CN115522319A - 一种多孔串珠状pvdf纳米纤维及其制备方法 - Google Patents

一种多孔串珠状pvdf纳米纤维及其制备方法 Download PDF

Info

Publication number
CN115522319A
CN115522319A CN202211182904.1A CN202211182904A CN115522319A CN 115522319 A CN115522319 A CN 115522319A CN 202211182904 A CN202211182904 A CN 202211182904A CN 115522319 A CN115522319 A CN 115522319A
Authority
CN
China
Prior art keywords
pvdf
beaded
spinning
porous beaded
nanofiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211182904.1A
Other languages
English (en)
Inventor
张楚虹
刘新刚
邵祝祝
刘警峰
张璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202211182904.1A priority Critical patent/CN115522319A/zh
Publication of CN115522319A publication Critical patent/CN115522319A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开了一种多孔串珠状PVDF纳米纤维及其制备方法,该制备方法通过将PVDF和溶于PVDF的劣溶剂的可纺聚合物共溶于PVDF的良溶剂中,形成纺丝液后经静电纺丝后制得。本发明的制备方法中可以通过调节纺丝液的浓度和PVDF与可纺聚合物的相对含量,可以调控多孔串珠PVDF纳米纤维的多孔形貌和串珠数量,丰富了对PVDF串珠纳米纤维形貌的调控方法,在膜蒸馏、过滤吸附、催化等领域具有广阔的应用前景。

Description

一种多孔串珠状PVDF纳米纤维及其制备方法
技术领域
本发明属于串珠状纳米纤维技术领域,具体涉及到一种多孔串珠状PVDF纳米纤维及其制备方法。
背景技术
静电纺丝技术是一种利用强电场感应下产生的静电力制备纳米纤维的方法,该技术具有装置简单,适用范围广、价格低廉等优点。串珠状纳米纤维由纳米级纤维和微纳米级珠粒组成,是电纺纳米纤维中的一种特殊存在,在膜蒸馏、过滤吸附、组织工程等方面具有广阔应用前景,受到了国内外研究者的关注。多孔串珠状纳米纤维的串珠内部和表面有很多孔隙,表面粗糙度增加,比表面积增大,可以有效提高串珠状纤维的某些特殊性能。
PVDF是具有良好的化学稳定性、力学性能和压电特性,而且无毒性、具有很好的生物相容性、成本低、耐久性好。PVDF纳米纤维已应用于压电能量收集、传感器、膜蒸馏、过滤吸附等多个领域。由于串珠状PVDF纤维的串珠结构的可设计性较差,主要依赖于改变溶液的浓度或溶剂来调节串珠的长径比和数目,对串珠状纤维的多孔结构研究较少,在一定程度上会限制多孔串珠状PVDF纳米纤维的应用范围。
例如现有技术中公开了一种采用静电纺丝制备的多孔结构的聚合物纤维,但是其疏水性能、力学性能较差,负载能力也并不突出。
发明内容
本发明的目的是提供一种多孔串珠状PVDF纳米纤维及其制备方法,可以调控串珠的数量和形貌,拓展PVDF串珠纤维在传感器、膜蒸馏、过滤吸附等领域的深入应用。
为达上述目的,本发明提供了一种多孔串珠状PVDF纳米纤维的制备方法,包括以下步骤:
(1)将PVDF颗粒与可纺聚合物共溶于PVDF的良溶剂中,加热搅拌后形成纺丝液;
(2)将纺丝液吸入注射器中,通过静电纺丝工艺制备纺丝膜;
(3)将纺丝膜超声并烘干后,即可制得多孔串珠状PVDF纳米纤维。
优选的,可纺聚合物为聚乙烯醇(PVA)、聚环氧乙烯(PEO)或聚乙烯吡咯烷酮(PVP),所述良溶剂由体积比为1~7:1~3的丙酮与有机溶液混合制得,有机溶液为N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAC)或二甲基亚砜(DMSO)。其中可纺聚合物需易溶于水、乙醇等无机溶剂(PVDF的劣溶剂)。
优选的,聚乙烯吡咯烷酮的平均分子量为45000~58000,良溶剂中丙酮与有机溶液的体积比为1:1。
优选的,PVDF颗粒与可纺聚合物的质量比为0.5~2:1,纺丝液的浓度为15~25%m/v,优选为16~23%m/v。本发明中的m/v是指的将15~25g(16~23g)溶质定容到100mL后的浓度。
优选的,加热搅拌的温度为50~60℃,加热搅拌的时间为6~8h,加热搅拌的转速为450~550rpm。
优选的,静电纺丝过程使用的金属针头规格为21G,针头到收集器的距离为10~20cm,接收器滚筒的转速为30~1000rpm,纺丝液注射速度为0.05~2mL/h,正高压为10~22kV,负电压为1~3kV。
优选的,静电纺丝过程中注射器针头到收集器的距离为12~18cm,接收器滚筒的转速为30~200rpm,纺丝液注射速度为0.2~2mL/h,正高压为13~18kV,负电压为1~3kV。
优选的,纺丝膜超声时间为1~2h,烘干温度为80℃,烘干时间为8~12h,超声的溶剂为乙醇。
优选的,纺丝膜置于乙醇中超声1h,烘干温度为80℃,烘干时间为12h。
本发明还公开了采用上述多孔串珠状PVDF纳米纤维的制备方法制备得到的多孔串珠状PVDF纳米纤维。
综上所述,本发明具有以下优点:
1、本发明中的纺丝液的溶剂为PVDF的良溶剂,无需加入乙醇或水,此外,本发明可以通过改变PVDF和PVP的相对含量和纺丝液的浓度,实现对多孔串珠状PVDF纳米纤维的多孔形貌和串珠数量的调节。
本发明使用常规的静电纺丝设备制得的多孔串珠状PVDF纳米纤维,串珠粗糙多孔,操作简单,在传感、膜蒸馏、过滤吸附、催化等领域有潜在的应用价值。
2、本发明制备的多孔串珠状PVDF纳米纤维,具有多孔结构,串珠结构有利于提高其表面粗糙度及疏水性,串珠的多孔结构有利于提高其负载和吸附能力。
附图说明
图1为本发明对比例1制备的PVDF/PVP串珠纳米纤维的扫描电镜图;
图2为本发明实施例1制备的多孔串珠状PVDF纳米纤维的扫描电镜图;
图3为本发明实施例2制备的多孔串珠状PVDF纳米纤维的扫描电镜图;
图4为本发明对比例2制备的PVDF纳米纤维的扫描电镜图;
图5为本发明对比例3制备的PVDF纳米纤维的扫描电镜图;
图6为本发明实施例3制备的多孔串珠状PVDF纳米纤维的扫描电镜图。
具体实施方式
本发明提供了一种多孔串珠状PVDF纳米纤维及其制备方法,静电纺丝的纺丝液溶质是PVDF和易溶于水、乙醇等无机溶剂(PVDF的劣溶剂)的可纺聚合物(如聚环氧乙烯PEO,聚乙烯吡咯烷酮PVP),可纺聚合物作为模板可以后处理除去。通过静电纺丝技术制备多孔串珠状PVDF纳米纤维,PVDF和易溶于水、乙醇等无机溶剂(PVDF的劣溶剂)的可纺聚合物以一定比例溶解于PVDF的良溶剂中,得到低浓度的纺丝液进行静电纺丝,得到串珠结构纳米纤维,将纺丝膜放在水、乙醇等无机溶剂(PVDF的劣溶剂)中超声,除去水溶性可纺聚合物,得到多孔串珠状PVDF纳米纤维。
本发明中的可纺聚合物指溶于乙醇、水的可以进行静电纺丝的聚合物,将PVDF和可纺聚合物共溶于PVDF的良溶剂中,形成纺丝液后经静电纺丝后制得PVDF/可纺聚合物串珠纤维,将其浸泡在乙醇或水(PVDF的劣溶剂)中,既可以除去串珠纤维中的可纺聚合物,也可以同时保持纤维的骨架(PVDF不溶于乙醇,PVP溶于乙醇),形成多孔串珠PVDF纤维。
在静电纺丝纳米纤维上添加一定数量的串珠,可以在一定程度上改变连续纳米纤维的空间结构,提高结构蓬松性,可以有效粘附住空气中的气溶胶微粒,具备极高的过滤效率,增大纤维间的孔隙尺寸,进而减小过滤阻力。
以下结合实施例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
本实施例提供了一种多孔串珠状PVDF纳米纤维的制备方法,包括以下步骤:
(1)将1gPVDF颗粒和0.8gPVP粉末溶解在5mL N,N-二甲基乙酰胺和5mL丙酮的混合溶剂中,保持温度在60℃,转速为500rpm,搅拌6h,直至得到均匀稳定的纺丝液;
(2)将纺丝液吸入10mL塑料注射器中进行静电纺丝,注射器针头到收集器的距离为15cm,在接收器辊筒表面贴上铝箔,辊筒转速为50rpm,纺丝液注射速度为0.15mL/h,正高压为13kV,负电压为1kV,纺丝时间为1.5h,结束后收集纺丝膜;
(3)将纺丝膜置于乙醇溶剂中超声2h,在80℃真空烘箱中干燥12h,得到多孔串珠状PVDF纳米纤维。
如图2所示,实施例1制备的多孔串珠状PVDF纳米纤维中珠状物所占的面积百分比约为27%,珠状物表面孔隙覆盖率为6%~47%,珠状物的面积为1~150μm2,长宽比为1~1.6。
实施例2
本实施例提供了一种多孔串珠状PVDF纳米纤维的制备方法,包括以下步骤:
(1)将1.2g PVDF颗粒和0.8g PVP粉末溶解在5mL N,N-二甲基乙酰胺和5mL丙酮的混合溶剂中,保持温度在50℃,转速为450rpm,搅拌6h,直至得到均匀稳定的纺丝液;
(2)将溶液吸入10mL塑料注射器中进行静电纺丝,注射器针头到收集器的距离为16cm,接收器滚筒的转速为60rpm,纺丝液注射速度为0.15mL/h,正高压15kV,负电压为1.5kV。纺丝时间为2h,结束后收集纺丝膜;
(3)将纺丝膜置于乙醇溶剂中超声1h,并在80℃真空烘箱中干燥12h,得到多孔串珠状PVDF纳米纤维。
如图3所示,实施例2制备的多孔串珠状PVDF纳米纤维中珠状物所占的面积百分比约为12%,珠状物表面孔隙覆盖率为4%~17%,珠状物的面积为1~150μm2,长宽比为1~3。
实施例3
本实施例提供了一种多孔串珠状PVDF纳米纤维的制备方法,包括以下步骤:
(1)将1.5g PVDF颗粒和0.8g PVP粉末溶解在5mL N,N-二甲基乙酰胺和5mL丙酮的混合溶剂中,保持温度在60℃,转速为500rpm,搅拌8h,直至得到均匀稳定的纺丝液;
(2)将溶液吸入10mL塑料注射器中进行静电纺丝,注射器针头到收集器的距离为18cm,接收器滚筒的转速为100rpm,注射器前进速度为0.2mL/h,正高压16kV,负电压为1kV。纺丝时间为2h,结束后收集纺丝膜;
(3)将纺丝膜置于乙醇溶剂中超声1.5h,在80℃真空烘箱中干燥12h,得到多孔串珠状PVDF纳米纤维。
如图6所示,实施例3制备的多孔串珠状PVDF纳米纤维中珠状物所占的面积百分比约为5%,珠状物表面孔隙覆盖率为2%~9%,珠状物的面积为1~50μm2,长宽比为1~3.6。
上述实施例1-3中所用静电纺丝设备的型号为ET-2535H(北京永康乐业科技发展有限公司)
对比例1
本例中,将纺丝结束后收集到的纺丝膜直接烘干,不需要在乙醇溶剂中进行超声处理,其余操作过程与实施例1相同,得到串珠状PVDF/PVP纤维。如图1所示。
对比例1最终得到PVDF/PVP复合串珠纤维,串珠表面没有孔结构,证明了PVDF/PVP复合纺丝膜在乙醇溶剂中超声除去PVP制备PVDF多孔串珠状纤维的有效性。
对比例2
本例中,纺丝液的溶剂为3mL N,N-二甲基乙酰胺和3mL丙酮的混合溶剂,其余操作过程与实验例2相同,得到多孔PVDF纳米纤维。如图4所示。
上述纺丝液中PVDF与PVP的质量比为3:2,与实验例2相同,但是纺丝液的浓度为33.3%(m/v),最终得到的PVDF纳米纤维为多孔结构,纤维的平均直径为1.62μm,纳米纤维中没有串珠结构。
对比例3
将1.5g PVDF颗粒和0.5g PVP粉末溶解在5mL N,N-二甲基乙酰胺和5mL丙酮的混合溶剂中,其余操作过程与实验例2相同,得到多孔PVDF纳米纤维。如图5所示。
上述纺丝液的浓度为20%(m/v),与实验例2中纺丝液的浓度相同,但PVDF与PVP的质量比为3:1,最终得到的PVDF纳米纤维为多孔结构,纤维的平均直径为588nm,纳米纤维中没有串珠结构。
虽然对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

Claims (7)

1.一种多孔串珠状PVDF纳米纤维的制备方法,其特征在于,包括以下步骤:
(1)将PVDF颗粒与可纺聚合物共溶于PVDF的良溶剂中,加热搅拌后形成纺丝液;
(2)将纺丝液吸入注射器中,通过静电纺丝工艺制备纺丝膜;
(3)将纺丝膜超声并烘干后,即可制得多孔串珠状PVDF纳米纤维。
2.如权利要求1所述的多孔串珠状PVDF纳米纤维的制备方法,其特征在于,所述可纺聚合物为聚乙烯醇、聚环氧乙烯或聚乙烯吡咯烷酮,所述良溶剂由体积比为1~7:1~3的丙酮与有机溶液混合制得,所述有机溶液为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺或二甲基亚砜。
3.如权利要求1所述的多孔串珠状PVDF纳米纤维的制备方法,其特征在于,所述PVDF颗粒与可纺聚合物的质量比为0.5~2:1,所述纺丝液的浓度为15~25%m/v。
4.如权利要求1所述的多孔串珠状PVDF纳米纤维的制备方法,其特征在于,所述加热搅拌的温度为50~60℃,加热搅拌的时间为6~8h,加热搅拌的转速为450~550rpm。
5.如权利要求1所述的多孔串珠状PVDF纳米纤维的制备方法,其特征在于,所述静电纺丝过程使用的金属针头规格为21G,针头到收集器的距离为10~20cm,接收器滚筒的转速为30~1000rpm,纺丝液注射速度为0.05~2mL/h,正高压为10~22kV,负电压为1~3kV。
6.如权利要求1所述的多孔串珠状PVDF纳米纤维的制备方法,其特征在于,所述纺丝膜超声时间为1~2h,烘干温度为80℃,烘干时间为8~12h,超声的溶剂为乙醇。
7.采用权利要求1-6任一项所述的多孔串珠状PVDF纳米纤维的制备方法制备得到的多孔串珠状PVDF纳米纤维。
CN202211182904.1A 2022-09-27 2022-09-27 一种多孔串珠状pvdf纳米纤维及其制备方法 Pending CN115522319A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211182904.1A CN115522319A (zh) 2022-09-27 2022-09-27 一种多孔串珠状pvdf纳米纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211182904.1A CN115522319A (zh) 2022-09-27 2022-09-27 一种多孔串珠状pvdf纳米纤维及其制备方法

Publications (1)

Publication Number Publication Date
CN115522319A true CN115522319A (zh) 2022-12-27

Family

ID=84700596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211182904.1A Pending CN115522319A (zh) 2022-09-27 2022-09-27 一种多孔串珠状pvdf纳米纤维及其制备方法

Country Status (1)

Country Link
CN (1) CN115522319A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117225199A (zh) * 2023-11-15 2023-12-15 杭州合域科技有限公司 无胞状孔结构的pes微孔滤膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112962310A (zh) * 2021-03-02 2021-06-15 西南交通大学 一种多功能pvdf多级孔洞纤维薄膜及其制备方法
CN112981725A (zh) * 2020-02-25 2021-06-18 四川大学 纳米纤维膜、温敏性Janus复合膜及其制备方法
CN113046856A (zh) * 2021-04-08 2021-06-29 西安理工大学 一种具有高循环稳定性的压电光催化复合纤维的制备方法
CN113373595A (zh) * 2021-05-19 2021-09-10 济南大学 一种FeOOH/PVDF纤维支架及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981725A (zh) * 2020-02-25 2021-06-18 四川大学 纳米纤维膜、温敏性Janus复合膜及其制备方法
CN112962310A (zh) * 2021-03-02 2021-06-15 西南交通大学 一种多功能pvdf多级孔洞纤维薄膜及其制备方法
CN113046856A (zh) * 2021-04-08 2021-06-29 西安理工大学 一种具有高循环稳定性的压电光催化复合纤维的制备方法
CN113373595A (zh) * 2021-05-19 2021-09-10 济南大学 一种FeOOH/PVDF纤维支架及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
盛冰冰;孔庆山;纪全;夏延致;: "静电纺丝法制备PVP/PVDF复合微/纳米纤维", 化工新型材料, no. 02, pages 5 *
贾德民、曾幸荣: "《新型材料科学与技术 高分子材料卷 中》", 广州:华南理工大学出版社, pages: 974 - 976 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117225199A (zh) * 2023-11-15 2023-12-15 杭州合域科技有限公司 无胞状孔结构的pes微孔滤膜及其制备方法
CN117225199B (zh) * 2023-11-15 2024-02-13 杭州合域科技有限公司 无胞状孔结构的pes微孔滤膜及其制备方法

Similar Documents

Publication Publication Date Title
CN107441827B (zh) 一种多层驻极纳米纤维过滤材料及其制备方法
Dadol et al. Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications
CN104562292B (zh) 多孔微纳米pet纤维的制备方法
CN105903271B (zh) 可调控混合纳米结构纤维复合过滤材料及其制备方法
CN106319759B (zh) 多重响应性的可控过滤静电纺纳米纤维膜及其制备方法
Zdraveva et al. Electrospun nanofibers
WO2014178454A1 (ko) 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유—그래핀 분리막
CN109012218A (zh) 一种四层复合微纳米纤维空气过滤膜及其应用
CN102517673A (zh) 一种混合相分离制备聚合物多孔纳米纤维的方法
CN115522319A (zh) 一种多孔串珠状pvdf纳米纤维及其制备方法
Bhattarai et al. Electrospinning: how to produce nanofibers using most inexpensive technique? An insight into the real challenges of electrospinning such nanofibers and its application areas
CN107675281B (zh) Pvp/pan纳米复合纤维的制备方法
CN105803679B (zh) 一种pH响应型多尺度结构聚偏氟乙烯纳米纤维膜的制备方法
CN111589225A (zh) 一种热稳型空气过滤材料及其制备方法和应用
CN102409484A (zh) 一种改性聚乙烯吡咯烷酮/醋酸纤维素纳米纤维膜的制备方法
Chen et al. Advanced functional nanofibers: strategies to improve performance and expand functions
CN105780299B (zh) 一种超分子吸附滤网的制备方法
Yardimci et al. Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes
Al-BiRuNi Electrospun nylon-6 nanofibers and their characteristics
EP2484432B1 (en) Microfiltration membrane
Shahgaldi et al. Investigation of the effect of electrospun polyethersulfone nanofibers in membrane
Chen et al. Competitive effects of centrifugal force and electric field force on centrifugal electrospinning
CN102697727A (zh) 一种利用静电纺丝技术制备自组装酮洛芬脂质体的方法
CN110756129A (zh) 一种制备纳米纤维气凝胶复合材料的方法
CN112899817A (zh) 一种基于静电纺丝自组装核-鞘温敏纤维及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination