物相,相对密度不低于55%。
较佳的,所述真空离心除气条件为:在1000~2000转/分钟、1~10kPa真空度下离心除气5~15分钟;优选地,所述真空离心除气的转速在1500转/分钟、真空度为5kPa,离心除气时间为10分钟。
较佳的,所述烘干的环境为恒温恒湿环境,温度为15~35℃,湿度为80~85%,时间为12~48小时;
所述脱粘的气氛为氧气或空气气氛,温度为500~700℃,时间为2~10小时,脱粘后的样品相对密度不低于55%;优选地,所述脱粘的气氛为空气气氛,温度为650℃,时间为5小时;
所述烧结的气氛为流动氮气气氛(流量为0.5~2L/min,优选1.5L/min),温度为1900~2000℃,时间为5~35小时。优选地,所述烧结的温度为1960℃,氮气流量1.5L/min,时间为10小时。
第四方面,本发明提供了一种根据上述方法制备的氮氧化铝透明陶瓷,所述氮氧化铝透明陶瓷的物相为立方尖晶石相,相对密度≥99.9%;1mm厚样品在780nm处的直线透过率≥80%,硬度大于等于18GPa(Hv0.3kgf),断裂韧性大于等于1.7MPa·m1/2(Hv0.3kgf)。
与现有技术相比,本发明具有以下特点:
(1)本发明的水基氮氧化铝陶瓷浆料具备减缓水化过程的特性,可以在特定时间段内确保最终的氮氧元素比例在设计范围内可控;
(2)本发明的水基氮氧化铝陶瓷浆料兼备抗水化、固含量高、粘度适中的优点,尤其适用于3D打印成型精细复杂的陶瓷样品;
(3)本发明的氮氧化铝陶瓷浆料,经3D打印成型和高温烧结,制备出的氮氧化铝透明陶瓷光/力学质量优异,证实该水基浆料的实用性;
(4)本发明的配方中不含Pb、Cd等挥发性或重金属,是一种环保健康的材料;
(5)本发明所述的材料,原材料国内市场供应充足,价格低廉,使高性能透明陶瓷制备的低成本化成为可能;
(6)本发明所述的浆料主要采用行星球磨混料,素坯采用3D打印制备成型,陶瓷采用无压烧结,陶瓷材料性能稳定,适用于批量化生产。
附图说明
图1为采用实施例1所述方法制得的固含量为40wt%的水基AlON浆料的pH随时间的变化规律,浆料在20小时内的pH值稳定在9以下(同样条件下测得纯水的pH值为8.1);由于实施例1中浆料固含量过高,无法直接测试pH值,在其他条件不变的前提下,采用固含量为40wt%的水基AlON浆料估计固含量为79wt%浆料的pH随时间的变化规律;图2为实施例1所述方法制得的不同阶段素坯的XRD衍射图谱,未见水化产物物相出现;
图3为实施例1所述方法制得的AlON透明陶瓷和透过率曲线,1mm厚样品在780nm处的透过率为81.90%;
图4为对比例1和实施例1所得AlON透明陶瓷浆料经3D打印后制得的干燥素坯;
图5为实施例2和对比例2制备的AlON透明陶瓷浆料照片。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,以Al2O3和AlN为主要原料,添加少量二价金属氧化物/盐、稀土氧化物、和弱酸作为烧结助剂辅助透明化,在酒精中经混合、干燥和过筛后得到陶瓷粉体;加入适量分散剂和水,调节浆料的固含量,使其不低于75wt%,加入适量增稠剂调节浆料粘度,粘度为5~10Pa·s,离心混合得到氮氧化铝陶瓷浆料;弱酸和增稠剂分别通过修饰陶瓷粉体颗粒表面和吸取浆料中水分的方式延缓氮氧化铝陶瓷粉体的水化,20小时内浆料的pH值≤9;然后,经3D打印成型、干燥和脱粘,素坯中始终未检测到Al(OH)3等水化产物物相,脱粘后的素坯相对密度不低于55%,经高温烧结,可以制备出光学质量优异的氮氧化铝透明陶瓷。
本发明制备方法简单,可确保陶瓷组分的精确控制,采用上述方法获得的氮氧化铝透明陶瓷的物相为立方结构尖晶石相,致密度≥99.9%,1mm厚样品在780nm处的直线透过率≥80%,硬度不低于18GPa(Hv0.3kgf),断裂韧性不低于1.7MPa·m1/2(Hv0.3kgf)。以下示例性地说明本发明提供的氮氧化铝透明陶瓷的制备方法。
抗水化氮氧化铝陶瓷粉体制备。按照所述氮氧化铝陶瓷粉体组分比例称取Al2O3、AlN、二价金属氧化物/盐、稀土氧化物和弱酸,与酒精和高纯氧化铝球混合后球磨,经烘干过筛后得到抗水化处理的氮氧化铝陶瓷粉体。
水基氮氧化铝陶瓷浆料制备。将抗水化处理的陶瓷粉体、分散剂、水和高纯氧化铝球混合后球磨混合,一段时间后,加入稠化剂(增稠剂),离心混合,得到水基氮氧化铝陶瓷浆料。
3D打印成型。将水基氮氧化铝陶瓷浆料装入打印注射器(针头直径可为50μm-800μm)并密封,在1000~2000转/分钟、1~10kPa真空度下离心除气5~15分钟。然后按照设定的打印程序,打印出透明陶瓷素坯。在恒温恒湿环境下烘干,在氧气或空气气氛中脱粘,温度设定在500~700℃之间,时间为2~10小时。
高温烧结。在流动氮气气氛中,烧结温度设定在1900~2000℃之间,时间为5~35小时,烧制出氮氧化铝透明陶瓷。
在本公开中,采用溶于酒精的少量弱酸和增稠剂处理,粉体和素坯中始终未检测到Al(OH)3等水化产物物相,固含量不低于75wt%,素坯相对密度不低于55%,制得透明陶瓷的物相为立方尖晶石相,致密度≥99.9%,经双面抛光处理后,1mm厚样品在780nm处透过率不低于80%,硬度不低于18GPa(Hv0.3kgf),断裂韧性不低于1.7MPa·m1/2(Hv0.3kgf)。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1:主要包括抗水化氮氧化铝陶瓷粉体制备、水基氮氧化铝陶瓷浆料制备、3D打印成型、高温烧结等步骤:
(1)抗水化氮氧化铝陶瓷粉体制备:根据表1,按照质量比为84.70:15.30分别称取Al2O3粉体(纯度>99.90%,平均粒径为0.65μm)和AlN粉体(纯度>99.90%,平均粒径为0.85μm)。添加0.40wt%的MgAl2O4(纯度>99.99%)和0.10wt%的Y2O3(纯度>99.99%)作为烧结助剂,添加0.12wt%的H3BO3(纯度>99.99%)作为水化抑制剂,以无水乙醇为分散介质,采用高纯氧化铝球磨罐,高纯氧化铝球为球磨介质对混合粉体进行球磨混合,在270转每分的条件下球磨混合36小时,球磨后的浆料置于60℃的烘箱中干燥24小时,然后过100目筛,得到抗水化氮氧化铝陶瓷粉体;
(2)水基氮氧化铝陶瓷浆料制备:按照每100g抗水化处理氮氧化铝陶瓷粉体添加0.40g质量比称取分散剂聚丙烯酸,以陶瓷粉体、水和高纯氧化铝球球磨混合,球磨混合的转速为240转/分钟,时间为1小时;按照每100g抗水化处理氮氧化铝陶瓷粉体添加0.60g质量比称取增稠剂羟丙基纤维素,加入浆料并离心混合,转速为1500转/分钟,时间为5分钟;
(3)3D打印成型:将水基氮氧化铝陶瓷浆料装入打印注射器并密封,在1500转/分钟、5kPa真空度下离心除气10分钟。然后按照设定的打印程序,打印出透明陶瓷素坯。将所得素坯在温度为25℃,湿度为85%的恒温恒湿环境下烘干24小时。在空气气氛中,经650℃脱粘处理2小时;
(4)高温烧结:成型后的素坯置于坩埚中,在流量为1.5L/min的流动氮气气氛下,以10℃/min的升温速率升至1960℃再进行保温,时间为10小时。
表1为实施例中各种材料的比例和陶瓷烧结温度工艺参数:
Figure BDA0003374039670000071
表2为实施例1中所得氮氧化铝透明陶瓷的光学和力学性能:
Figure BDA0003374039670000081
如表2可以看出,采用前述抗水化处理的氮氧化铝陶瓷浆料,固含量为79wt%,经3D打印成型,脱粘后的干燥素坯相对密度不低于55%,经高温烧结,得到的陶瓷物相为尖晶石相,致密度为99.9%,1mm厚样品在780nm处的透过率为81.90%,3.7μm处的透过率为82.38%,维氏硬度为18.56GPa(Hv0.3kgf),断裂韧性1.74MPa·m1/2(Hv0.3kgf)。
实施例2
本实施例2氮氧化铝陶瓷浆料的制备过程参照实施例1,区别在于:控制水的加入量使得氮氧化铝陶瓷浆料的固含量为81wt%。
对比例1
本对比例1中氮氧化铝陶瓷浆料的制备过程参照实施例1,区别在于:控制水的加入量使得氮氧化铝陶瓷浆料的固含量为74wt%,小于本发明要求的最低值75wt%。从图4中可知本对比例1中固含量<75wt%的AlON透明陶瓷浆料经3D打印后制得的干燥素坯,由于内部气孔较多,干燥过程中开裂。实施例1中固含量为79wt%的AlON透明陶瓷浆料经3D打印后制得的干燥素坯完好。
对比例2
本对比例2氮氧化铝陶瓷浆料的制备过程参照实施例1,区别在于:控制水的加入量使得氮氧化铝陶瓷浆料的固含量为82.7wt%。参照图5,实施例2中固含量为81wt%的AlON透明陶瓷浆料流动性较好。本对比例2中固含量为82.7wt%的AlON透明陶瓷浆料固含量过高,无法制备浆料,后续无法用于3D打印。
以上实施例仅示例性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (14)

1.一种3D打印用水基氮氧化铝透明陶瓷浆料,其特征在于,包括:Al2O3粉体、AlN粉体、二价金属氧化物/盐、稀土氧化物、弱酸、分散剂、增稠剂和水;所述弱酸选自H3BO3、H3PO4、柠檬酸中的至少一种;所述增稠剂选自羟乙基纤维素、羟丙基纤维素、2-羟乙基甲基纤维素中的至少一种;其中,弱酸和增稠剂分别通过修饰包裹颗粒表面和吸取浆料中水分的方式,实现减缓氮氧化铝陶瓷粉体水化过程,20小时内浆料pH值≤9;所述水基氮氧化铝透明陶瓷浆料的固含量为75~81wt%;
所述3D打印用水基氮氧化铝透明陶瓷浆料的制备方法包括:
(1)将Al2O3粉体、AlN粉体、二价金属氧化物/盐、稀土氧化物、弱酸、乙醇和高纯氧化铝球进行球磨混合,再经干燥和过筛处理,得到抗水化陶瓷粉体;
(2)将抗水化陶瓷粉体、分散剂、水和高纯氧化铝球进行球磨混合,再加入增稠剂进行离心混合,得到所述3D打印用水基氮氧化铝透明陶瓷浆料。
2.根据权利要求1所述的水基氮氧化铝透明陶瓷浆料,其特征在于,所述二价金属氧化物/盐选自MgO、MgAl2O4、MgCO3、CaCO3、SrCO3、BaCO3中的至少一种;
所述稀土氧化物选自La2O3、Y2O3、Gd2O3、Yb2O3和Sc2O3中的至少一种;
所述分散剂选自聚丙烯酸、聚丙烯酸铵、聚甲基丙烯酸铵中的至少一种。
3.根据权利要求1所述的水基氮氧化铝透明陶瓷浆料,其特征在于,所述Al2O3粉体和AlN粉体的质量比为(90~80) :(10~20);
所述二价金属氧化物/盐添加量为Al2O3粉体和AlN粉体总质量的0.1~0.3wt%;
所述稀土氧化物的添加量为Al2O3粉体和AlN粉体总质量的0.05~0.2wt%;
所述弱酸的添加量为Al2O3粉体和AlN粉体总质量的 0.05~0.15wt%;
所述分散剂的添加量为Al2O3粉体、AlN粉体、二价金属氧化物/盐、稀土氧化物和弱酸总质量的0.3~0.6wt%;
所述增稠剂的添加量为Al2O3粉体、AlN粉体、二价金属氧化物/盐、稀土氧化物和弱酸总质量的0.4~0.8wt%。
4.根据权利要求1所述的水基氮氧化铝透明陶瓷浆料,其特征在于,所述Al2O3粉体为α相,纯度≥99.9%,粒径为0.1~10μm;
所述AlN粉体的纯度≥99.9%,粒径为0.6~2μm;
所述二价金属氧化物/盐的纯度≥99.99%,粒径为0.5~1.5μm;
所述稀土氧化物的纯度≥99.99%;
所述弱酸的纯度为分析纯;
所述分散剂的纯度不低于99.9%;所述增稠剂的纯度不低于99.9%。
5.根据权利要求1-4中任一项所述的水基氮氧化铝透明陶瓷浆料,其特征在于,所述水基氮氧化铝透明陶瓷浆料的粘度为5~10Pa·s。
6.根据权利要求1-4中任一项所述的水基氮氧化铝透明陶瓷浆料,其特征在于,步骤(1)中:所述球磨混合的转速为220~360转/分钟,时间为24~48小时;
所述干燥的温度为50~100℃,时间为20~48小时;
所述过筛的筛子目数在80~160目,过筛次数为至少1次。
7.根据权利要求6所述的水基氮氧化铝透明陶瓷浆料,其特征在于,步骤(1)中:所述球磨混合的转速为270转/分钟,时间为36小时;
所述干燥的温度为60℃,时间为24小时;
所述过筛的目数为100目,过筛次数为1次。
8.根据权利要求1-4中任一项所述的水基氮氧化铝透明陶瓷浆料,其特征在于,步骤(2)中:球磨混合后陶瓷浆料的固含量≥75wt%,所述球磨混合的转速为200~300转/分钟,时间为0.5~2小时;
所述离心混合的转速为1000~2000转/分钟,时间为5~10分钟。
9.根据权利要求8所述的水基氮氧化铝透明陶瓷浆料,其特征在于,步骤(2)中:所述球磨混合的转速为240转/分钟,时间为1小时;
所述离心混合的转速为1500转/分钟,时间为5分钟。
10.一种3D打印制备氮氧化铝透明陶瓷的方法,其特征在于,将权利要求1-9中任一项所述的水基氮氧化铝透明陶瓷浆料装入打印注射器并密封,先经过真空离心除气,然后按照设定的打印程序,打印出陶瓷素坯;将所得陶瓷素坯经烘干、脱粘和烧结后,得到单相氮氧化铝透明陶瓷。
11.根据权利要求10所述的方法,其特征在于,所述真空离心除气条件为:在1000~2000转/分钟、1~10kPa真空度下离心除气5~15分钟。
12.根据权利要求11所述的方法,其特征在于,所述真空离心除气的转速在1500转/分钟、真空度为5kPa,离心除气时间为10分钟。
13.根据权利要求10-12中任一项所述的方法,其特征在于,所述烘干的环境为恒温恒湿环境,温度为15~35℃,湿度为80~85%,时间为12~48小时;
所述脱粘的气氛为氧气或空气气氛,温度为500~700℃,时间为2~10小时,脱粘后素坯相对密度不低于55%;
所述烧结的气氛为流动氮气气氛,温度为1900~2000℃,时间为5~35小时。
14.一种根据权利要求10-13中任一项所述的3D打印制备氮氧化铝透明陶瓷的方法制备的氮氧化铝透明陶瓷,其特征在于,所述氮氧化铝透明陶瓷的物相为立方尖晶石相,相对密度≥99.9%;1mm厚样品在780nm处的直线透过率≥80%,硬度大于等于18GPa(Hv0.3kgf),断裂韧性大于等于1.7MPa·m1/2(Hv0.3kgf)。
CN202111412195.7A 2021-11-25 2021-11-25 一种3d打印用水基氮氧化铝透明陶瓷浆料及其制备方法 Active CN114014668B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111412195.7A CN114014668B (zh) 2021-11-25 2021-11-25 一种3d打印用水基氮氧化铝透明陶瓷浆料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111412195.7A CN114014668B (zh) 2021-11-25 2021-11-25 一种3d打印用水基氮氧化铝透明陶瓷浆料及其制备方法

Publications (2)

Publication Number Publication Date
CN114014668A CN114014668A (zh) 2022-02-08
CN114014668B true CN114014668B (zh) 2022-08-09

Family

ID=80066608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111412195.7A Active CN114014668B (zh) 2021-11-25 2021-11-25 一种3d打印用水基氮氧化铝透明陶瓷浆料及其制备方法

Country Status (1)

Country Link
CN (1) CN114014668B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116177995B (zh) * 2022-09-07 2024-03-12 中国科学院上海硅酸盐研究所 一种基于3d打印复合结构荧光陶瓷的制备方法
CN116496091B (zh) * 2023-04-28 2024-03-12 中国科学院上海硅酸盐研究所 一种氮氧化铝透明陶瓷材料及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231062A (en) * 1990-08-09 1993-07-27 Minnesota Mining And Manufacturing Company Transparent aluminum oxynitride-based ceramic article
CN106342080B (zh) * 2007-11-26 2012-02-08 中国科学院上海硅酸盐研究所 一种氮氧化铝透明陶瓷的碳热或铝热还原制备方法
CN106342081B (zh) * 2007-11-26 2012-02-08 中国科学院上海硅酸盐研究所 一种氮氧化铝透明陶瓷的固相制备方法
KR20120098118A (ko) * 2011-02-28 2012-09-05 영남대학교 산학협력단 투명도가 향상된 다결정 산질화알루미늄의 제조방법
US9422196B2 (en) * 2013-03-13 2016-08-23 Surmet Corporation Transparent polycrystalline ceramic material
CN103553629B (zh) * 2013-10-18 2015-02-04 中国科学院上海硅酸盐研究所 利用凝胶注模成型制备氮氧化铝透明陶瓷的方法
WO2015061616A1 (en) * 2013-10-24 2015-04-30 Surmet Corporation High purity polycrystalline aluminum oxynitride bodies
CN112225564B (zh) * 2019-07-15 2022-01-04 中国科学院上海硅酸盐研究所 一种氮氧化铝透明陶瓷及其制备方法
CN110467443A (zh) * 2019-09-19 2019-11-19 广东工业大学 一种氮化铝/氧化铝复相陶瓷及其制备方法
CN112299856B (zh) * 2020-11-16 2022-04-22 中国工程物理研究院材料研究所 一种基于3D打印成型的AlON陶瓷粉体制备方法

Also Published As

Publication number Publication date
CN114014668A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
CN114014668B (zh) 一种3d打印用水基氮氧化铝透明陶瓷浆料及其制备方法
CN113563103B (zh) 一种采用流延成型法制备梯度氧化铝多孔陶瓷的方法
CN108794016B (zh) 一种高红外透过率AlON透明陶瓷的快速制备方法
CN108178634B (zh) 塞隆结合碳化硅陶瓷的制备法
CN109400123B (zh) 一种细晶氧化铝陶瓷及其制备方法和应用
CN113277859B (zh) 一种纳米包覆氧化铝颗粒及用其制备的高纯抗热震氧化铝陶瓷材料
CN113943162B (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
CN114538929A (zh) 一种高致密度碳化硼陶瓷的制备方法
CN110451962B (zh) 一种亚毫米级氧化锆陶瓷球及其制备方法
CN113990658B (zh) 一种高剩磁比、低孔隙率六角铁氧体厚膜及其制备方法与应用
CN112624793A (zh) 一种氧化铝基多孔陶瓷材料的制备方法
CN108411137A (zh) 超细晶碳化钨基硬质合金的制备方法
CN107190165A (zh) 一种制备高强度WC‑Ni硬质合金的方法
CN113968732A (zh) 一种高稳定低损耗的微波介质陶瓷材料的制备方法及应用其制得的微波介质陶瓷材料
CN108546131B (zh) 氮化硅多孔陶瓷的制备方法
CN111807828A (zh) 一种低成本镁铝尖晶石透明陶瓷制品的制备方法
CN112521177A (zh) 一种低熔点多孔陶瓷材料及其制备方法
CN110550945B (zh) 一种LuAG:Ce透明陶瓷的制备方法及LuAG:Ce透明陶瓷
CN115159973B (zh) 一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法
CN115073186B (zh) 一种氮化硅陶瓷烧结体及其制备方法
CN113526947B (zh) 利用圭亚那矾土制备高纯均质矾土熟料的方法及其产品
CN109851329A (zh) 一种细晶Al2O3/SiC复合陶瓷刀具材料及制备工艺
CN112225564B (zh) 一种氮氧化铝透明陶瓷及其制备方法
CN105295917B (zh) 一种制备yag荧光粉的组合助剂及方法
CN1422827A (zh) 一种氮化物/氧化铝基复合陶瓷材料及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant